

Beam dynamics in the Figure-8 magnetic field

Beam Dynamics meets Magnets, 1st XBEAM-XRING Workshop, Darmstadt 2-4, December 2013,

Martin Droba.

Scientific frame \rightarrow Low energy, 3D Fields

[AP

Low Energy Storage Ring magnetic confinement

Workshop, Darmstadt 2-4, December 2013.

Guiding magnetic fields

BUT same field !!! $mv \leftarrow \rightarrow qA$?

Spektrum der Wissenschaft, Dossier, Kosmologie

Figure-8 geometry

1st Stellarator

- Project Matternhorn
- Princenton University

Lyman Spitzer

- High electron current kA->MA
- Disruption instabillities magnetic self fields (however, after disruption observation of long time confined runaway electrons → beam like!!!)

1950-1960

Practical vs Ideal

Design Example

Mapping of nested magnetic flux surface

- magnetic field vector following
- over many turns around figure-8
- in equidistant step of $d\chi = BdI$

virtual flight along ideal figure-8 structure Poincare map

Decomposition – Boozer coordinates

Boozer coordinates

$$\vec{B} = \nabla \chi \quad \vec{B} = \nabla \psi \times \nabla (\theta - \iota \xi)$$

covariant representation

contravariant representation

Drift Hamiltonian for guiding center approximation

$$H = \frac{1}{2m} \frac{\left(P_{\xi} + \iota P_{\theta}\right)^{2} (2\pi)^{2} |B|^{2}}{\mu_{0}^{2} G^{2} m^{2}} + \mu |B| + q\phi$$

 $\mu\,$ Adiabatic invariant associated with fast gyromotion

\rightarrow Equation of motion

J.R.Cary, Rev.Mod.Physics, Vol 81 (2009)

Simulation

- Guiding center approximation
- Particle-in-cell simulations (PIC)
- Boozer coordinates
- (non-orthogonal for vacuum fields)
- Parallel programming

typical 100 processors

Dynamic - Simulation

drift surface

magnetic flux surface \rightarrow mass-less particle \rightarrow stable phase space correction for momentum effects $m\nabla \rightarrow qA$ $m\nabla \times v \rightarrow qV$

(centripetal force, FxB drifts) \rightarrow drift surface

 $mv \to qA$ $m\nabla \times v \to q\nabla \times A$ $B_v = \frac{m}{q} \nabla \times v$

drift surface closed orbits

Injection

Scaled Experiments (room temperature)

Thank you for your attention !!!

