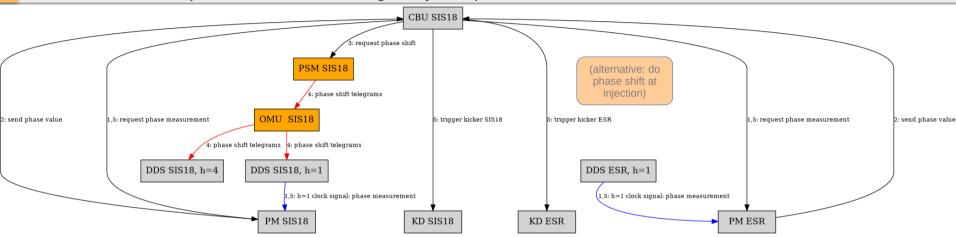


1 December 2025 - D. Beck, D. Lens

2025: Bunch-2-Bucket Transfer with Phase Shift Method FAR 🖼 🖼


- transfer ion beams from one ring to another at GSI and FAIR
- phase matching between bunch and bucket to better than 1 degree
- joint work of ACO and RRF
- original plan
 - SIS18 → ESR → YR; SIS18 → SIS100: frequency beating (integer circumference ratio)
 - SIS100 → CR → HESR; phase shift (,fractional' circumference ratio)
- why invest time in phase shift now?
 - frequency beating requires appropriate beat period
 - SIS18 → ESR lessons learned: sometimes b2b system is faced with inappropriate beat period
 - First Science, SIS18 → SIS100: plan B, just in case ...
- 2025-may-26: machine experiment SIS18 (h=4) → ESR (h=2); ${}^{12}C^{6+}$ @ 400 MeV/u
 - new: deterministic and adiabatic phase shifting of the RF in the ring

2025: Phase Shift and Frequency Beating Methods

(distributed FPGAs - digital system)

CBU: Central B2B Unit @ extraction ring

PM: Phase Measurement, @ RRF supply rooms

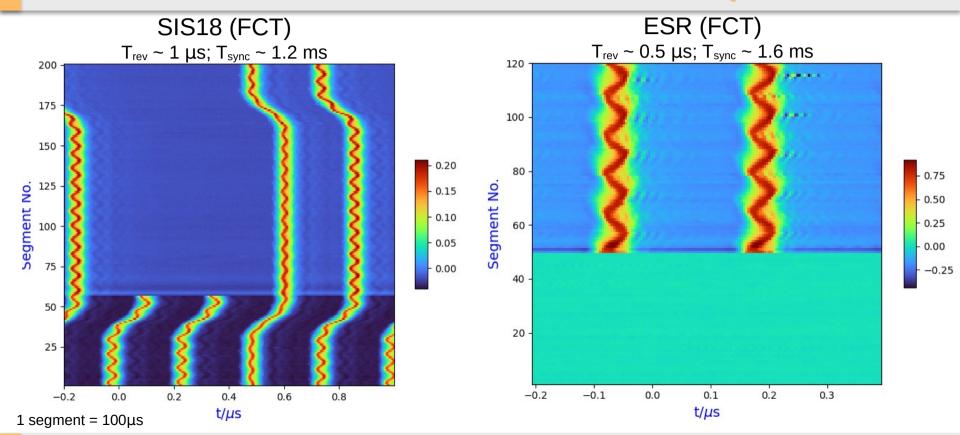
DDS: Direct Digital Synthesis (signal generator), @RRF supply rooms

KD: Kicker Trigger and Diagnostics, @kicker rooms

PSM: Phase Shift Module prototype; added for phase-shifting

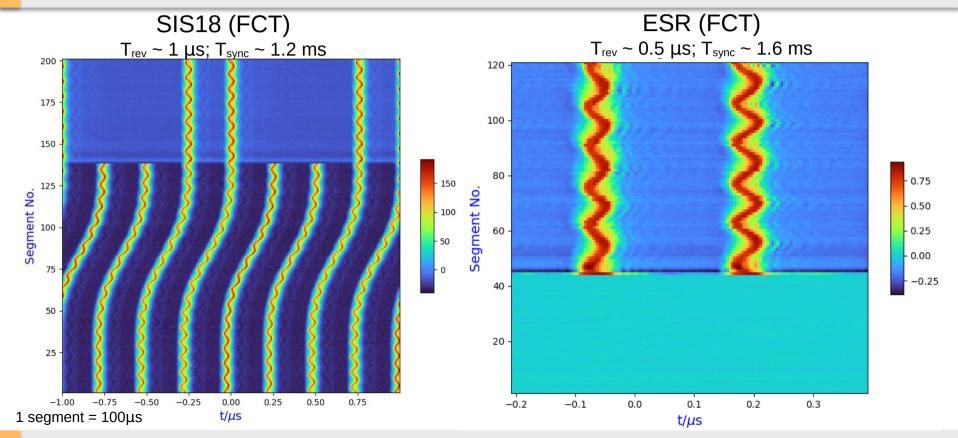
OMU: Optical Mixer Unit prototype; added for phase-shifting (phase shift multiplier)

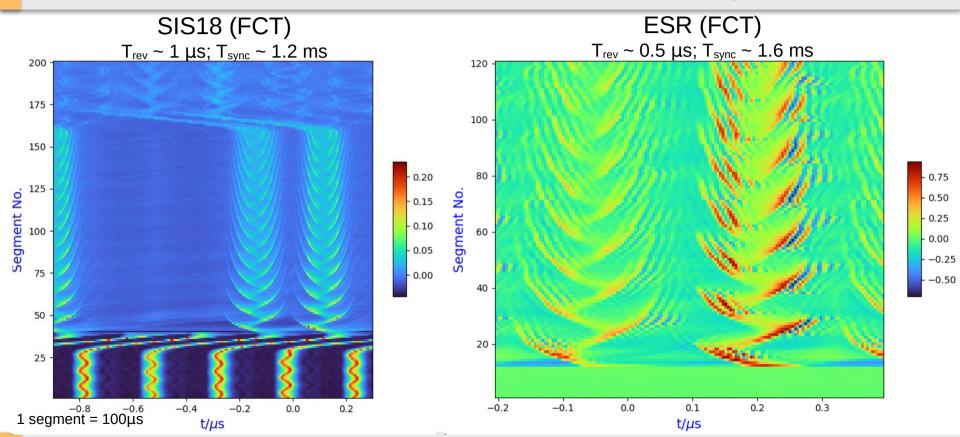
black arrows: b2b real-time messages via White Rabbit network


blue arrows: ~1m copper cable

red arrows: local multi-mode fibre links

- 1. request 1st phase measurement(s)
- 2. collect measured phase values
- frequency beating: CBU calculates time for phase match
- phase shift: CBU calculates phase shift at time of transfer
- 3. request phase shift (here: extraction ring)
- 4. perform phase shift
- 5. trigger kickers and 2nd phase measurement

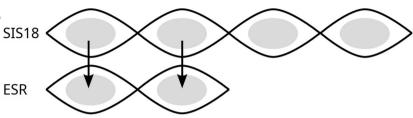

Phase Shifting in SIS18 (4 ms, #037)



Summary

- Achieved
 - bunch-2-bucket transfer with phase-shifting with SIS18 or ESR ferrite cavities
 - new PSM (S. Schäfer) and OMU (D. Ziegelmann, M. Hardieck) prototypes: only single harmonic with two fixed (pre-defined) harmonic numbers supported (currently h=4, h=2, h=1)
 - (first test of B2B with beam phase control switched on)
- Lessons Learned
 - caveat ESR injection septum: usable only til ~8 ms after start of beam process 'extraction fast'
 - synchronization of cavity DDS should (shall ?) be monitored
 - found a few issues with back-shifting of phase after flat-top
- Next
 - resolve issues
 - next B2B-MDE: verify ±1° precision at phase matching
 - integration into control system stack: phase shift time, OMU harmonic numbers ...
 - hardware and firmware upgrade of OMU required
 - extend system from 3 to 4 rings, SIS100: first ring with <u>larger</u> circumference

Backup Slides



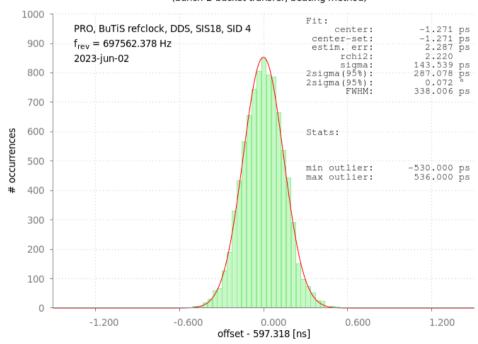
. . .

Bunch-2-Bucket System I

- transfer ion beams over the whole range of isotopes from one ring to another at GSI and FAIR
- phase matching between bunch and bucket to better than 1 degree
- joint work of ACO and RHF
- lots of support from RHV, EEL, ESR, SYS, BEA ...
- distributed, digital system
 - RHF: BuTiS (clock distribution)
 - ACO: White Rabbit (clock, time and event distribution)
 - BuTiS and White Rabbit are phase locked → determinism, no drifts
 - fibre optics, no copper
 - time based
 - ,observed signal at time T₁
 - ,request action at time T₂'
 - signals, triggers are measured or generated locally (not distributed via long cables)

Bunch-2-Bucket System II

- action:
 - trigger kicker
 - transfer between rings
 - all ,fast extractions' of all rings
 - 2020/q4: demonstrated at SIS18, ESR
 - 2022/q1: routine operation at SIS18, ESR, CRYRING
 - synchronization of low-level-RF between rings (h=1)
 - 2021/q2: demonstrated frequency beating SIS18 → ESR
 - 2022/q1: routine operation frequency beating; SIS18 → ESR → CRYRING; stacking in ESR
 - 2025/q2: demonstrated phase shift method SIS18 → ESR (prototype)
- detection and monitoring
 - ,phase measurement of h=1 group DDS systems
 - until 2022: routine operation with 1 ns precision
 - since 2023: routine operation with sub-ns precision

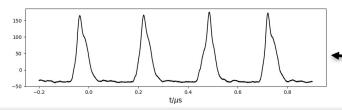

Bunch-2-Bucket System II

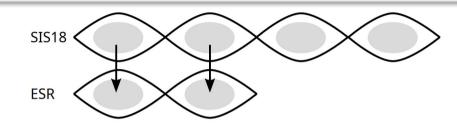
action:

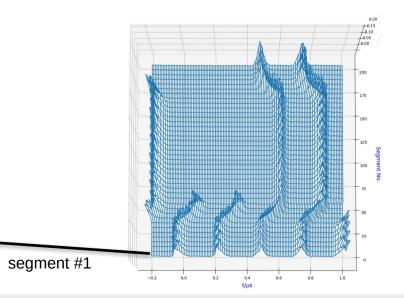
- trigger kicker
 - transfer between rings
 - all ,fast extractions' of all rings
 - 2020/q4: demonstrated at SIS18, ESR
 - 2022/q1: routine operation at SIS18, ESR, CF
- synchronization of low-level-RF between rings (h
 - 2021/q2: demonstrated frequency beating SIS
 - 2022/q1: routine operation frequency beating;
 - 2025/q2: demonstrated phase shift method SI
- detection and monitoring
 - ,phase measurement of h=1 group DDS system
 - until 2022: routine operation with 1 ns precisic
 - since 2023: routine operation with sub-ns pred

precision of phase difference between SIS18 and ESR (bunch-2-bucket transfer, beating method)

Bunch-2-Bucket System II




- action:
 - trigger kicker
 - transfer between rings
 - all ,fast extractions' of all rings
 - 2020/q4: demonstrated at SIS18, ESR
 - 2022/q1: routine operation at SIS18, ESR, CRYRING
 - synchronization of low-level-RF between rings (h=1)
 - 2021/q2: demonstrated frequency beating SIS18 → ESR
 - 2022/q1: routine operation frequency beating; SIS18 → ESR → CRYRING; stacking in ESR
 - 2025/g2: demonstrated phase shift method SIS18 → ESR (prototype)
- detection and monitoring
 - ,phase measurement of h=1 group DDS systems
 - until 2022: routine operation with 1 ns precision
 - since 2023: routine operation with sub-ns precision
 - kicker magnet probe: time of rising edge (all rings) and flat-top length (SIS18, ESR) using a <u>simple</u> comparator;
 data delivered to customers 1 ms after kick via timing message


Phase Shifting in SIS18 (4 ms, #037)

- SIS18 settings:
 - ¹²C⁶⁺ from 11.4 to 400 MeV/u, h=4
 - cooler on during injection
 - 2 out of 4 SIS bunches transferred to ESR
 - Typical intensities:
 - 5.0E9 particles in SIS18
 - 2.5E9 particles extracted (2/4)
 - 6.0E8 particles stored into ESR
- no optimization of SIS settings to minimize dipole oscillations or to optimize bunch shape

