



### **Outline**

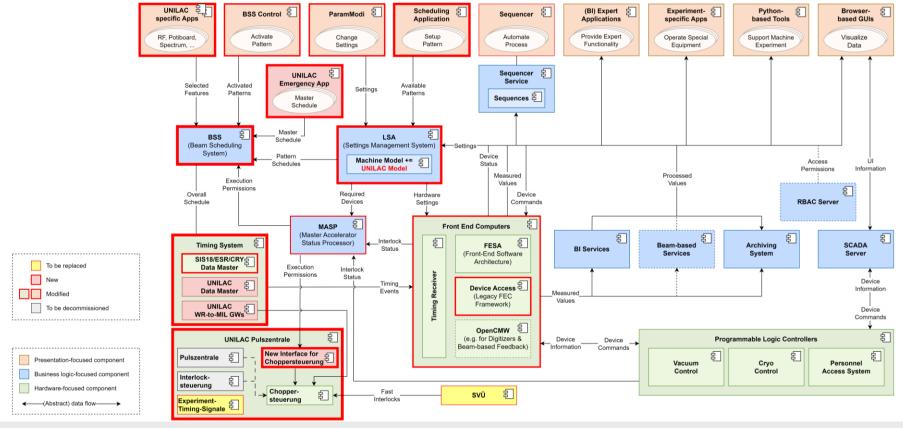


- Introduction
  - Project overview: general strategy, CS architecture , project organization
  - A brief history of the Injector Controls Upgrade (ICU) project
  - Timeline: were are we
  - Major changes and progress since wet run 2024
- Report on wet run July 2025
  - Overview and statistics
  - Program and results
    - Basic, mandatory, and advanced topics
    - The icing on the cake
    - Remaining major tasks
  - MCR modernization overview and status July '25
  - Conclusions regarding the project status wrt. the upcoming beamtimes
- Outlook
  - ICU major milestones, project planning and agenda
  - Wet run 2026
  - Forecast beamtime 2026 & 2027/1 deliverables and limitations

### **Outline**

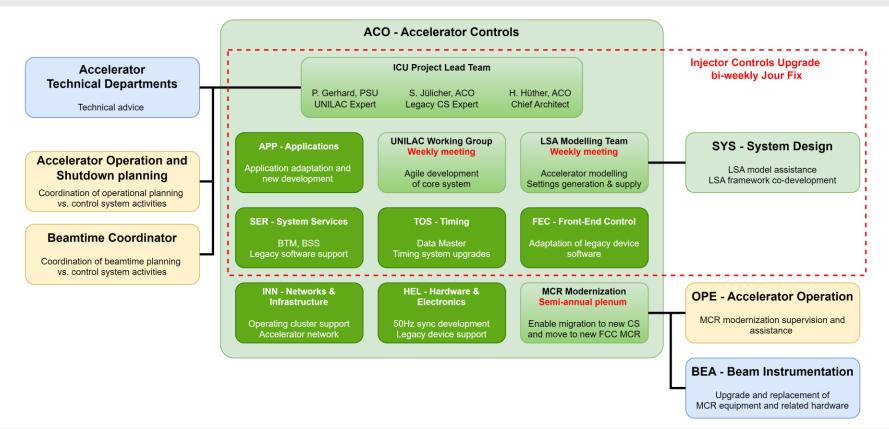


- Introduction
  - Project overview: general strategy, CS architecture, project organization
  - A brief history of the Injector Controls Upgrade (ICU) project
  - Timeline: were are we
  - Major changes and progress since wet run 2024
- Report on wet run July 2025
  - Overview and statistics
  - Program and results
    - Basic, mandatory, and advanced topics
    - The icing on the cake
    - Remaining major tasks
  - MCR modernization overview and status July '25
  - Conclusions regarding the project status wrt. the upcoming beamtimes
- Outlook
  - ICU major milestones, project planning and agenda
  - Wet run 2026
  - Forecast beamtime 2026 & 2027/1 deliverables and limitations


## **General Strategy of the Injector Controls Upgrade** 14<sup>th</sup> July 2023



- Step 0: Secure UNILAC beam operation through beamtime 2025 ✓
  - Replace existing operating cluster with virtual machines, replace terminals in MCR
  - Implement IT security measures for operation extension
- MCR modernization project: replace/upgrade hardware devices in control room
- Step 1: Develop emergency control system ✓
  - First viable version of new control system with reduced and simplified feature set
  - Replace existing MIL timing system by White Rabbit-based system
  - Serves as emergency backup for beamtime 2025
- Step 2: Develop production control system ... in progress ...
  - Based on emergency control system
  - Replace simplifications made by fully fledged solutions, implement full feature set
  - Enhance operability and efficiency during beamtimes 2026 and 2027
- End of ICU project, transition of UNILAC into regular control system maintenance and development
- Step 3: Further development, include other linear accelerators


## **Control System Architecture Changes for ICU**





### **Project Organization**





## A Brief History of the Injector Controls Upgrade (ICU) Project



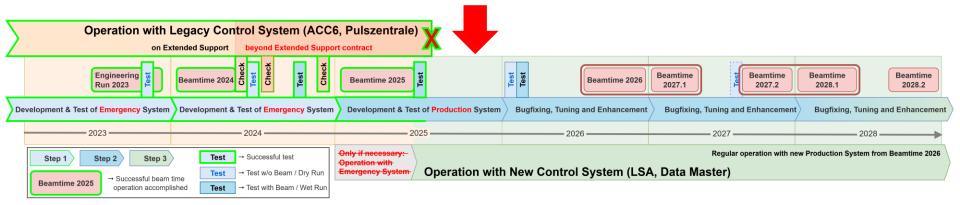
- Project kick-off November 2019
- Step 0: Secure UNILAC operation through beamtime 2025 ✓
  - 2019: decision to prolong operation of ACC6 cluster, Red Hat 6 and UNILAC consoles until 2024
  - 2021: change from server cluster to virtual machines ⇒ decommission obsolete hardware
  - 2023: general transition strategy fixed, exchange terminal consoles in MCR and console monitors
  - operation with legacy control system on extended support for Red Hat operating system until 2024
  - final operation of user beamtime 2025 with legacy control system beyond extended support ⇒ IT security
  - legacy control system decommissioned August 2025
- MCR modernization project
  - replace/upgrade hardware devices in legacy control room in preparation of move to FCC
  - 2019: MCR survey, 100+ single features identified
  - 2021: 14 work packages defined, including ACO, BEA and OPE, 365k€ budget allocated in 2023.
  - 1st meeting December 2021, 8th meeting September 2025

## A Brief History of the Injector Controls Upgrade (ICU) Project



- Step 1: emergency system ✓
  - 2020: Development started
  - Dry run November 2023: first test of basic fragments of the FAIR control system @ UNILAC
  - Dry run July 2024: test of incomplete emergency system, core functionality complete
  - Wet run November 2024: feature complete emergency system
  - First test of new control system with beam but only at UNILAC, not at SIS18 (not available)
  - Emergency system not needed for beamtime 2025

### Step 2: production system


- Wet run July 2025: Test of first version of initial production system at UNILAC and SIS18 with beam ✓
- Development ongoing, major conceptual changes
- Wet run February 2026: 2<sup>nd</sup> test of initial production system
- Beamtime 2026 & 2027.1: First user operation with new (initial production) control system
- Further completion, enhancement, optimization and bug fixing
- Beamtime 2027.2 & 2028.1 with production system
- End of ICU project

## **Updated Timeline for Development and Test Strategy**

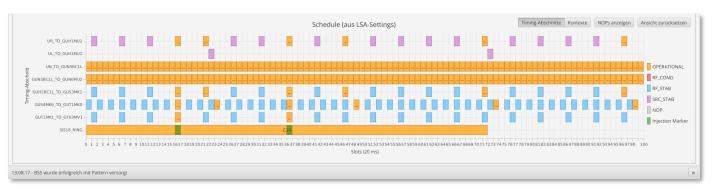


- Planning basis adapted to new strategic planning 2027 + 2028
- Control system for beamtime 2026 will not be feature complete
- Beamtime 2026 and 2027.1 constitute a single, continuous beamtime
  - ⇒ No major control system upgrades possible before 2027.2!
- Development of production control system (Step 2) covers 2 beamtimes
  - $\Rightarrow$  2026 2027.1 and 2027.2 2028.1

we are here



# Step 2: Initial production system Major Changes and Progress Since Wet Run 2024




- Control system architecture for UNILAC and SIS18 unified
  - November 2024: Separate data supply concepts as temporary (emergency) solution
    - For UNILAC implemented as intermediate Standalone-Pattern-Chains
    - SIS18 still running on (previous state of) Pattern implementation
  - New FAIR standard: control the whole facility (injectors and rings)
     via the same control system structures, components and applications
  - In addition to LSA and BSS, applications had to be adapted
  - Consolidation of Pattern concept necessary for integrating UNILAC
    - All machines now run on Stand-alone Chains
    - Features added for UNILAC benefit other machines, too
       (e.g. it's now possible to schedule SIS chains multiple times in arbitrary order, non-mux contexts)
    - Also prerequisite for FAIR (Booster Mode)
  - Pattern Group replaced by Patterns able to schedule multiple Chains, includes SIS18 and UNILAC chains
- ⇒ Big step for the implementation of the Pattern Concept as originally intended
- ⇒ see Talk "Control System Design & Architecture Changes I: Patterns & Chains" for more details

# Step 2: Initial production system Major Changes and Progress Since Wet Run 2024



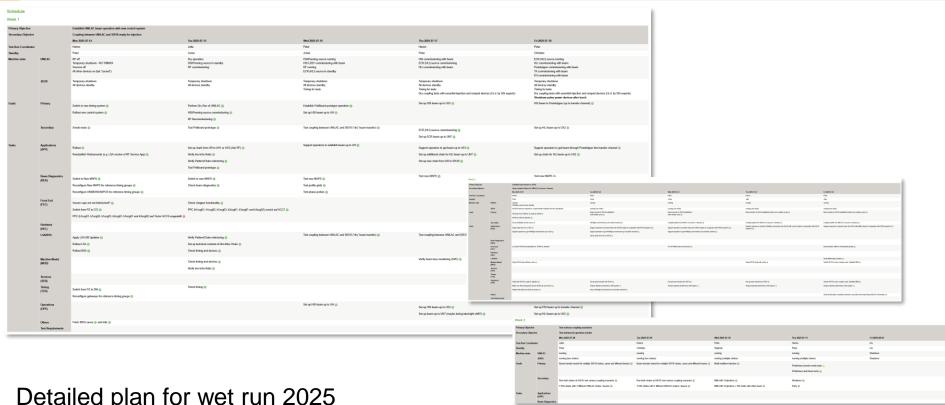
- UNILAC and SIS18 integrated into one consistent timing schedule
  - No more requesting beam from UNILAC by SIS18, i.e. no more waiting for beam



- Beam transfer directly synchronized between Data Masters (UNILAC and SIS18 DMs)
  - Communication between UNILAC-DM and Ring-DM implemented
  - Master Schedule (equivalent to Super Cycle) for both accelerators runs in UNILAC DM
  - SIS18 chains run in Ring DM, triggered by special events in Master Schedule in UNILAC DM
  - UNIPZ-DM gateway between Ring-DM and UNILAC Pulszentrale decommissioned
- ⇒ see Talk "Control System Design & Architecture Changes II: Scheduling" for more details

### **Outline**




- Introduction
  - Project overview: general strategy, CS architecture, project organization
  - A brief history of the Injector Controls Upgrade (ICU) project
  - Timeline: were are we
  - Major changes and progress since wet run 2024

### Report on wet run July 2025

- Overview and statistics
- Program and results
  - Basic, mandatory, and advanced topics
  - The icing on the cake
  - Remaining major tasks
- MCR modernization overview and status July '25
- Conclusions regarding the project status wrt. the upcoming beamtimes
- Outlook
  - ICU major milestones, project planning and agenda
  - Wet run 2026
  - Forecast beamtime 2026 & 2027/1 deliverables and limitations

## Wet Run July 2025: Overview and Statistics





## Wet Run July 2025: Overview and Statistics

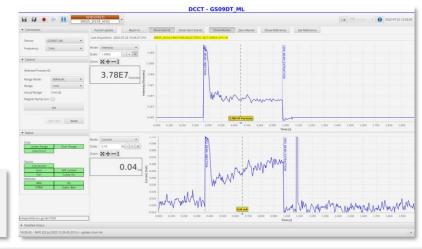


- Full operation of UNILAC and SIS18
- 14 weekdays, 2 weekends
- Extensive planning (see wiki)
- Daily coordination meetings
- Coordination zoom and on-call service
- 18 UNILAC chains created, up to 8 scheduled in the same Pattern
- 9 SIS18 chains created, max. 3 SIS chains available at the same time
- 4 principle beams from all 3 sources established to 6 destinations
- Parasitic beam delivered to X2 (master thesis), Y7 (machine investigations), beam used in SIS18 by BEA (machine investigations)
- Operators performed tasks at night and on weekends successfully
- 73 test cases in 7 categories tracked, performed and documented (see wiki)



## Planned Tests and Results Week 1: The Basics




- Switch UNILAC to new control system and new timing system ✓
  - Including full decommissioning of UNILAC Pulszentrale (except for Choppersteuerung and related parts) in week 2
- Get all necessary apps and tools running
  - Took until week 3
- Introduce operators to new control system ✓
- Verify safety functions and changes made since last Wet Run ✓
- Ramp up and establish UNILAC beam operation
  - Starting with single beam from Penning source
  - Establish beam along machine
  - First time HLI operated with new control and timing system ✓
  - Add beam from ECR ion source, establish second beam ✓

# Planned Tests and Results Week 2: The Mandatory



- Add beam from high current source ⇒ beams from all three sources ✓
- Deliver several UNILAC beams in parallel to different destinations, including different beams in transfer channel and high duty cycle beams (50 Hz) ✓
  - Verify transfer channel preparation ✓
- Inject beam into SIS18 for the first time with the new control system at UNILAC
   ⇒ successful ✓

First beam injected into SIS18 with new control system at UNILAC

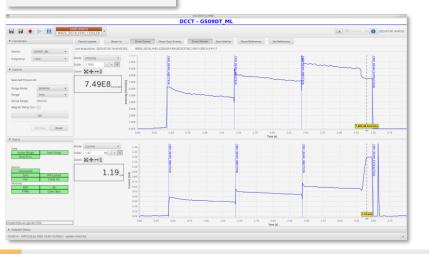


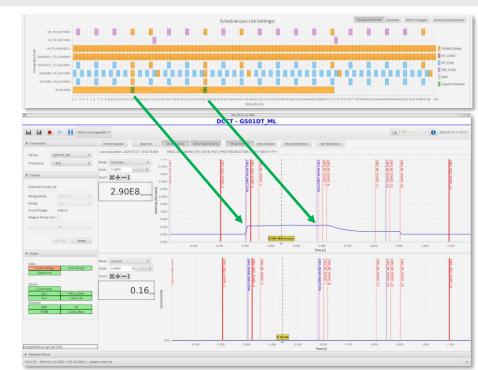
# Planned Tests and Results Week 3: Advanced Topics



- Inject beam into two SIS18 chains from one UNILAC chain
  - ⇒ successful ✓
- Use SIS cooler ✓
- Inject three different beams (three different UNILAC chains) into three different SIS18 chains
   ⇒ successful ✓

DCCT - GS09DT MI 40 Ar<sup>18+</sup> 85.0 MeV/u 2.50E8 0.40


3 beams injected (movie)


## The Icing on the Cake



- Multi-Multiturn-Injection ⇒ successful ✓
- Dual Beam and Booster Mode
   ⇒ partly successful ✓

### Multi-Multiturn





**Dual Beam** 

## **MCR Modernization Overview and Status**



| Work package               | Dept.   | Description                                             | Status                                               |
|----------------------------|---------|---------------------------------------------------------|------------------------------------------------------|
| MAPS                       | BEA     | Beam current measurement and display                    | Operational, enhancements?                           |
| UNIMON                     | BEA     | RF cavity display                                       | Operational                                          |
| PHAS                       | BEA     | Phase probe control, bunch shape and energy measurement | Commissioning                                        |
| Cupid                      | BEA     | Integrated video monitoring system                      | Operational, full installation pending               |
| UNIPOS                     | BEA     | Beam position measurement and display                   | Operational                                          |
| BIF                        | BEA     | Beam Induced Fluorescence monitor                       | Operational, strategic upgrade pending               |
| Chopper display            | ACO     | Status display for beam chopper requests                | In progress                                          |
| PG/EMI protection          | ACO     | Control and status display for SEM grid protection      | In progress                                          |
| Cup control                | ACO     | Control and status display for faraday cups             | In progress                                          |
| Interlock/beamloss display | ACO     | Interlock and beamloss status display                   | Advanced, in progress                                |
| Experiment signal display  | ACO     | Display any detector feedback from beam users           | Postponed                                            |
| WR-Snoop@UNILAC            | ACO     | WR timing diagnostic tool                               | Operational                                          |
| ВТМ                        | ACO     | Beam Transmission Monitoring                            | In progress, pending                                 |
| Experiment timing          | ACO     | Trigger, sync and gate signals for beam users           | In progress, pending                                 |
| Gas stripper               | PSU     | Pulsed hydrogen gas stripper                            | Operational (limited), full installation in progress |
| Potiboard                  | ACO/OPE | Realtime accelerator (magnet) adjust                    | Operational, upgrade planned                         |
| Oscilloscopes              | ACO/IQU | Signal display for ion sources                          | Operational (limited), upgrade pending               |

# Conclusions: Status of the project wrt. to the upcoming beamtimes



- All compulsory tests were successful:
   Basic operation of UNILAC and SIS18 together has been verified
- Advanced features the freestyle part of the wet run:
  - MMI also worked out of the box
  - Booster Mode and Dual Beam operation worked technically, but beam injection was not successful
- Operating efficiency of UNILAC was greatly enhanced wrt. emergency system in wet run 2024
- Operating efficiency for SIS18 nearly as usual for basic operation, handling of more complex injection schemes still needs to be improved
- > Viability of fundamental integrated operation mechanisms has been demonstrated and can now be built upon

### **Outline**



- Introduction
  - Project overview: general strategy, CS architecture, project organization
  - A brief history of the Injector Controls Upgrade (ICU) project
  - Timeline: were are we
  - Major changes and progress since wet run 2024
- Report on wet run July 2025
  - Overview and statistics
  - Program and results
    - Basic, mandatory, and advanced topics
    - The icing on the cake
    - Remaining major tasks
  - MCR modernization overview and status July '25
  - Conclusions regarding the project status wrt. the upcoming beamtimes
- Outlook
  - ICU major milestones, project planning and agenda
  - Wet run 2026
  - Forecast beamtime 2026 & 2027/1 deliverables and limitations

# Deliverables Completed and Remaining (since Wet Run November 2025)



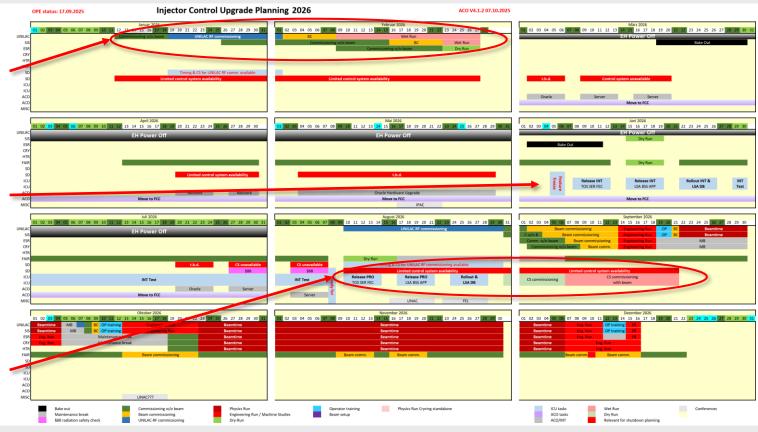
- new activity
- achieved
- in progress
- pending
- × cancelled
- ? to be clarified
- 👛 critical



For details, see ICU wiki

## **Project Planning 2026**




Wet run Feb '26: during shutdown, SIS18 open,

#### **UNILAC+SIS18**

+ESR +Cryring?

CS integration test

Beamtime '26: CS release, rollout and commissioning for first regular user beamtime



## ICU Agenda until Wet Run and BT 2026



#### Consolidate

- Review results from Wet Run
- Follow up changes, fixes and workarounds made during Wet Run
- Solve issues for currently critical deliverables
- Complete rollout of unified control system, reestablish full functionality for storage rings
- Revise and clean up code base

### Complete

- Implement missing features (e.g. SelectBeamLine, RF app, FC panel)
- Finalize provisional/intermediate software
   (e.g. PHAS, Bottle app, Emergency App, schedule planning algorithm)
- Replace remaining MCR hardware (e.g. profile grid switches, experiment timing signals)
- Some tasks identified during Wet Run are out of ICU scope

#### Coach

- Introduce operators and related staff to new control system at UNILAC
- First course planned for end of the year: general introduction, concepts
- Hands-on training during Wet Run February 2026
- Second course planned for spring 2026
- Hands-on training during commissioning and beamtime 2026

## Wet Run February 2026: Planning Status



- Draft coarse planning:
  - Dry commissioning of control system, UNILAC, SIS18, ESR (tentatively Cryring) 2-3 weeks each
  - Beam commissioning of UNILAC and SIS18 1 week each
  - Wet Run UNILAC 3 weeks, SIS18 1 week
  - Extensive restrictions for beam operation at SIS18 due to open ceiling, no extraction allowed, no beam operation at ESR
  - Small ICU team, long test run ⇒ stronger involvement of shift crews in test run, include training of operators (and others)

| 4                     |           |             |           |          |        |          |        |         |          |           |          |          |           |        |              |           |         |            |       |         |       |        |          |           |        |           |         |        |         |         |           |           |           |           |          |        |        |       |          |         |           |         |         |       |         |      |         |          |           |                  |         |                     |        |
|-----------------------|-----------|-------------|-----------|----------|--------|----------|--------|---------|----------|-----------|----------|----------|-----------|--------|--------------|-----------|---------|------------|-------|---------|-------|--------|----------|-----------|--------|-----------|---------|--------|---------|---------|-----------|-----------|-----------|-----------|----------|--------|--------|-------|----------|---------|-----------|---------|---------|-------|---------|------|---------|----------|-----------|------------------|---------|---------------------|--------|
|                       | 12.01.    | . 13.0*     | .1. 14.01 | J1. 15.۲ | J1. 16 | 01. 17.د | .7.01. | . 18.01 | ı. 19.01 | 1. 20.0°  | ı. 21.0′ | J1. 22.0 | .1. 23.0° | J1. 20 | 24.01. 25.01 | .01. 26.r | .01. 27 | ./.01. 25  | 8.01. | . 29.01 | 30.0° | .1. 31 | 01. 01 ' | .J2. 02.r | 02. 03 | ر3.02. C  | J4.02.  | 05.02. | . 06.02 | . 07.02 | ∠. 08.0°  | .2. 09.0° | J2. 10.0° | J2. 11.0° | J2. 12.° | .02. 1 | 13.02. | 14.02 | ∠. 15.0° | 2. 16.0 | J2. 17.℃  | .J2. 18 | s.02. ⁴ | 19.02 | . 20.02 | 21.0 | J2. 22. | J2. 23.C | .2. 24.0° | J2. 25.℃         | .02. 2F | _6.02. <sup>~</sup> | 27.02. |
| 4                     | Mo        | Di          | i Mi      | ı Dr     | J F    | fr       | Sa     | So      | Mo       | , Di      | Mi       | a De     | Fr د      | 1      | Sa Sr        | So Mo     | /10 r   | Di '       | Mi    | Do      | Fr    | 5      | sa S     | o M       | /10 r  | Di        | Mi      | Do     | Fr      | Sa      | So        | o Mo      | ၁ Di      | Di Mi     | ıl Dr    | 10     | Fr     | Sa    | So       | о Мо    | o Di      | zi 📑    | Mi      | Do    | Fr      | Sa   | Sr      | Mr Mr    | J Di      | 4 M <sup>2</sup> | ⊿i F    | Do                  | Fr     |
| General Plan UNILAC C | Commis    | issioning v | witho     | ut Bea   | m      |          |        |         | LINAC    | AC-RF com | mmiss'   | sioning  | 47        | 4      |              | 47        | 47      |            |       |         |       | 47     |          | Bea       | am Cor | Jmmisr    | sioning | ė      |         |         |           | Engi      | neering   | Run       |          |        |        |       |          |         |           |         |         |       |         |      |         |          |           |                  |         |                     |        |
| General Plan SIS18    |           |             |           |          |        |          |        |         |          |           |          |          |           |        |              | Cor       | mmissi  | ssioning w | witho | out Be  | ₂am   | 47     |          | 47        | 47     |           |         |        |         | 4       | 47        |           | 47        | 47        | 47       | 47     |        |       | 47       | Bear    | am Comm   | missir  | oning   | ś 💮   |         |      |         | Eng      | neering   | Run              |         |                     |        |
| General Plan ESR      |           |             |           |          |        |          |        | 1       |          |           |          |          |           |        |              |           |         |            |       | 1       |       |        |          |           |        |           |         | 1      | 1       |         |           | Com       | mmissioni | ning wit  | thout P  | Beam   |        |       | 47       | 47      | 47        | 47      |         | 47    | 427     | 4    | 47      | Dry F    | Run       |                  |         |                     |        |
| 4                     | 1         |             |           |          |        |          |        | 1       |          |           |          |          |           |        |              |           |         |            |       |         |       |        |          |           |        |           | . 🗆     | 1      |         |         |           |           |           |           |          |        | , 🗔    |       |          |         |           |         |         |       |         |      |         |          |           |                  |         |                     | $\Box$ |
| ICU                   | Dry run L | UNILAC      | 4         |          |        |          |        | 1       | Schor    | ol Debi   | ugging   |          |           | 4      |              | Dry       | y run V | UNILAC+9   | +SIS  | / 7     |       | 4      |          | We        | et Run | UNIL      | AC      |        |         |         |           | Dry       | run ESR   | A         |          | /7     |        | 4     |          | Wet     | «Run U    | UNILAC+ | C+SIS   |       |         |      |         | Dry      | run UN'   | NILAC+SIS        | SIS+ES  | ŚR                  |        |
| 4                     | 1         |             |           |          | Т      |          |        | 1       |          |           |          |          | T         |        |              |           |         |            |       | 1 7     |       |        |          |           |        | $\neg$    | . 🗆     | 1      | 1 '     |         |           |           | T         | T         | T        | П      | , 🗔    |       |          |         | T         | T       |         | ,     |         |      |         |          |           |                  |         |                     | . —    |
| OPE                   | 1         |             |           |          |        |          |        | 1       | Schor    | ol Tuto   | rial     |          |           |        |              | Har       | ₄nds-or | n traini   | ₁ng   |         |       |        |          | We        | et Run | ın UNILAC | AC      |        |         | UNIL    | LAC opera | eration   |           |           |          |        |        |       |          | Wet     | et Run UN | NILAC   | C+SIS   |       |         | UNII | LAC+SI  | 5 opera  | cion      |                  |         |                     |        |

## Wet Run February 2026: Major topics



- New synchronization UNILAC→SIS18 directly between UNILAC and Ring Data Masters
- Re-established Storage Ring Mode and Coupling (ESR, Cryring?)
- Beam Operation Scenarios as requested for Beamtime 2026/2027.1, derived from beamtime schedule: MMI, Dual Beam, single request (PP), slow extraction
- Other improvements (LSA model, Applications, HKR modernization, removed workarounds)
- Preparation for move to FCC

|                     | 12.01.                          | 13.01.   | 14.01.          | 15.01. | 16.01. | 17.01. | 18.01. 1 | 9.01. 20. | 01. 21.0           | 1. 22.01 | . 23.01  | . 24.01. | 25.01. 26. | 01. 27.0 | 1. 28.01  | . 29.01. | 30.01.  | 31.01. 0 | 1.02. 02. | 02. 03. | 02. 04.0    | 2. 05.0          | 2. 06.0 | 2. 07.02 | . 08.02. | 09.02. 10 | .02. 11.       | 02. 12.0 | 2. 13. | 02. 14.0 | 2. 15.02 | 2. 16.02. | 17.02. | 18.02.               | 19.02. | 20.02. | 21.02  | . 22.02. | 23.02. | 24.02. 2 | 25.02. | 26.02. | 27.02. |
|---------------------|---------------------------------|----------|-----------------|--------|--------|--------|----------|-----------|--------------------|----------|----------|----------|------------|----------|-----------|----------|---------|----------|-----------|---------|-------------|------------------|---------|----------|----------|-----------|----------------|----------|--------|----------|----------|-----------|--------|----------------------|--------|--------|--------|----------|--------|----------|--------|--------|--------|
|                     | Mo                              | Di       | Mi              | Do     | Fr     | Sa     | So       | Mo D      | i M                | i Do     | Fr       | Sa       | So N       | lo Di    | Mi        | Do       | Fr      | Sa       | So M      | 0 [     | i M         | Do               | Fr      | Sa       | So       | Mo        | Di N           | 1i Do    | ) F    | r Sa     | So       | Mo        | Di     | Mi                   | Do     | Fr     | Sa     | So       | Mo     | Di       | Mi     | Do     | Fr     |
| General Plan UNILAC | Commiss                         | ioning v | vithout         | Beam   |        |        | L        | NAC-RF    | ommis              | ioning   |          |          |            |          |           |          |         |          | Bea       | m Con   | nmission    | ing              |         |          |          | Engineeri | ng Run         |          |        |          |          |           |        |                      |        |        |        |          |        |          |        |        |        |
| General Plan SIS18  |                                 |          |                 |        |        |        |          |           |                    |          |          |          | Co         | nmissio  | ning witl | out Bea  | am      |          |           |         |             |                  |         |          |          |           |                |          |        |          |          | Beam      | Commi  | ssionin              | ıg     |        |        |          | Engine | ering Ru | ın     |        |        |
| General Plan ESR    |                                 |          |                 |        |        |        |          |           |                    |          |          |          |            |          |           |          |         |          |           |         |             |                  |         |          |          | Commiss   | oning w        | ithout E | eam    |          |          |           |        |                      |        |        |        |          | Dry Ru | n        |        |        | 4      |
|                     |                                 |          |                 |        |        |        |          |           |                    |          |          |          |            |          |           |          |         |          |           |         |             |                  |         |          |          |           |                |          |        |          |          |           |        |                      |        |        |        |          |        |          |        |        |        |
| ICU                 | Dry run UNILAC School Debugging |          |                 |        |        |        |          |           | Dry run UNILAC+SIS |          |          |          |            |          |           | t Run l  | JNILAC  |          |           |         | Dry run ESR |                  |         |          |          |           | Wet Run UNILAC |          |        |          | 5        |           |        | Dry run UNILAC+SI    |        |        | C+SIS+ | IS+ESR   |        |          |        |        |        |
|                     |                                 |          |                 |        |        |        |          |           |                    |          |          |          |            |          |           |          |         |          |           |         |             |                  |         |          |          |           |                |          |        |          |          |           |        |                      |        |        |        |          |        |          |        |        |        |
| OPE                 |                                 |          | School Tutorial |        |        |        |          |           |                    | Ha       | nds-on t | raining  |            |          |           | We       | t Run l | JNILAC   |           |         | UNIL        | UNILAC operation |         |          |          |           |                |          | Wet R  | un UNII  | AC+SIS   | 5         |        | UNILAC+SIS operation |        |        |        |          |        |          |        |        |        |

### Forecast Beamtime 2026 & 2027/1 - deliverables



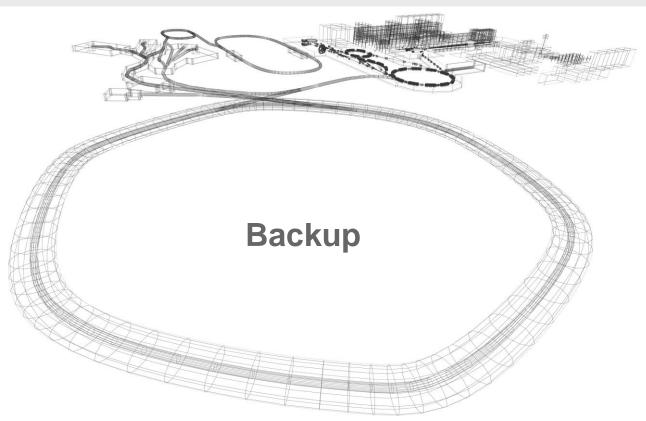
- Based on results from wet run July 2025: no show stoppers encountered
- Basic operation from UNILAC together with SIS18 can be expected
  - UNILAC: multiple beams to EH users and SIS18 in parallel
  - SIS18: multiple beams to EX users, including MMI
- Ongoing: restore ring operation from restrictions imposed for/by wet run
  - Full ability to trim SIS18
  - General operation for rings other than SIS18
    - ⇒ Implementation of stand-alone Chains for ESR, CRYRING, HITRAP in autumn 2025
  - Storage ring mode and coupling
    - ⇒ testing in wet run February 2026

### Forecast Beamtime 2026 & 2027/1 – limitations



- Anticipated limitations for beamtime 2026
  - ⇒ Communicated to, discussed with and acknowledged by D. Severin in March 2025
  - ⇒ Will be accounted for in beamtime planning
  - (UNILAC) operating efficiency will generally be (much) lower than usual
    - Operators will have to get used to new control system.
    - Expert support will be needed more often
    - Expected teething problems will lead to delays and interruptions, ad-hoc workarounds may be necessary
    - ⇒ Some setups may need much more time than usual/expected
  - No long Master Schedules / Super Cycles
    - ⇒ No complex SIS18 operation with many chains including long slow extraction
  - To be prioritized (may not both be realizable):
    - Switching of BSS patterns for infrequent beam delivery to storage rings
    - Multiple-chain operation for BIO experiments
- Possible mitigations / workarounds have been discussed

### Thank You for Your Attention!



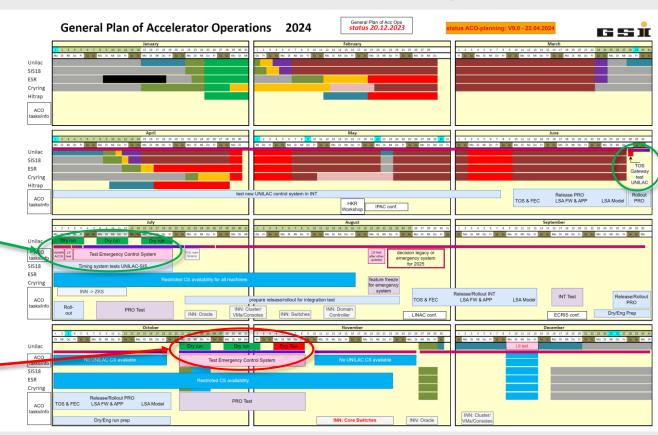

- Thanks a lot to all who contributed the project and the wet run!
  - To all colleagues from controls for the preparation, testing, debugging, hot fixing, documenting, ...
  - To the colleagues from beam diagnostics and the synchrotron experts for their great support
  - To the RF colleagues for their attention
  - To operations and all specialists for keeping it running smoothly for another three weeks
  - To the shutdown planners (and affected colleagues) for accepting the cut in shutdown time
  - To ACO's INN group for keeping ACC6 running for so long
  - Special thanks to all operators on shift during the wet run for their interest, motivation, commitment, questions, feedback and (nearly endless) patience









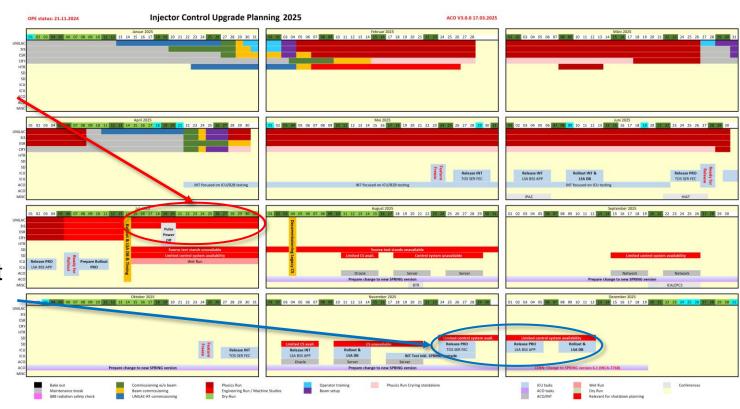

## **Project Planning 2024**



Extremely dense shutdown

**Dry run** July '24: directly following beam time

Wet run Nov '24: only UNILAC, not SIS18




## **Project Planning 2025**



Wet run July '25: directly following beam time, UNILAC+SIS18 for the first time

Preparation for wet run Feb '26 starts in Nov '25



## **Project Planning 2027 (draft)**

OPE status: GFEV 11.07.2025

Maintenance break

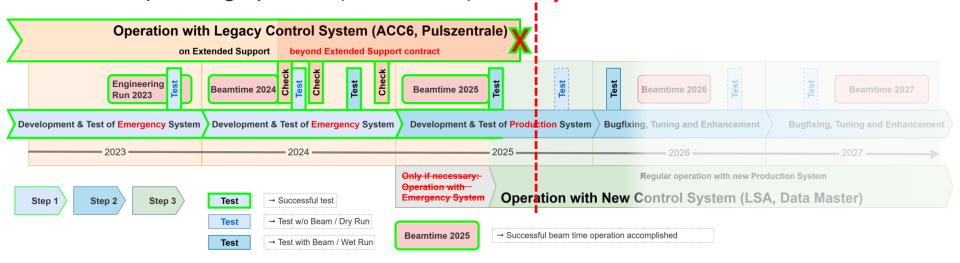


DRAFTIII ACO V4.1.2 (V4.1.0 08.08.2025)

Pre-(INT)-testing starts June 2027

Injector Control Upgrade Planning 2027

Beamtime '27.2: CS release, rollout and commissioning


Engineering Run / Machine Studies

Physics Run Cryring standalone

### Timeline for development and test strategy



- Beamtime 2025: Last beamtime operated with legacy control system
- Final decommissioning of legacy control system after 30+ years ✓
- Development of production version of new control system ongoing
- Future planning updated (see outlook) today



# Step 2: develop production control system - milestones



- Complete and finalize implementation of initial production control system
  - starting point: emergency system
  - fully fledged White Rabbit-based timing system, new FAIR pattern scheduling concept
  - enhanced settings generation and data supply
  - full set of operating tools and applications
  - bugfixes, essential tuning and necessary enhancements
- Engineering Run 2025
  - test initial production control system with beam
  - first test of beam injection into SIS18 solely with new control system
- Dry Run / Engineering Run 2025/26
  - in between testing of further developments before first beamtime operation
- Beamtime 2026
  - initial production control system
  - first regular operation with new control system
- Beamtime 2027
  - improved production control system
  - first regular operation of user beam time with new control system