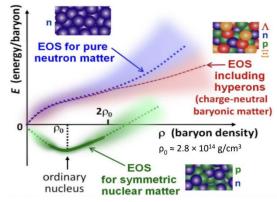


EMMI Workshop "5th Workshop on Anti-Matter, Hyper-Matter and Exotica Production"

Neutron stars: Dense matter factory

Mahboubeh Shahrbaf Motlaghz

Hyperon	Mass (MeV/c²)
Λ	1115.57 ± 0.06
Σ^+	1189.37 ± 0.06
Σ^0	1192.55 ± 0.10
Σ^-	1197.50 ± 0.05
Ξ^0	1314.80 ± 0.8
Ξ^-	1321.34 ± 0.14
Ω^-	1672.43 ± 0.14


The Most Robust Observational Inputs

- •Maximum mass of pulsars
- NICER mass-radius measurements
- •Gravitational waves detected by LIGO-VIRGO-KAGRA

mass-radius

Tidal Deformability

•Cooling and thermal evolution

The most important check with hyperons

H. Tamura, JPS Conf. Proc., 011003 (2014)

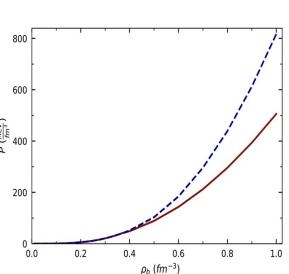
Including hyperon \longrightarrow Softening the EOS $\longrightarrow M_{max} < 2M_{\odot}$

EOS of hypernuclei matter

LOCVY

--- DD2Y

 10^{3}

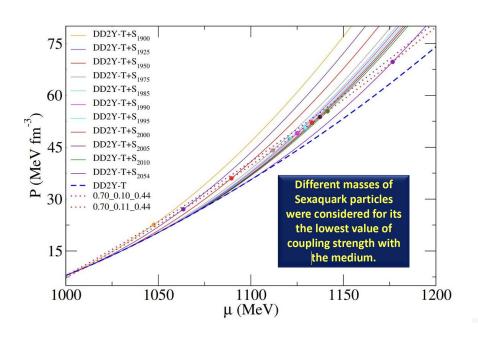

Mahboubeh Shahrbaf Motlaghz

- → Observed softening of EOS as expected
- Consistent with chiral EFT + astrophysical constraints

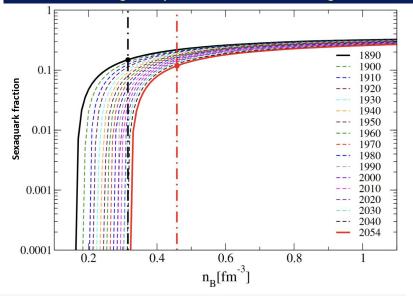
 $\varepsilon \left(\frac{\text{MeV}}{\text{fm}^3} \right)$

• softening after Λ onset

 10^{2}

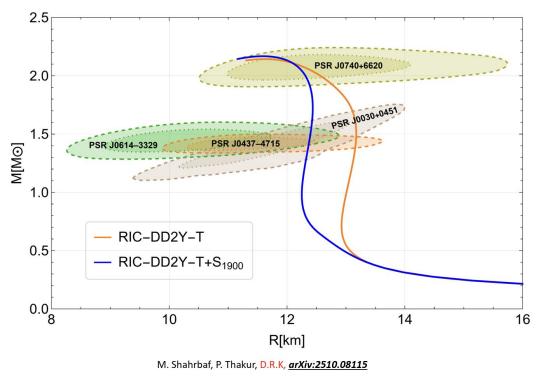

 Additional repulsive effects in the EOS (e.g., ΛΛ interaction, three-body forces or any kind of many-body repulsions)

The slow increase in the Λ fraction moderates the overall softening once hyperons appear.


- The net repulsive $\Lambda\Lambda$ interaction becomes significant at high densities.
- Central correlation functions provide additional medium-induced repulsion.
- The effect of tensor correlations is suppressed in the $\Lambda\Lambda$ interaction due to zero isospin.

Sexaquarks as probe of NS-EOS

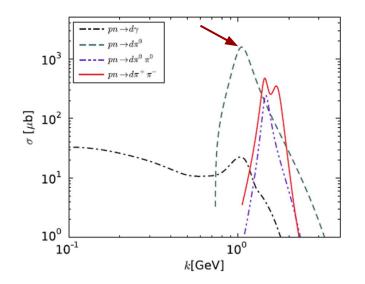
Davood Rafiei Karkevandi



Sexaguarks as probe of NS-EOS

Davood Rafiei Karkevandi

 → Including sexaquarks bring model calculations closer to Neutron Star Interior Composition Explorer (NICER) results


Orange curve: without Sexaquark

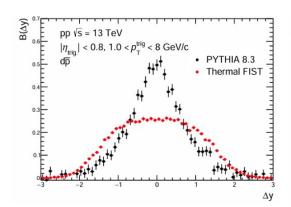
Blue curve : with Sexaqurak, $m_s=1900\,MeV~and~x_s=0.03$

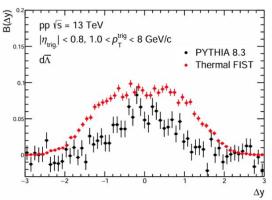
Modelling the Nuclei production - Pythia 8.3

Marika Rassa

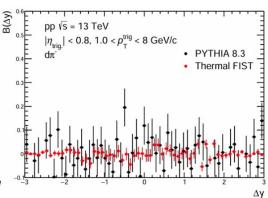
- \rightarrow Pion-deutron femtoscopy measurement shows the contribution from $\Delta(1232)$ resonance
- → Nuclear Fusion reactions to treat the nuclei production
- → Approach based on Dal-Raklev empirical modelling
- · Model independent evidence
 - About 80% of the (anti)deuterons are produced in nuclear fusion reactions following the decay of short lived resonances
 - About the 60% of them derive from the Δ(1232)

Different reactions are considered:

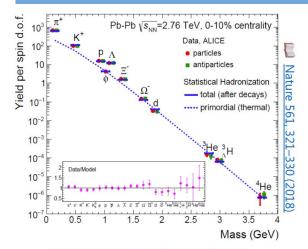

→ similar treatment for anti-nuclei



Deuteron balance function

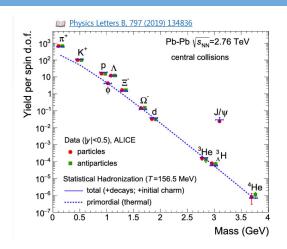

Marika Rassa

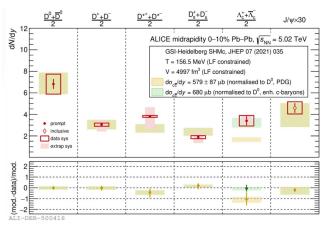
- Is it possible to estimate the balance function for all the cases
- Different shape for the one predicted by PYTHIA and THERMAL FIST due to the instrinsic differences of the models


- More observations can be made comparing these balance functions with the one triggered by protons
- But still, no experimental data available for these observables

S. Tripathy, P. Christiansen, arXiv:2509.03195 [hep-ph]

Charm quark and SHM


Luigi Dello Stritto



Thermal density of hadron species i

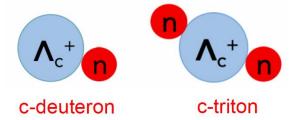
$$n_i(T_H) \propto m_i^2 T_H K_2 \left(\frac{m_i}{T_H}\right)$$

→ Can heavy quarks be considered in thermal and chemical equilibrium with the medium?

- J/ψ enhanced compared to other M = 3 GeV hadrons.
- Number of c-quarks in Pb-Pb collisions at LHC energy is about 30 times larger than expected for pure thermal production.

$$> g_c \sim 30$$

For open heavy flavor hadrons strong contribution from resonance decays.

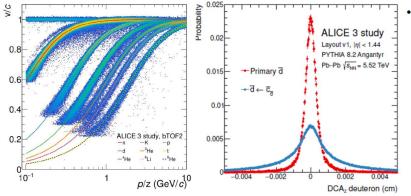

- include all known charm hadron states as of PDG.
- Additional feed-down from excited baryon states not yet measured but predicted by IQCD.

Deutron - coming from charm decay in HI

Luigi Dello Stritto

The lightest possible bound states of a charm baryon and a nucleon without Coulomb repulsion.

constraints for in-medium and "molecular" coalescence



c-deuteron and c-tritium

- Excellent performance of ALICE 3 for the identification of light nuclei with TOF.
- Main background source: combinatorial of primary deuterons with pions and kaons.
 - Excellent DCA resolution to reject primary deuterons.

The most promising decay channels:

$$c_{d} \rightarrow d + K^{-} + \pi^{+}$$
 $c_{t} \rightarrow t + K^{-} + \pi^{+}$



- Assuming the production rates of the SHM, in 1 month of Pb-Pb collisions (5.6 nb⁻¹):
 - > ~ 50 significance for c_d
 - ~ 3 significance for c_t

ALICE 3 sensitive to c_d and c_t!!!

EMMI Workshop "5th Workshop on Anti-Matter, Hyper-Matter and Exotica Production"

