J-PARC Main Ring Optics, Space Charge, Alignment

2013/12/3

Beam Dynamics meets Magnets

Igarashi (KEK)

Contents

- Overview of J-PARC Main Ring
- Magnetic field measurements
- Alignment
- Implementation to the beam tracking simulation
- Comparison between the beam measurement and simulation
- Coherent oscillation and damping with the octupole magnets

Japan Proton Accelerator Research Complex (J-PARC)

- High Intensity Proton Accelerators
- Facilities to use the secondary beams
- Operated by Japan Atomic Energy Agency (JAEA) and High Energy Accelerator Research Organization (KEK)
- LINAC (181 MeV → 400 MeV)
- Rapid Cycling Synchrotron (RCS) (3 GeV)
 - Material and Life science Facility (MLF)
- Main Ring (MR) (30 GeV)
 - Neutrino Facility
 - Hadron Hall

MR Design Features

- To achieve the beam power of 750 kW
- Large Aperture
- Beam Loss Localization
- Imaginary Transition γ lattice

- The first beam in MR
 - Injection 2008 May
 - Acceleration and extraction 2008 Dec.

- Circumference 1567.5 m
- Three-fold symmetry
- Injection Energy 3GeV
- Extraction Energy 30 GeV (50 GeV)
- Power achieved so far 240 kW

Large Aperture

- Aperture $\geq 81\pi$ mmmrad
- Quadrupole magnet bore diameter ≥ 130 mm

Main Magnets:
96 Bending Magnets
216 Quadrupole Mangets
72 Sextupole Magnets

Beam Loss Localization

- Collimator system is being upgraded in 2011 ~ 2013.
- Power capacity: 0.45 kW \rightarrow 3.5 kW.

MR Optics

- Imaginary Transition γ lattice designed by Machida-san
 - for phase stability of RF acceleration

Typical Operation Status for Fast Extraction

Power: 225 kW

• Repetition : 2.48 sec

• 4 batch (8 bunch) injection during the period of 0.13 s

- 1.5e13 protons per bunch (ppb) × 8 @ Injection
- 1.17e14 ppp @ P3 (end of acceleration)
- Loss during the injection period: 400 W
- Loss in the beginning of acceleration (0.12 s): 150
- Loss power is within the MR collimator limit of 2 kW.
- Loss at 3-50BT : 70 W, < 3-50BT collimator limit of 2 kW

MR Operation History from January 2010 to March 2013

- The Beam power of 240 kW has been achieved for the neutrino oscillation experiment T2K.
- The Target power is 750 kW.

MR Top Energy 30 GeV

- Original Plan was to achieve 750 kW with 50 GeV operation.
 - The number of protons should be twice.
- 50 GeV Operation has disadvantage.
 - Magnet Saturation > 30 GeV
 - Power Consumption
 - P(50 GeV) = 2 P(40 GeV) = 4 P(30 GeV)

Magnet Power Consumption (relative to 50 GeV)

Mid Term Plan

- High repetition rate scheme is been chosen to achieve 750 kW.
- Repetition cycle will be 1.3 s.
- Magnet Power Supplies and RF cavities will be replaced.
- Collimators have been updated from 2 kW to 3.5 kW in this JFY.
- Injection kicker power supplies are being improved and septum will be replaced for high repetition rate.

Bending Magnet Multipole Measurements

- Bending Magnet
- 96 Magnets
- Field Uniformity Target < 5e-4
- Flip coil Measurement
 - Radius 19.09 mm
 - Length 7 m
 - x: -30 mm, -15 mm, 0 mm, +15 mm, + 30 mm
- Parameters included in the tracking simulation SAD and SCTR
 - Variation of dipole component
 - Quadrupole component
 - Sextupole component
- Installation positions were decided to minimize COD.

BM 96 magnets K0=(1/Βρ) (ByL)	RMS of dipole component (30 GeV)	Average amplitude of quadrupole (30 GeV)	Average amplitude of sextupole (30 GeV)
0.0654 radian	1.2e-5 radian	-3.5e-4 m ⁻¹	-7.5e-3 m ⁻²

12 magnets 3015 A 50 GeV

QM SM Multipole Measurements

- QM: 11 families, 216 magnets
- SM: 3 families, 72 magnets
- Field Uniformity Target < 1e-3
- Harmonic Coil
 - Radial coil: Radius 59.5 mm, Length 2 m
 - Tangential coil: Opening angle 90°, Radius 59.8 mm, Length 3 m
- Parameters included in the tracking simulation SAD and SCTR
 - Variation of main component
 - The first allowed multipole component
- Installation positions were decided to minimize the related resonance amplitudes.

QM Reference mag. 7 time measurements

RMS of the K1 (K2) distribution

Q family	Number of magnets	σ30GeV
QFP	6	1.1E-4
QFS,QFX	6+48	3.8E-4
QFT	6	2.1E-4
QFN	48	2.2E-4
QDX	27	1.5E-4
QDS	6	1.1E-4
QFR	9	2.8E-4
QDN,QDR	48+6	2.8E-4
QDT	6	1.5E-4
Sextupole	72	8.9e-4

Magnet Alignment

- Magnet alignment has been done in
 - -2007
 - 2011 (realigned after the earthquake of March 11 2011)
 - 2012 (survey)
 - 2013 (survey)
- Alignment Target
 - Rotation < 0.1 mrad
 - Dx < 0.1 mm
 - Dy < 0.1 mm
- The target has mostly been achieved.
- Alignment data were compiled for the 2007 results for the tracking simulation SAD and SCTR.
- Data generated with random number of Gaussian distribution with certain deviations have also been tried for the tracking simulation.

Incoherent Tune Shift for MR Power ~200 kW and Resonances

- 1.33e13 ppb
- Ex 16 π mmmrad (2 σ) (from the profile measurement)
- Ey 24 π mmmrad (2 σ) (from the measurement with the intensity of 1.18e13 ppb)
- Bunching Factor 0.2
- Tune Shift = 0.2

Resonances

- Linear Coupling
 - vx+vy=43
 - Rotation of Q magnets and Vertical orbit at sextupole magnets
- 3rd order
 - -3vx=67
 - vx + 2vy = 64
 - vx-2vy=-19
 - Variation of sextupole magnets
- 4th order
 - -2vx-2vy=3
 - Octupole magnets

Sum Resonance Correction with Skew Q's

MR tune: (vx, vy) = (22.275, 20.685)

 $vx + vy \approx 43$

Beam Intensity 4e11 ppb

Chromaticity: $\xi x = \xi y = -6$

MR mode: Accl (Abort)

Beam Intensity

SQ address	Injection	Flat Top
001, 016	+1.25A	+6.79A
145, 160	+0.20A	+4.70A

Sum Resonance vx+vy=43

Beam Measurement

- The following skew Q settings improve the beam survival.
 - SQ001, 016: sk1 = 7.11e-4 m-1
 - SQ145, 160: sk1 = 1.14e-4 m-1
- The sum resonance amplitude is then
 - G1,+1,43=1.6e-3

Calculation with Survey and Field Measurements

- The resonance amplitude is estimated to be smaller with the alignment results.
 - G1,+1,43=3.6e-4

Calculation to reproduce the Beam Measurement

- The resonance amplitude was reproduced with SAD simulation,
 - Magnet position offsets : random Gaussian of $\sigma = 0.14$ mm
 - Magnet rotation errors : random Gaussian of σ = 0.14 mmmrad.
- The following skew Q settings cancels the resonance in SAD simulation,
 - SQ001: sk1 = -1.08e-4 m-1
 - SQ145: sk1 = 5.4e-4 m-1
- The resonance amplitude is less than 1e-6 after the correction.

Sum Resonance Amplitude to reproduce the Beam Meausrement at (22.31, 20.69)

Aperture Survey in Tune Space

- Aperture was studied using SAD simulation with errors.
- 10 particles with ex = ey = 8.1π , 16.2π , ..., 81π mmmrad
- After 1000 turns the number of survived particles with 81π cut was calculated as the score.
- The score was plotted In the horizontal tune range of $22.04 \sim 22.46$ and vertical tune range of $20.54 \sim 20.96$.

Space Charge Tracking Simulation SCTR

- Program with the Particle in Cell method developed by Ohmi-san
- The potential solver is based on FACR (Fourier Analysis and Cyclic Reduction) algorithm.
- Typically ~200,000 macro particles and 128 × 128 of 1 mm grid.
- The boundary is square perfect conducting wall.
- Potential is assumed to be proportional to the line density of the beam.
- Transverse potential is given by solving two-dimensional Poisson equation.

$$\Phi = \frac{N_p r_p}{\beta^2 \gamma^3} \lambda(z) \phi(x, y : s) \qquad \Delta_{\perp} \phi = \rho$$

Space charge is grad of the potential.

$$\frac{\Delta p_x}{\Delta s} = -\frac{\partial \Phi}{\partial x}, \quad \frac{\Delta p_y}{\Delta s} = -\frac{\partial \Phi}{\partial y}, \quad \frac{\Delta p_z}{\Delta s} = -\frac{\partial \Phi}{\partial z}$$

- $\Delta s < \beta(s) = 4^30 \text{ m for J-PARC MR} \rightarrow \Delta s \sim 1.5 \text{ m}.$
- Ring Lattice and optics come from SAD.

REF: K. Ohmi et al., proceedings of PAC07, 3318 (2007). K. Ohmi et. al., Proceedings HB2010, 425.

Horizontal Beam Profiles (Measurement and Simulation)

- 2.7e13 ppp (2 bunch injection)
- Flying Wire measurements at K1+10 ms and K1+120 ms.
- SCTR simulation with initial distribution of 16π mmmrad of Horizontal 2σ emittance and 24π for Vertical 2σ emittance.

Beam Intensity (Measurement and Simulation)

- DCCT measurement during the injection period of 130 ms
- 2 bunch injection
- SCTR simulation with initial distribution of 16π mmmrad of Horizontal 2σ emittance and 24π for Vertical 2σ emittance.

Longitudinal Distribution Measurement

- Bunching Factor have been improved with the 2nd harmonic RF.
 - MR fundamental 90 kV; RCS fund. only
 - MR fund. 120 kV, 2nd 36 kV; RCS fund. & 2nd (30 %)

Beam Loss right after the Injection

- Coherent Oscillation was observed right after the injection.
- It is initiated by the injection error.
- The impedance source may be resistive wall.

Bunch by Bunch Feedback

 Coherent Oscillation is damped with the bunch by bunch feedback system.

- Beam loss is reduced to be half.
- NB ~ 7.3e13 ppb
- 8 bunches
- Power ~ 115 kW
- Intra bunch feedback will be implemented.

Stripline kickers

Octupole Mangets for Coherent Oscillation Damping

- Coherent oscillation damping was observed with octupole magnets.
- Beam loss right after the beam injection (~ 5 ms) was improved.
- Dynamic aperture was reduced and beam loss during the injection period was increased.
- Careful current adjustment may recover the dynamic aperture.

Time (ms)

Octupole Magnets for Coherent Oscillation Damping (Side Effect)

- Three octupole magnets were installed in 2011.
- Three other magnets have been installed in 2012 to cancel the structure resonance of 2vx-2vy=3, 4vx=90.
- Improvement of beam loss was observed with 6 magnets.

• We have a plan to make octupole magnets for pulse excitation (~ 5 ms) to minimize the

aperture reduction effect.

Summary

- The beam power of 240 kW has been achieved in J-PARC MR with the scheme of
 - large aperture,
 - beam collimator and
 - imaginary transition γ lattice.
- The beam profile and beam loss measurement during the injection period (after 5 ms from the injection) are reproduced with the space charge tracking program SCTR.
- The Beam loss right after the injection (~ 5 ms) is caused by the horizontal coherent oscillation triggered by the injection error.
 - Suppression with the bunch by bunch feedback
 - Octupole magnets
- The target beam power of 750 kW is to be achieved with the high repetition rate scenario.