
EPICS Slow Control Prototype
(Fiber tracker ROB)

Ahmed Ali & Stephane Pietri

SFC/Team4

November 17, 2025

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 1 / 6



Slide 1: High-Level Architecture
From Hardware to Web Browser

Project Goal

To create a robust, network-accessible system to monitor critical detector
temperatures (FPGA, Board, FEB) and trigger automated actions based
on alarm conditions.

1. EPICS IOC Layer

Hardware (Sensors)
↓

gosipcmd

↓
EPICS IOC

↓
PVs (on Network)

2. Data Service
Layer

data logger.sh
↓ caget

history.jsonl

↓ Serves File
Web Server

web server.py

3. Presentation
Layer

User’s Web Browser
↓ Fetches data
status.html

↓ Draws charts
Live Dashboard

(Chart.js)

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 2 / 6



Slide 2: The Core – EPICS IOC
The ”Source of Truth” for Hardware State

Process Variables (PVs)

The IOC exposes all hardware features as network variables (PVs):

...:TEMP:FPGA (Read-only Temperature)

...:DARKMODE:SET (Write-only Control)

...:DARKMODE:STATE (Read-only Status)

...:TEMP:ANY MAJOR (Logic-driven Flag)

Custom C Device Support (The ”Driver”)

Custom C code links the EPICS records to the hardware:

devAiGosipTemp.c: Connects temperature ai records to gosipcmd

-r to read sensors.

devDarkMode.c: Connects bo/bi records to gosipcmd -w (control)
and gosipcmd -r (status).

Automated Alarm & Action Logic

All logic is handled *inside* the IOC for maximum reliability:

Temperature records (ai) automatically detect MINOR/MAJOR alarms
using HIHI and HYST fields.

An aSub record (alarmLogic.c) monitors the alarm severities and
sets the ANY MAJOR flag.

This aSub record directly calls system() to execute the ”dark mode
on” command when a major alarm is triggered.

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 3 / 6



Slide 3: Web GUI

The Data Logger: data logger.sh

A simple background sh script that:

Uses caget to poll all EPICS PVs every 5 seconds.

Gathers values, alarm severities, and alarm limits.

Appends the data as a single JSON line to history.jsonl.

Trims the history.jsonl file to the last 720 lines (1 hour).

The Smart Web Server: web server.py

A standard Python script that requires no installation. It has two jobs:

Serves Files: Serves the static status.html, style.css, and
script.js files.

Provides an API: Listens for commands from the dashboard button
(at /api/darkmode) and executes caput on the server to control the
IOC.

The Dashboard: status.html + script.js

A modular GUI that runs entirely in the user’s browser:

Fetches the history.jsonl file every 5 seconds.

Uses Chart.js (loaded from a CDN) to draw the 1-hour time-series
plots.

Draws alarm threshold lines on the plots.

Changes indicator colors (Green/Yellow/Red) based on the sevr field
in the JSON data.

Synchronizes the ”Dark Mode” button with the true hardware state.

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 4 / 6



Epics GUI

Figure:https://web-docs.gsi.de/~aali/sfrs/epics/schematc.html

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 5 / 6

https://web-docs.gsi.de/~aali/sfrs/epics/schematc.html


Questions?

Thank you for your attention.

Ahmed Ali & Stephane Pietri (SFC/Team4) EPICS Slow Control Prototype November 17, 2025 6 / 6


