

Electromagnetic Field Simulation for Accelerator Magnets

Herbert De Gersem

+ contributions from B. Masschaele, A. Mierau, S. Koch, T. Roggen, U. Römer, S. Schöps, J. Trommler, T. Weiland

Darmstadt, 2nd December 2013

Example: GSI-SIS-100 magnet

length: 3 m

Prof. Dr. Ir. Herbert De Gersem

kulak

KU LEUVEN

Example: GSI-SIS-100 magnet

excitation profile

kulak

Magnetoquasistatic formulation

differential equation:

 $\nabla \times \left(\nu \nabla \times \vec{A} \right) + \sigma \frac{\partial \vec{A}}{\partial t} = \vec{J}_{s}$ conductivity applied current density reluctivity reluctor potential

Discretisation in space

differential equation:
$$\nabla \times (v\nabla \times \vec{A}) + \sigma \frac{\partial \vec{A}}{\partial t} = \vec{J}_{s}$$

spatial discretisation $\vec{A} \approx \vec{A}_{FE} = \sum_{j} \hat{a}_{j} \vec{w}_{j}$
semi-discrete system: $\mathbf{K}_{v} \hat{\mathbf{a}} + \mathbf{M}_{\sigma} \frac{d \hat{\mathbf{a}}}{dt} = \hat{\mathbf{j}}_{s}$
shape functions:
edge finite elements
(curl-conforming)

Prof. Dr. Ir. Herbert De Gersem

kulak

KU LEUVEN

7

eddy currents in the end plane

simulation by CST EMStudio®

kulak **KU LEUVEN**

magnetic field

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- magnet simulation (dedicated 3D FE solver)
- hybrid models
 - hybrid discretisation
 - domain decomposition
- conclusions

KU LEUVEN

kulak

8

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- magnet simulation (dedicated 3D FE solver)
- hybrid models
 - hybrid discretisation
 - domain decomposition
- conclusions

KU LEUVEN

kulak

Challenge 1: Detailed geometry

yoke

- length (meter)
 vs. lamination thickness (mm)
- o shimming, holes

beam tube

• < 1mm thick

end-winding parts

 determine the eddy currents in the end plates

yoke iron:

anisotropic (rolling & transverse direction)

$$\overline{\overline{v}}(\overline{B}) = R^T \begin{bmatrix} v_{\text{rol}} & & \\ & v_{\text{trans}} & \\ & & v_{\text{trans}} \end{bmatrix} R$$

- $V_{\rm rol}$ reluctivity in the rolling direction
- $\mathcal{V}_{\mathrm{trans}}$ reluctivity in the transversal direction

kulak

KU LEUVEN

R local rotation matrix

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)

Jiles-Atherton model

Preisach model

estimation of losses by Steinmetz-Bertotti

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)

 $\gamma_{\rm st} \approx 0.95 \leq 1$

stacking factor

iron

(simple) homogenisation along lamination direction

$$\frac{1}{v_{xy}} = \frac{\gamma_{\text{st}}}{v_{\text{Fe}}} + \frac{1 - \gamma_{\text{st}}}{v_0}$$

KU LEUVEN

perpendicular to laminates

$$v_z = \gamma_{\rm st} v_{\rm Fe} + (1 - \gamma_{\rm st}) v_0$$

kulak

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)
- o variability

stochastics, sensitivity see presentation of Sebastian Schöps

yoke iron:

- o anisotropic (rolling & transverse
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)
- o variability

superconductor:

- critical current
- o temperature
- magnetic field

lamination

• hysteresis + remanence

Jiles-Atherton model Preisach model estimation of the remanence (based on data from material vendor)

lamination

- hysteresis + remanence
- eddy currents

$$\nabla \times \left(v \nabla \times \vec{A} \right) + \sigma \frac{\partial \vec{A}}{\partial t} = \vec{J}_{s}$$

eddy current term + (simple) homogenisation $\sigma_{xy} = \gamma_{st} \sigma_{Fe}$

 $\sigma_z = 0$

or + multi-scale model (hand-shaking)

lamination

- hysteresis + remanence
- eddy currents

beam tube

eddy currents

Shell elements

additional matrix contributions K_{δ} and M_{δ} assembling into system matrix by $\,Q$

0.3mm

$$\mathbf{K}_{v} + \sigma \mathbf{M}_{\sigma} + \mathbf{Q}^{\mathrm{T}} (\mathbf{K}_{\delta} + \alpha \mathbf{M}_{\delta}) \mathbf{Q} = \mathbf{K}_{\mathrm{full}} + \alpha \mathbf{M}_{\mathrm{full}}$$

 δ

lamination

- hysteresis + remanence
- eddy currents

beam tube

<mark>₄</mark> y/r

eddy currents

superconductor

x/r

Bean model → magnetisation (Christine Völlinger)
 implemented in ROXIE

20

fig. courtesy C. Völlinger

t De Gersem

KU LEUVEN kulak

Challenge 3: Transient phenomena dBd1 lamination hysteresis + remanence 0 eddy currents 0 R beam tube eddy currents 0 M_{7} superconductor persistent currents 0 dB_z coupling currents 0 dt cable eddy currents 0 $\nabla \times \left(\nu \nabla \times \vec{A} \right) + \sigma \frac{\partial \vec{A}}{\partial t} + \nabla \times \left(\nu_0 \overline{\overline{\tau}}_{cb} \nabla \times \frac{\partial \vec{A}}{\partial t} \right) = \vec{J}_s$ additional magnetisation kulak **KU LEUVEN** Prof. Dr. Ir. Herbert De Gersem 21

Challenge 4: High accuracy requirements

losses

- dimensioning of the cooling system
- hot spots
- o quench

aperture field

- o multipoles during injection, ramping and extraction
- + influence of eddy currents

huge models parallelisation, multi-core computers

kulak

KU LEUV<u>EN</u>

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- magnet simulation (dedicated 3D FE solver)
- hybrid models
 - hybrid discretisation
 - domain decomposition
- conclusions

Dedicated Simulation Tool

Results: Eddy-Current Losses

Results: Loss Energy

17

- discretization:
 - increase number of elements
 - increase order of approximation

Convergence: Loss Energy

Comparison: Shape Functions

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- magnet simulation (dedicated 3D FE solver)
- hybrid models
 - hybrid discretisation
 - domain decomposition
- conclusions

Spectral discretisation

Legendre distribution in requidistant distribution in θ Legendre distribution in z

KU LEUVEN

kulak

$$\gg N_q(r,\theta,z) = N_{q_1,q_2,\lambda}(r,\theta,z) = P_{q_1}\left(\frac{r}{R}\right)e^{-j\lambda_q\theta}P_{q_2}\left(\frac{z}{Z}\right)$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{D}_r^T & \mathbf{D}_\theta^T & \mathbf{D}_z^T \end{bmatrix} \mu_0 \begin{bmatrix} \mathbf{D}_r & \mathbf{D}_\theta & \mathbf{D}_z \end{bmatrix}^T$$

eiland (1994)

+FIT : Dehler, Weiland (1994) in 2D : HDG, Clemens, Weiland (2003)

Coupling blocks

interface $\Omega_1 \cap \Omega_2$

$$\mathbf{B}_{iq} = -\int_{\Omega_1 \cap \Omega_2} \left(\nabla N_q \times \vec{w}_i \right) \cdot d\vec{S}$$

$$\mathbf{B}_{iq} = -\mathbf{I}_{col}^T \mathbf{F}_{2d}^{-1} \begin{bmatrix} \hat{\mathbf{D}}_{\theta} \\ \hat{\mathbf{D}}_z \end{bmatrix} \hat{\mathbf{Q}}$$

KU LEUVEN

kulak

- I_{col} interpolation matrix
- \mathbf{F}_{2d} 2D FFT
- $\hat{\boldsymbol{D}}_{\boldsymbol{\theta}}$ difference matrix restricted to the interface
 - selection of points at the interface

Ô

System solution (1)

1. full FE model used for reference (symmetric, definite) $A_{ref}u_{ref} = f_{ref}$ Conjugate Gradients (CG) Incomplete Cholesky (IC) preconditioner

2. coupled system (symmetric, indefinite) $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & -\mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ 0 \end{bmatrix} \xrightarrow{\mathsf{Minimal Residual (MINRES)}} 2a. block(IC, exact) 2b. additive Schwarz \\ \begin{bmatrix} \tilde{\mathbf{A}}^{-1} & 0 \\ 0 & \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}}^{-1} + \mathbf{B}^H \mathbf{G} \mathbf{B} & 0 \\ 0 & \mathbf{G}^{-1} \end{bmatrix}$

3. Schur complement system (symmetric, definite) $(\mathbf{A} + \mathbf{B}\mathbf{G}^{-1}\mathbf{B}^{H})\mathbf{u} = \mathbf{f} \implies \text{Conjugate Gradients (CG)} \quad 3a. \text{ IC} \quad \tilde{\mathbf{A}}^{-1}$ 3b. additive Schwarz $\tilde{\mathbf{A}}^{-1} + \mathbf{B}^{H}\mathbf{G}\mathbf{B}$

KU LEUVEN KULAK

(+) B and G applied by (partially) dense algebraic matrices

(*) **B** and **G** carried out "on the fly" selection by index sets interpolation by sparse matrices 2D Fast Fourier Transforms

kulak

KU LEUVEN

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- magnet simulation (dedicated 3D FE solver)
- hybrid models
 - hybrid discretisation
 - domain decomposition
- conclusions

KU LEUVEN

kulak

Beam-tube end model

Coupled formulation

$$\begin{aligned}
& \text{magnetoquasistatic} \\
& \text{formulation} \\
\nabla \times (\nu \nabla \times \vec{A}) + \sigma \frac{\partial \vec{A}}{\partial t} + \sigma \nabla \varphi = \vec{J}_{s} \quad \text{in } \Omega_{1} \\
& -\nabla \cdot \left(\sigma \frac{\partial \vec{A}}{\partial t} \right) - \nabla \cdot (\sigma \nabla \varphi) = 0 \quad \text{in } \Omega_{2} \\
& \text{FE shape} \\
& \text{functions} \\
\end{aligned}$$

system of equations

$$\begin{bmatrix} \mathbf{K} + \mathbf{M} \frac{d}{dt} & \mathbf{B}^T \\ \mathbf{B} \frac{d}{dt} & \mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ 0 \end{bmatrix}$$

KU LEUVEN

kulak

Arbitrary tube cross-section

KU LEUVEN

kulak

Beam-tube end model

$$-\frac{1}{1-k(\xi)\eta}\frac{\partial}{\partial\xi}\left(\frac{\sigma}{1-k(\xi)\eta}\frac{\partial\phi}{\partial\xi}\right) - \frac{\partial}{\partial\eta}\left(\sigma\frac{\partial\phi}{\partial\eta}\right) - \frac{\partial}{\partial z}\left(\sigma\frac{\partial\phi}{\partial z}\right) = 0$$

kulak

KU LEUVEN

Example: GSI-SIS-100 magnet

Eddy-current closing paths

Eddy-current losses

Conclusions

- nonlinear 3D transient magnetic simulation feasible with of-the-shell software
- challenges remain and are problem specific
 - o geometrical details
 - o materials
 - o transient effects
 - o high accuracy
- dedicated methods and software

KU LEUVEN

kulak