

Overview of in-beam γ **-ray spectroscopy at the RIBF**

Pieter Doornenbal ピーター ドルネンバル

Outline

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook

- Workshop aims
 - Physics case/proposals
 - Strengthen SUNFLOWER collaboration

• In-beam γ setup

BigRIPS/ZeroDegreeDALI2

Atomic background

Inelastic scattering and Coulomb excitation

Workshop Aims

♦ Aims

Discussions

SUNFLOWER

Status

The RIBF

- F8
- Atomic Background

Coulex

Summary and Outlook

- Present our facility/method to researchers abroad
 - ♦ MINOS, DALI2, GRAPE
 - ♦ BRS, ZDS
- Present and discuss the problems of the method and points to consider
- Present the status of performed experiments and achievements
- Discuss potential experiments for the next NP-PAC and later NP-PACs

 Possibility of merging towards sub-projects defined by certain regions of the nuclear chart

Discussion Part

Discussions

- SUNFLOWER
- Status
- The RIBF
- F8
- Atomic Background
- Coulex
- Summary and Outlook

- The near future
 - Physics case/individual proposals
 - Next NP-PAC meeting is Dec. 13-14, 2013
 - Proposal dead-line mid/end of October
 - Assistance
 - LISE++/GEANT4 GEANT4: http://ribf.riken.jp/~pieter/shogun/
- 2014 beam time
 - MINOS
 - Large Volume LaBr₃
- Please let me know if there is anything else

SUNFLOWER

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

- The SUNFLOWER collaboration was launched in 2012 to enhance activities of the in-beam γ -ray spectroscopy at RI Beam Factory (RIBF)
- SUNFLOWER stands for "Spectroscopy of Unstable Nuclei with Fast and sLOW beam Experiments at the RIBF"
- Framework to coordinate researchers in the field of nuclear structure studies of unstable nuclei using fast and decelerated RI beams at RIBF by means of γ-ray measurements

See http://www.nishina.riken.jp/collaboration/SUNFLOWER and register

Function

Aims

Discussions

SUNFLOWER

Collaboration

Function

Organization

E-Mails

Status

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook

- Offer a forum for discussion and information exchanges.
 Proposals may be amended after consulting with SUNFLOWER members in advance of PAC meetings
- Arrange the tasks and resources necessary to accomplish experiments. The spokespersons of proposed experiments may ask members of SUNFLOWER to collaborate
- Provide technical information and consults regarding the utilization of non-standard detectors.
- Coordinate research programs and equipment use. Arranges experimental campaigns. Mediates between conflicting experiments when similar subjects are proposed
- Discusses the strategy of detector developments

Organization

Organization II

Discussions

SUNFLOWER

Collaboration

Function

Organization

E-Mails

Status

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook

- The Steering Committee conducts the activities described above receiving technical support by the Experimental Management.
- The Experimental Management is in charge of operating existing devices and pursuing projects. The information on the devices and the project should be updated to allow for sharing among the SUNFLOWER members.
- The board members would be changed if necessary after discussion among the members. Election is considered. The items listed in the Device and Project will be added or removed in order to reflect reality.

Mailing Lists

- ✤ Aims
- Discussions
- SUNFLOWER
- Collaboration
- Function
- Organization
- E-Mails
- Status
- The RIBF
- F8
- Atomic Background
- Coulex
- Summary and Outlook

- sunflower@ribf.riken.jp
 - SUNFLOWER Collaboration members
- sunflower-contact@ribf.riken.jp
 - Send us any question or suggestion
- sunflower-sc@ribf.riken.jp
 - SUNFLOWER Steering Committee members

sunflower-em@ribf.riken.jp

SUNFLOWER Experimental Management members

Status of In-Beam γ**-Ray Spectroscopy**

Overview of in-beam γ -ray spectroscopy at the RIBF

Approved Experiments (Including also DALI2 as "Ancillary" Detector)

Experiment	Spokesperson	Primary Beam	Devices	Approved Days	Completed Days
NP1306-RIBF107	Werner	⁷⁰ Zn	DALI2+MINOS	_	
NP1306-RIBF108	Cerizza	¹²⁴ Xe	DALI2	-	
NP1306-RIBF109	Corsi	⁷⁰ Zn	DALI2+MINOS	-	
NP1306-RIBF110	Doornenbal	⁷⁰ Zn	DALI2	_	
NP1306-RIBF111	Lee	⁷⁰ Zn	DALI2+MINOS	3	
NP1306-RIBF31R1	Aoi,Wang	²³⁸ U	DALI2	4	
NP1306-RIBF98R1	Jungclaus, Doornenbal	²³⁸ U	DALI2	3	
NP1112-RIBF94	Korten, Doornenbal	⁷⁸ Kr	DALI2,EURICA	8	
NP1112-RIBF93	De Angelis, Algora, Recchia, Rubio	⁷⁸ Kr	DALI2,EURICA	5	
NP1112-SAMURAI10	Lee	¹⁸ O	SAMURAI+DALI2	0.5	DONE
NP1112-SAMURAI08R1	Otsu	¹⁸ O	SAMURAI+DALI2	3	DONE
NP1112-SAMURAI07	Nakamura	¹⁸ O	SAMURAI+DALI2	6	
NP1106-SAMURAI04	Orr, Gibelin	⁴⁸ Ca	SAMURAI+DALI2	4	DONE?
NP1106-SAMURAI03	Nakamura	⁴⁸ Ca	SAMURAI+DALI2	8.5	DONE?
NP1106-RIBF75	Corsi	²³⁸ U	GRAPE	5	
NP1106-RIBF74	Obertelli, Doornenbal	¹²⁴ Xe	DALI2	2	DONE
NP1106-RIBF73	Steppenbeck, Takeuchi	⁷⁰ Zn	DALI2	3	DONE
NP1012-RIBF61	Aumann	²³⁸ U	DALI2+LaBr ₃	8	
NP1012-RIBF53	Bäck, Ideguchi	²³⁸ U	GRAPE,EURICA	(7)	
NP1012-RIBF51	Wieland	⁷⁶ Ge	DALI2+LaBr ₃	4	
NP1012-RIBF49R1	de Angelis	²³⁸ U	DALI2	焼鳥	DONE
NP1012-RIBF46	Dombradi, Sohler	²³⁸ U	DALI2	(4)	
NP1012-SHARAQ07	Shimbara	⁴⁰ Ar	DALI2+SHARAQ	(6)	
NP1012-SHARAQ06	Shimoura	¹⁸ O, ¹⁵ N	DALI2+SHARAQ	14	DONE

Approved Experiments (Including also DALI2 as "Ancillary" Detector)

Experiment	Spokesperson	Primary Beam	Devices	Approved Days	Completed Days
NP0912-RIBF01	Nakamura	⁴⁸ Ca	DALI2+mom.	3.5	
NP0912-RIBF22	Steppenbeck	⁷⁶ Ge	DALI2	5	
NP0906-RIBF02	Bazin	⁴⁸ Ca	DALI2+mom.	4	DONE
NP0906-RIBF03	Fallon	⁴⁸ Ca	DALI2	3	1
NP0906-RIBF07	Ideguchi	⁷⁶ Ge	GRAPE+DALI2	4	
NP0906-RIBF12	Dombradi	²³⁸ U	DALI2	3	
NP0906-RIBF13	Trache	²⁰ Ne	DALI2+mom.	3	
NP0906-SHARAQ01	Sasamoto	¹⁴ N	DALI2+SHARAQ	6.5	DONE
NP0906-SHARAQ02	Noji	¹⁴ N	DALI2+SHARAQ	6.5	DONE
NP0811-RIBF70R1	Doornenbal	¹²⁴ Xe	DALI2	4	DONE
NP0802-RIBF55	Nakamura	⁴⁸ Ca	DALI2	7	DONE
NP0802-RIBF56	Baba	⁴⁸ Ca	BaF2+BGO	10	
NP0802-RIBF58	Sohler, Elekes	⁸⁶ Kr	DALI2	4	
NP0702-RIBF28	Takeuchi	⁴⁸ Ca	DALI2	6	DONE
NP0702-RIBF30	Yoneda	²³⁸ U	DALI2	10	DONE
NP0702-RIBF31	Aoi	²³⁸ U	DALI2	10(3)	DONE
NP0702-RIBF32	Scheit	⁴⁸ Ca	DALI2	10	3.5

Regions of Interest

Performed Experiments

Discussions

SUNFLOWER

Status

ApprovedExperiments

 Regions of Interest

Performed
 Experiments

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook December 2008, Dayone, ³²Ne

December 2009, Test with ²³⁸U

December 2010 ⁴⁸Ca

✤ S. Takeuchi *et al.*, ^{38,40,42}Si

- ✤ H. Scheit *et al.*, ^{36,38}Mg
- ✤ D. Bazin *et al.*, ³³Mg
- P. Fallon *et al.*, ⁴⁰Mg test
- November/December 2011, ²³⁸U
 - ♦ K. Yoneda et al., ⁷⁸Ni
 - N. Aoi et al., Around ¹³²Sn
- July 2012, ¹²⁴Xe and ⁷⁰Zn
 - ♦ A. Obertelli, P. Doornenbal et al., ^{10x}Sn
 - D. Steppenbeck et al., ⁵⁴Ca
- May 2013, ²³⁸U
 - ♦ G. de Angelis *et al.*, ^{73–75}Ni

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

The RIBF

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

RIBF Overview

Superconducting Ring Cyclotron (SRC)

Intensities of 345 MeV/u beams from the SRC (On the production target):

Nucleus	Bea Expected FY13	Ave. FY12	
⁴⁸ Ca	150	415	200
⁷⁰ Zn	75	100	60
⁷⁸ Kr	50	_	-
¹²⁴ Xe	10	35	20–30
²³⁸ U	5	15.1	6–12

- K = 2500 MeV
- 8300 tons
- 5.36 m extraction radius
- 6 sector magnets
- four main RF cavities

BigRIPS Overview

BigRIPS Overview

BigRIPS Overview

ZeroDegree Spectrometer

F8 Area

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

Secondary Target Area

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

F8 Area

DALI2 Configuration

Atomic Background

Coulex

Summary and Outlook

- 2 double PPACs in front of reaction target
- 1 double PPAC behind reaction target
- Secondary beam spot size \approx 5 mm (σ)
- Scattering angle reconstruction \approx 5 mrad (σ)
- Open Beam pipe to change reaction target
- Target diameters 30–40 mm
- Target thicknesses of several g/cm²

DALI2 (2010-to Present)

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

♦ F8 Area

DALI2Configuration

Atomic Background

Coulex

Summary and Outlook

- Forward-wall configuration
- 186 Nal(TI) detectors
- ϑ coverage 11° to 165°
- 7 % intrinsic resolution at 1 MeV
- $\Delta E/E \approx$ 10(11) % at 100(250) MeV/u
- ho pprox 20% FEP efficiency at 1 MeV
- Simplified target holder and beam pipe
- 1mm Pb (+1mm Sn) shielding

S. Takeuchi et al., RIKEN Pr. Rep. 36, 148 (2003)

DALI2 (2010-to Present)

Overview of in-beam γ -ray spectroscopy at the RIBF

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

Atomic Background

AtomicBackground

 Experimental Atomic Background

Coulex

Summary and Outlook

- target electrons scattering off heavy projectile
- maximum electron energy:

$$E_{\text{max}}^{e^-} = \frac{1}{500} E/A \qquad \qquad (\beta \to 2\beta, \quad m \to \frac{1}{2000} m)$$

Components of radiation

- Radiative electron capture (Capture of target e^- into bound states of the projectile) $\sigma \propto Z_p^2 Z_t \qquad W(\theta)$ in proj. frame
- Primary bremsstrahlung (Capture of target e^- into continuum states of the projectile) $\sigma \propto Z_p^2 Z_t \qquad W(\theta)$ in proj. frame
- Secondary (electron) bremsstrahlung (SEB) (Stopping of high energy electrons in the target) $\sigma \propto Z_p^2 Z_t^2$ isotropic in lab. frame

• Most important for high-Z targets

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

R. Holzmann et al., GSI Annual Report 1992, 48 (1993).

Overview of in-beam γ -ray spectroscopy at the RIBF

R. Holzmann et al.,	GSI Annual Rep	ort 1992, 48	(1993).
---------------------	-----------------------	--------------	---------

Projectile	Target	Thickness / gcm ⁻²	Energy / MeV/ <i>u</i>	Produced γ -rays >30 keV
³⁶ Mg	С	2.54	221	3.68
³⁶ Mg	Pb	3.37	216	44.1
¹¹² Sn	С	0.370	150	16.65
¹¹² Sn	Pb	0.557	150	135.7

Overview of in-beam γ -ray spectroscopy at the RIBF

Projectile	Target	Thickness / gcm ⁻²	Energy / MeV/ <i>u</i>	Produced γ -rays >30 keV
³⁶ Mg ³⁶ Mg ¹¹² Sn ¹¹² Sn	C Pb C Pb	2.54 3.37 0.370 0.557	221 216 150 150	3.68 44.1 16.65 135.7
(x) 1400 1200 1000 800 600 400 200	³⁰ Mg —	> Pb @ 23	0 MeV/u	Simulation 10 ³ 10 ² 10
Q) 20	40 60 8	0 100 12	0 140 160 180 1

R. Holzmann et al., GSI Annual Report 1992, 48 (1993).

R. Holzmann et al., GSI Annual Report 1992, 48 (1993).

Overview of in-beam γ -ray spectroscopy at the RIBF

Atomic Background Comparison to Experiment – ³⁶Mg on Pb @ 230 MeV/u

Atomic Background Comparison to Experiment – ³⁶Mg on Pb @ 230 MeV/u

Overview of in-beam γ -ray spectroscopy at the RIBF

60

80

100

120

140

160

50 180 Crystal ID

20

40

Atomic Background Comparison to Experiment – ³⁶Mg on Pb @ 230 MeV/u

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

Intermediate-Energy Coulomb Excitation

Considerations for Intermediate-Energy Coulex

Considerations for Intermediate-Energy Coulex

Overview of in-beam γ -ray spectroscopy at the RIBF

Considerations for Intermediate-Energy Coulex

Summary and Outlook

Overview of in-beam γ -ray spectroscopy at the RIBF

Summary and Outlook

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook

Many experiments are already proposed

Experimental data obtained so far very promising, as we will see...

Regarding method:

- All aspects well understood
- Atomic background described quantitatively in simulations
 - Other components from target excitations (not shown today)
- Absolute cross-sections

THE END

Overview of in-beam $\gamma\text{-ray}$ spectroscopy at the RIBF

✤ Aims

Discussions

SUNFLOWER

Status

The RIBF

F8

Atomic Background

Coulex

Summary and Outlook

Backup slides from now

Overview of in-beam γ -ray spectroscopy at the RIBF