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Introduction: Plane circular multipoles

For most practical purposes the magnet field analysis for
accelerator applications can be reduced to a two-dimensional
problem and the field can be represented by the power series
expansion:

BBB(z) = By + iBx =

∞∑
n=1

cn

(
z

rref

)n−1

(1)

where Bx and By are the x- and y-components of the magnetic
flux density, z = x+ iy and rref is a reference radius. The
complex expansion coefficients cn = bn + ian in commonly
accepted jargon are called “harmonics” or “multipoles”.
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Introduction: Measurement of a static field

The flux Φ(φ) through an arbitrary coil array has the form:

Φ(φ) = Re

∞∑
n=1

sncn︸︷︷︸
γn

einφ

=
1

2

∞∑
n=1

γne
inφ + (c.c.)

(2)

In eqn. (2) sn are complex “sensitivity factors”, φ is the angle
of rotation, “(c.c.)” means complex conjugate. We introduced
variables γn = sncn in order to make further calculations less
cumbersome.
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Introduction: Measurement of a static field (cont.)

Flux as a function of the rotation angle is evaluated through
the time integral of induced voltage V (t), readings of the
voltage integrator are triggered by an angular encoder. In terms
of time as a function of the rotation angle t(φ)

−
t(φ)∫
t(0)

V (t)dt =

t(φ)∫
t(0)

dΦ

dt
dt =

t(φ)∫
t(0)

dΦ = Φ(φ)− Φ(0) (3)
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Introduction: Measurement of a static field (cont.)

As the Φ(φ) is evaluated in the measurement, γm and
consequently cm can be found by the Fourier transform:

1

π

2π∫
0

Φe−imφ dφ =
1

2π

∞∑
n=1

γn

2π∫
0

einφe−imφ dφ

︸ ︷︷ ︸
2πδnm

+

+ γn

2π∫
0

e−inφe−imφ dφ

︸ ︷︷ ︸
0

= γm = smcm

(4)
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Measurement of a dynamic field, “fast coil”

We assume the measuring coil rotates uniformly making an
integer number of turns M during the magnet cycling period T .
Let us use T

2π as the time unit, consequently the dependence of
the γn on time can be represented by a Fourier series:

γn(t) =

∞∑
k=0

σnke
ikt (5)

and the flux through the coil vs. time is:

Φ(t) =
1

2

∞∑
n=1

∞∑
k=0

σnke
i(k+Mn)t + (c.c.) (6)
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Measurement of a dynamic field, “fast coil” (cont.)

The Fourier transform of (6) yields

1

π

2π∫
0

Φ e−im̂t dt =

∞∑
n=1

∞∑
k=0

δm̂,(k+Mn)σnk (7)

Let us consider a partial sum of (6) with n ≤ N , k < K and
map the σnk to a vector z of length NK as follows:

zk+(n−1)K = σnk ⇔ zj = σfloor( j
K )+1, j mod K

0 ≤ j < NK
(8)

In the above equation floor(j/K) ≡ (j − (j mod K))/K is the
integer division.
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Measurement of a dynamic field, “fast coil” (cont.)

The equation k + nM = m̂ in terms of the linear index j
defined in (8) can be derived as

(j mod K)(K −M) + jM = (m̂−M)K (9)

The smallest solution of the eqn. (9) is found for m̂ = M , j = 0.
Let us denote m = m̂−M . Eqn. (7) can then be rewritten in
the form Az = b where the matrix A and vector b are defined
as:

Amj = δ(j mod K)(K−M)+jM, mK

bm =
1

π

2π∫
0

Φ e−i(m+M)t dt
(10)

The case K = M is a trivial one, because A turns to the
identity matrix, yielding zm = bm.
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Measurement of a dynamic field, “fast coil” (cont.)

In a case K > M , which is of more practical importance, the
structure of matrix A is more complicated. Let us consider as a
case study A for K = 3, M = 1 and N = 3:

A

 K = 3,

M = 1,

N = 3

 =


1

1 1
1 1 1

1 1
1

 (11)

The matrix contains KN − (K −M)(N − 1) = K +M(N − 1)
rows. Each unknown enters only into one equation, thus all
equations are decoupled, but the number of equations is less
than the number of unknowns. The system must be
supplemented by more equations to have a unique solution.
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Measurement of a dynamic field, “fast coil” (cont.)

Additional equations can be obtained using the
translation properties of σnk and bm.

Each equation with L > 1 terms has, after mapping back from
zj to σnk, the following form:

L−1∑
l=0

zjmin+l(K−M) = bm ⇔
L−1∑
l=0

σnmin+l, kmax−Ml = bm (12)

In equation (12) jmin is the minimal index with z-mapping of
unknowns (8), nmin and kmax are the minimal value of index n
and the maximal value of index k in the corresponding σnk set,
respectively.
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Measurement of a dynamic field, “fast coil” (cont.)

If the measurement clock is shifted by τ , from (5) and (10) it
follows that σnk and bm are transformed as:

σnk → σ̃nk = eikτσnk

bm → b̃m = ei(m+M)τ bm
(13)

In terms of the equation for zj , from the original equation (12)
we can construct another one:

L−1∑
l=0

zjmin+l(K−M) = bm →

→
L−1∑
l=0

e−ilMτ · zjmin+l(K−M) = ei[m+M−(jmin mod K)]τ bm

(14)
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Measurement of a dynamic field, “fast coil” (cont.)

Let us construct L− 1 additional equations as in (14) with
different time shifts τl. Denoting pl = e−iMτl we see that the
matrix V constructed from row of coefficients of the equation
(12) is a square Vandermonde matrix with a known
determinant:

V =


1 p0 p2

0 · · · pL−1
0

1 p1 p2
1 · · · pL−1

1

1 p2 p2
2 · · · pL−1

2
...

...
...

. . .
...

1 pL−1 p2
L−1 · · · pL−1

L−1


|V| =

∏
0≤i<j<L

(pj − pi)

(15)
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Measurement of a dynamic field, “fast coil” (cont.)

If all pl are different (a natural choice: pl = e−2πi l
L ), V has a

non-zero determinant, therefore it is invertable.
Applying the above technique to the case study (K = 3, M = 1,
N = 3) we obtain the following set of equations:

z0 = b0[
1 1
1 −1

] [
z1

z3

]
=

[
b1
−b1

]
 1 1 1

1 e−i
2π
3 e−i

4π
3

1 e−i
4π
3 e−i

8π
3


 z2

z4

z6

 =

 b2

ei
2π
3 b2

ei
4π
3 b2


[

1 1
1 −1

] [
z5

z7

]
=

[
b3
b3

]
z8 = b4

(16)
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Measurement of a dynamic field, “fast coil” (cont.)

As all matrices in (16) are invertible, the case study is solved.
This technique can be applied for any N , M and K > M .
Instead of inverting the NK ×NK matrix, the problem is
reduced to inverting of a number of matrices of smaller
dimensions. It can be shown for the general case, that the
maximum matrix dimension does not exceed
(K −M + 1)× (K −M + 1).
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Measurement of a dynamic field, “fast magnet”

Let us assume the measuring coil rotates uniformly and the
magnet is cycled M times during one turn of the coil. In this
case we denote as T the coil rotating period and measure time
in units of T

2π . For the purpose of a partial reuse of results
obtained for the “fast magnet” case let us swap the meaning of
indices: now k stands for the multipole number and n for term
number in the Fourier expansion of the multipole:

γk(t) =

∞∑
n=0

σkne
iMnt (17)
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Measurement of a dynamic field, “fast magnet” (cont.)

The flux through the coil vs. time is then given by equation
which is similar to (7), except for the low limits of sums:

Φ(t) =
1

2

∞∑
n=0

∞∑
k=1

σkne
i(k+Mn)t + (c.c.) (18)

The Fourier transform of (18) yields

1

π

2π∫
0

Φ e−im̂t dt =
∞∑
n=0

∞∑
k=1

δm̂,(k+Mn)σkn (19)
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Measurement of a dynamic field, “fast magnet” (cont.)

Let us consider a partial sum of (18) with n < N , k ≤ K and
map the σnk to a vector z of length NK as follows:

zk−1+nK = σkn ⇔ zj = σj mod K+1, floor( j
K )

0 ≤ j < NK
(20)

The equation k + nM = m̂ in terms of the linear index j
defined in (20) can be derived as

(j mod K)(K −M) + jM = (m̂− 1)K (21)

The smallest solution of the eqn. (21) is found for m̂ = 1, j = 0.
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Measurement of a dynamic field, “fast magnet” (cont.)

Let us denote m = m̂− 1, then (19) can be rewritten in the
form Az = b where the matrix A and vector b are defined as:

Amj = δ(j mod K)(K−M)+jM, mK

bm =
1

π

2π∫
0

Φ e−i(m+1)t dt
(22)

Comparing (22) and (10) one can see that the same matrix A is
obtained (albeit after swapping meanings of k and n).
Therefore the consideration of the “fast magnet” case is very
similar to the one of “fast coil”.
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Measurement of a dynamic field, “fast magnet” (cont.)

The case K = M is a trivial one, because A turns to the
identity matrix, yielding zm = bm.
For K > M each equation with L > 1 terms has, after mapping
from zj to σkn, the following form:

L−1∑
l=0

zjmin+l(K−M) = bm ⇔
L−1∑
l=0

σkmax−Ml, nmin+l = bm (23)

If the measurement clock is shifted by τ , σkn and bm are
transformed as:

σkn → σ̃kn = einMτσkn

bm → b̃m = ei(m+1)τ bm
(24)
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Measurement of a dynamic field, “fast magnet” (cont.)

In terms of equation for zj , from the original equation (23) we
can construct another one:

L−1∑
l=0

zjmin+l(K−M) = bm →

→
L−1∑
l=0

eilMτ · zjmin+l(K−M) = e
i
[
m+1−M ·floor

(
jmin
K

)]
τ · bm

(25)

Consequently, exactly as for the “fast coil” case, from each
equation with L > 1 terms we construct L− 1 additional
equations using the σkn and bm time translation properties,
obtaining a linear system with a Vandermonde matrix, which
has a non-zero determinant.
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The signal processing in a nutshell

The evaluation of harmonics of a time-periodic field
comprises the following steps:

Presentation of time-dependent harmonics as Fourier series

Choice of a natural time unit

Obtaing of (incomplete) set of equations by Fourier
transform

Use of the Fourier coefficients translation properties to
obtain missing equations
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Remarks

For the “fast magnet” case a good synchronization of the coil
rotation and the magnet cycling is essential. As a possible
implementation one can consider the magnet power supply
driven by a waveform generator which is clocked by the angular
encoder pulses.
Much looser requirements can be applied for the “fast coil”
case. The magnet cycle starts from the injection plateau and
comes back to it. If multipoles stay constant at the injection
plateau then expulsion of a part of the plateau, followed by
“gluing” of remaining parts preserves continuity of each
multipoles as a function of time.
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Remarks (cont.)

Therefore in the “fast coil” case the measurement can be
started at any point shortly before the ramp up, and ended at
any point at the plateau after ramp down when the coil comes
back to the start angle. In other words, the magnet cycle is not
required to be a multiple of the coil rotation period. This
option, to choose a “fictitious” magnet cycle, may be exploited.
It may be shown for a cycle with the same ramp up and ramp
down rates, that the closer the “fictitious” injection plateau
duration is to the duration of the cycle flat-top the lesser are
higher harmonics in the Fourier expansion (5).
The developed data processing technique operates with
truncated expansions (partial sums) to represent the field and
multipoles. To check if upper limits of sums are large enough to
provide the precision required they may be varied and the effect
of variations on obtained results must be analyzed.
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Conclusions

The data processing technique has been developed which
allows the use of the rotating coil method for the
measurement of a dynamic time-periodic field.

This technique allows to obtain time-dependent multipoles
in a single measurement which lasts one power cycle of the
magnet or the coil rotation period, whichever is longer.

Vasily Marousov Measurement of a dynamic field by rot. coil


