

PARTICLE LOSS MINIMISATION DURING SLOW EXTRACTION WITH OPTIMISATION ALGORITHMS

Olha Kazinova, Stefan Sorge Accelerator Physics Department GSI Darmstadt

Introduction

Aim: Automatic minimisation of uncontrolled particle loss during slow extraction with help of optimisation algorithms:

- Reading and sending data via Python bridge using the FESA classes of the chosen measurement devices and SIS18 parameters.
- Automatic generation of SIS18 parameters in each iteration from extraction efficiency using a Python program which calls a numerical algorithm.
- Measurement devices:
 - DC current transformer for measuring particle number of circulating beam $N_{\rm circ}$.
 - Ionisation chamber in HHD for measuring number of extracted particles N_{ex} .

Optimised variable: extraction efficiency:
$$P_{\rm eff} = \frac{N_{\rm ex}}{N_{\rm circ}}
ightarrow {\sf max}.$$

- Continuation of previous measurements.
- This time: application to RF KO extraction.

Measurement details

- Two shifts:
 - Additional shift: June 1, 2025. Only O. Kazinova.
 - According to schedule: July 12, 2025. Ion: U^{73+} . Shared with S. Appel and P. Madysa.
- Parameters used for optimisation:
 - Previous shifts on quadrupole driven extraction: Sextupole amplitude and phase, $(k_2L)_a$ and ϕ_{sx} , heights of CO bumps at electrostatic and magnetic extraction septa, and electrostatic septum's deflection angle.
 - Actual shifts on RF-KO extraction: Sextupole amplitude and phase, $(k_2L)_{\rm a}$ and $\phi_{\rm sx}$, heights of CO bumps at electrostatic and magnetic extraction septa, electrostatic septum's deflection angle, and, in addition, horizontal tune and KO excitation frequency.
- Optimisation algorithms: BOBYQA, Bayesian optimisation, Nelder-Mead.

Results

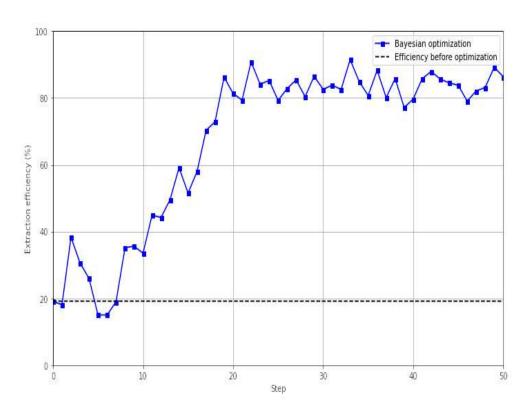


Figure: History of extraction efficiency optimised with Bayesian optimisation

Extraction efficiency similar to that found with quadrupole driven extraction measurement:

$$P_{\rm eff} \approx 80 \dots 90 \%$$
.