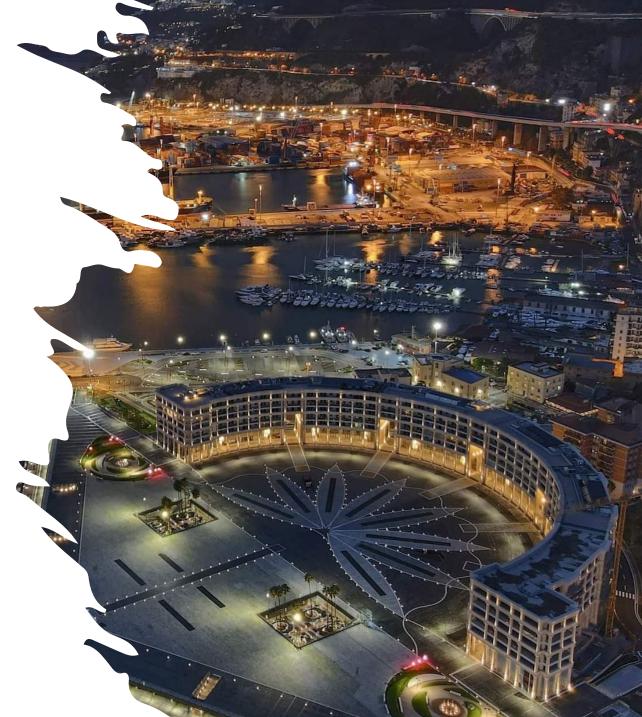
The reaction-based nuclear production model in PYTHIA 8.3

Marika Rasà¹

1. University and INFN of Catania

5th workshop on Anti-Matter, Hyper-Matter and Exotica Production

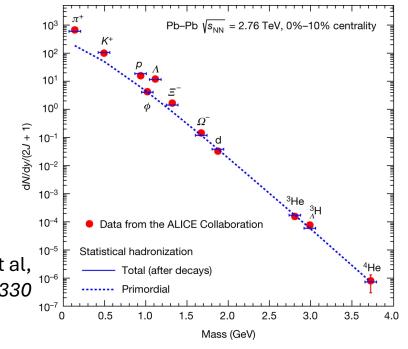


Light (anti)nuclei production models

Statistical Hadronization Model (SHM)

- Hadrons emitted from a system in statistical and chemical equilibrium with temperature $\mathsf{T}_{\mathsf{chem}}$
- $dN/dy \propto exp(-m/T_{chem}) \rightarrow nuclei are sensitive to T_{chem} due their large mass$
- Particle yields well described with a common T_{chem} of ~ 156 MeV

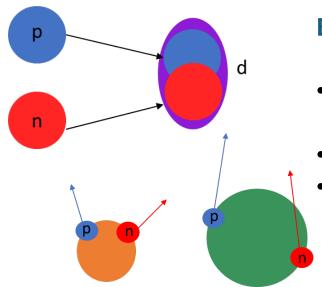
A. Andronic et al, Nature vol. 561 (2018) 321-330



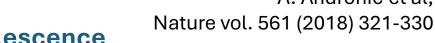
Light (anti)nuclei production models

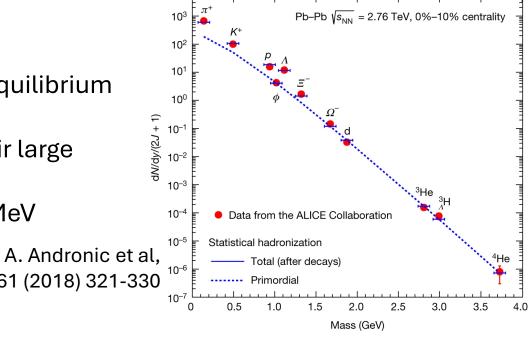
Statistical Hadronization Model (SHM)

- Hadrons emitted from a system in statistical and chemical equilibrium with temperature T_{chem}
- $dN/dy \propto exp(-m/T_{chem}) \rightarrow nuclei are sensitive to T_{chem} due their large$ mass
- Particle yields well described with a common T_{chem} of ~ 156 MeV



Baryon Coalescence



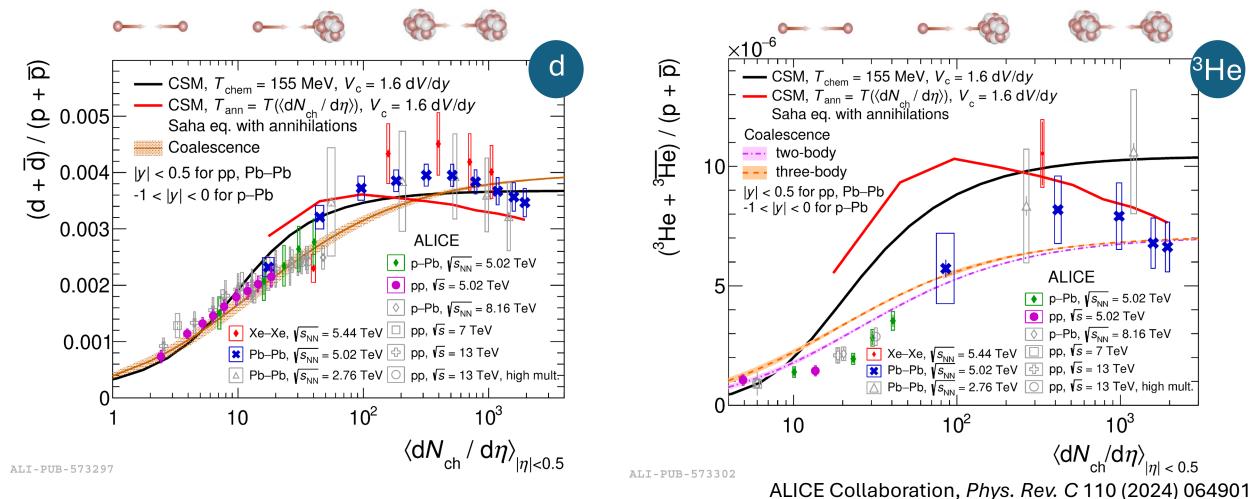


- (Anti)nuclei arise from the overlap of the (anti)nucleons phase-space distributions with the Wigner density of the bound state
- Dependence on the source size
- to the coalescence probability

Dependence on the source size Coalescence parameter
$$B_A$$
 proportional $E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \cdot \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$ $p_\mathrm{p} = p_\mathrm{A}/A$

S. T. Butler et al., *Phys. Rev.* 129 (1963) 836 M. Mahlein et al., Eur. Phys. J. C 83 (2023) 804

The current status

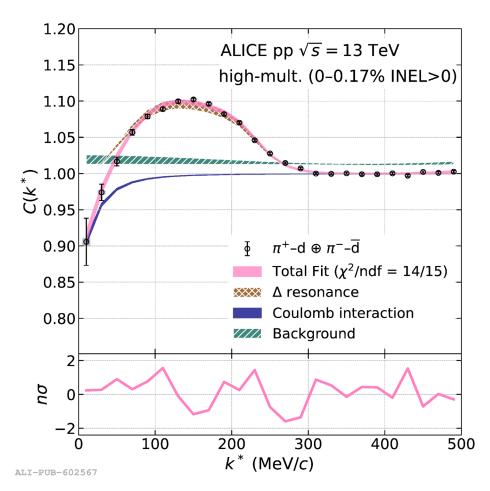


 No definitive answer from data (models too close, data not enough precise) → we need something more

What's new?

- Recent results from the ALICE collaboration show the contribution of the $\Delta(1232)$ resonance in the deuteron formation
- Measurements achieved studying the deuteron-pion correlation functions in HM pp collisions
- Model independent evidence
 - About 80% of the (anti)deuterons are produced in nuclear fusion reactions following the decay of short lived resonances
 - About the 60% of them derive from the $\Delta(1232)$

See Maximilian's talk for more details!



ALICE Collaboration, arXiv:2504.02393 [nucl-ex]

Nuclei production in event generators

- Different event generators are available for simulate high energy hadronic collisions
- In the majority of them, the nuclear production is not directly implemented
- The results on nuclei production are then evaluated in relation to the SHM and the baryon coalescence using thermal predictions or coalescence afterburners

Nuclei production in event generators

- Different event generators are available for simulate high energy hadronic collisions
- In the majority of them, the nuclear production is not directly implemented
- The results on nuclei production are then evaluated in relation to the SHM and the baryon coalescence using thermal predictions or coalescence afterburners
- In PYTHIA 8.3 the (anti)deuteron production is implemented using a reaction-based production

The reaction-based model in PYTHIA 8.3

• The default implementation is based on the Dal-Raklev model:

C. Bierlich et al., SciPost Phys.Codeb. 2022 (2022) 8

- The nucleon binding cross section is not a uniform distribution up to a cutoff value (still available in the model), but it is determined from fits to nucleon-scattering data from different experiments
- Different reactions are considered:

pn
$$\rightarrow \gamma d$$
 pn $\rightarrow \pi^0 d$ pp $\rightarrow \pi^+ d$ nn $\rightarrow \pi^- d$
pn $\rightarrow \pi^- \pi^+ d$ pn $\rightarrow \pi^0 \pi^0 d$ pp $\rightarrow \pi^+ \pi^0 d$ nn $\rightarrow \pi^- \pi^0 d$

- Similar implementation for the antideuteron
- · Channels can be removed, added or modified
- Each channel must have a two-body initial state and a n-body final state with n > 1 and at least one of the outgoing particles must be a deuteron
- The kinematics of the final state is determined by an isotropic decay of the initial state pair

• Base hypothesis of the model: the probability that a combination of a N_1N_2 pair with a k momentum difference in the centre-of-mass frame form a deuteron is a random event with a value:

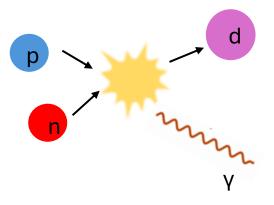
$$P(N_1 N_2 \to dX_i | k) = \frac{\sigma_{N_1 N_2 \to dX_i}(k)}{\sigma_0}$$

- With σ_0 a free normalization factor assumed the same for all the processes
- Which process dominates as a function of k?

• Base hypothesis of the model: the probability that a combination of a N_1N_2 pair with a k momentum difference in the centre-of-mass frame form a deuteron is a random event with a value

$$P(N_1 N_2 \to dX_i | k) = \frac{\sigma_{N_1 N_2 \to dX_i}(k)}{\sigma_0}$$

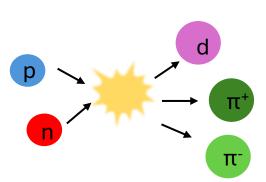
- With σ_0 a free normalization factor assumed the same for all the processes
- Which process dominates as a function of k?
 - Low values of k the radiative capture process pn \rightarrow γ d



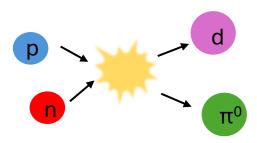
• Base hypothesis of the model: the probability that a combination of a N_1N_2 pair with a k momentum difference in the centre-of-mass frame form a deuteron is a random event with a value

$$P(N_1 N_2 \to dX_i | k) = \frac{\sigma_{N_1 N_2 \to dX_i}(k)}{\sigma_0}$$

• With σ_0 a free normalization factor assumed the same for all the processes



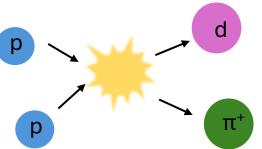
- Which process dominates as a function of k?
 - Low values of k the radiative capture process pn \rightarrow γ d
 - For c.m. energies above the pion production threshold dominates the pn \rightarrow d π and pn \rightarrow d(π π)⁰ processes



• Base hypothesis of the model: the probability that a combination of a N_1N_2 pair with a k momentum difference in the centre-of-mass frame form a deuteron is a random event with a value

$$P(N_1 N_2 \to dX_i | k) = \frac{\sigma_{N_1 N_2 \to dX_i}(k)}{\sigma_0}$$

• With σ_0 a free normalization factor assumed the same for all the processes



- Which process dominates as a function of k?
 - Low values of k the radiative capture process pn $\rightarrow \gamma d$
 - For c.m. energies above the pion production threshold dominates the pn \rightarrow d π and pn \rightarrow d(π π)⁰ processes
 - At the same energies the pp and nn processes are more efficient for deuteron production, hence must be considered

• Base hypothesis of the model: the probability that a combination of a N_1N_2 pair with a k momentum difference in the centre-of-mass frame form a deuteron is a random event with a value

$$P(N_1 N_2 \to dX_i | k) = \frac{\sigma_{N_1 N_2 \to dX_i}(k)}{\sigma_0}$$

- With σ_0 a free normalization factor assumed the same for all the processes

- Which process dominates as a function of k?
 - Low values of k the radiative capture process pn $\rightarrow \gamma d$
 - For c.m. energies above the pion production threshold dominates the pn \rightarrow d π and pn \rightarrow d($\pi\pi$)⁰ processes
 - At the same energies the pp and nn processes are more efficient for deuteron production, hence must be considered
 - The cross section decreases with increasing the products in the final state

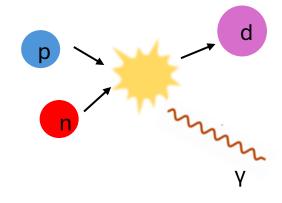
pn → dγ process

- Little to no data for pn \rightarrow dy process, no fit possible in this condition
- But plenty of data for the inverse process dy \rightarrow pn that can be used thanks to the principle of the detailed balance:

$$\sigma(Aa \to Bb) = \frac{g_B g_b}{g_A g_a} \frac{p_b^2}{p_a^2} \sigma(Bb \to Aa)$$

- With p_i the particle momentum, g_i the number of spin (for massive particles $g_i = 2s_i + 1$)
- Cross sections are invariant under Lorentz boost in the beam direction
- In our case:

$$\sigma(pn \to d\gamma) = \frac{3}{2} \frac{p_{\gamma}^2}{p_n^2} \ \sigma(d\gamma \to pn)$$



pn → dγ process

- In some range of energies, experimental data are in tension
 - Keep only the most recent dataset
 - If a experiment dataset is discarded in one region, all data of the same experiment are discarded
- Final fit:

$$\frac{\sigma_{pn\to d\gamma}}{(1\mu b)} = \begin{cases} \sum_{n=-1}^{10} a_n \kappa^n & \kappa < 1.28\\ \exp(-b_1 \kappa - b_2 \kappa^2) & \kappa \ge 1.28 \end{cases}$$

- $\kappa = k/1 \text{ GeV}$
- Fit over 6 order of magnitude

 parameters finely tuned

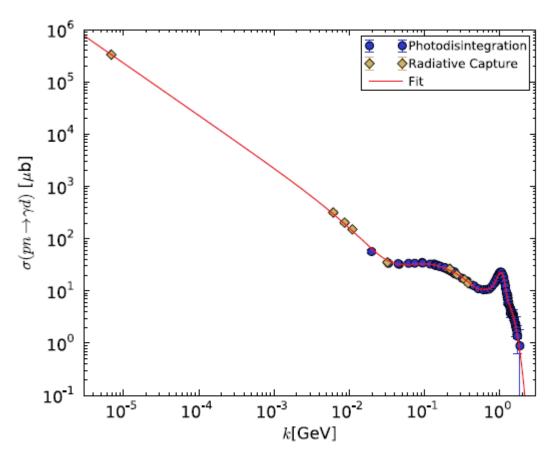
Parameter	Value	
$\overline{a_{-1}}$	2.30346	
a_0	-9.366346×10^{1}	
a_1	2.565390×10^{3}	
a_2	-2.5594101×10^4	
a_3	1.43513109×10^{5}	
a_4	-5.0357289×10^{5}	
a_5	1.14924802×10^{6}	
a_6	$-1.72368391 \times 10^{6}$	
a_7	1.67934876×10^{6}	
a_8	$-1.01988855 \times 10^{6}$	
a_9	3.4984035×10^{5}	
a_{10}	-5.1662760×10^4	
b_1	-5.1885	
b_2	2.9196	

pn \rightarrow dγ process

- In some range of energies, experimental data are in tension
 - Keep only the most recent dataset
 - If a experiment dataset is discarded in one region, all data of the same experiment are discarded
- Final fit:

$$\frac{\sigma_{pn \to d\gamma}}{(1\mu b)} = \begin{cases} \sum_{n=-1}^{10} a_n \kappa^n & \kappa < 1.28 \\ \exp(-b_1 \kappa - b_2 \kappa^2) & \kappa \ge 1.28 \end{cases}$$

- $\kappa = k/1 \text{ GeV}$
- Fit over 6 order of magnitude \rightarrow parameters finely tuned
- Peak at ~ 1 GeV \rightarrow Δ resonance contribution



Look at three different reactions:

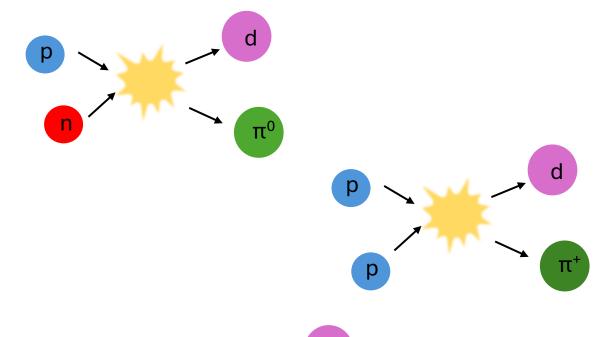
$$pn \rightarrow \pi^0 d$$
 $pp \rightarrow \pi^+ d$ $nn \rightarrow \pi^- d$

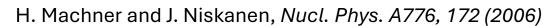
Isospin invariance relations

$$\sigma_{\mathrm{pn}\to\mathrm{d}\pi^0} = \frac{1}{2}\sigma_{\mathrm{pp}\to\mathrm{d}\pi^+}$$

$$\sigma_{nn \to d\pi^-} = \sigma_{pp \to d\pi^+}$$

- Not exact relations due to broken isospin symmetry
- Very little data for pn $\rightarrow \pi^0 d$, no data for nn $\rightarrow \pi^- d$
- Use of the plenty of data for pp $\rightarrow \pi^+$ d plus isospin relations



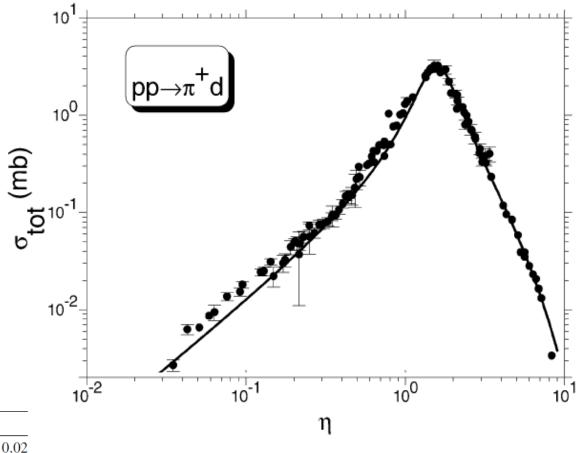


Experimental data fitted by

$$\sigma(\eta) = \frac{a\eta^b}{\left(c - \exp(d\eta)\right)^2 + e}$$

- Where $\eta = q/m_{\pi}$ and q the pion momentum in the c.m frame
- Applied corrections for Coulomb repulsion and phase space difference of nucleon and pions, to be revoked or reapplied in other reactions
- Total effects are negligible (slight change of threshold value, % different in the peak) → neglected

a (mb)	b	С	d	e
0.17 ± 0.03	1.34 ± 0.06	1.77 ± 0.04	0.38 ± 0.02	0.096 ± 0.02

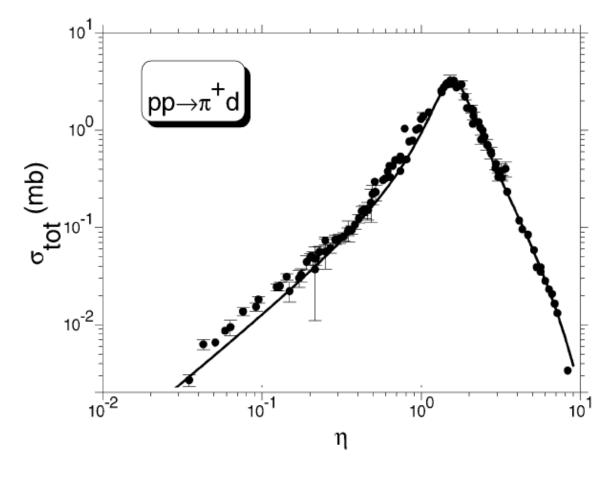


H. Machner and J. Niskanen, *Nucl. Phys. A776, 172 (2006)*

Experimental data fitted by

$$\sigma(\eta) = \frac{a\eta^b}{\left(c - \exp(d\eta)\right)^2 + e}$$

- Where $\eta = q/m_{\pi}$ and q the pion momentum in the c.m frame
- Applied corrections for Coulomb repulsion and phase space difference of nucleon and pions, to be revoked or reapplied in other reactions
- Total effects are negligible (slight change of threshold value, % different in the peak) → neglected
- Also in this case, the peak of the Δ resonance is present

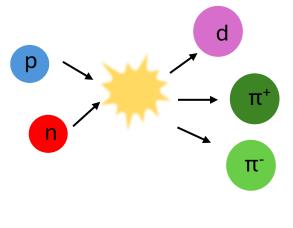


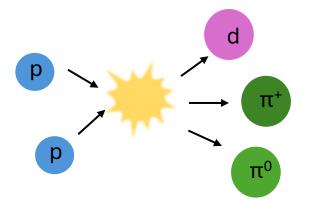
H. Machner and J. Niskanen, Nucl. Phys. A776, 172 (2006)

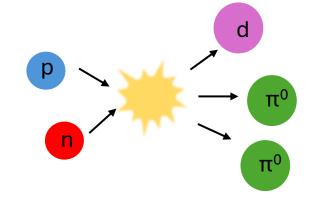
Look of four different reactions:

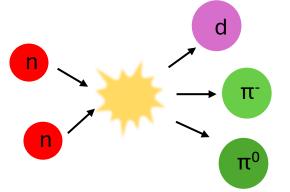
$$pn \rightarrow \pi^-\pi^+d$$
 $pn \rightarrow \pi^0\pi^0d$

$$pp \rightarrow \pi^+\pi^0 d$$
 $nn \rightarrow \pi^-\pi^0 d$









Look of four different reactions:

$$pn \rightarrow \pi^-\pi^+d$$
 $pn \rightarrow \pi^0\pi^0d$ $pp \rightarrow \pi^+\pi^0d$ $nn \rightarrow \pi^-\pi^0d$

$$p \rightarrow \pi^+ \pi^0 d$$
 $nn \rightarrow \pi^- \pi^0$

- Some constraints:
 - No data for $nn \rightarrow \pi^{-}\pi^{0}d$
 - Very little data for all the other reactions at $\sqrt{s} > 2.5$ GeV/c
 - Presence of resonanance peak at around $\sqrt{s} > 2.5$ GeV/c that challenge the fit procedure
- Use of the isospin invariance to maximize the results:

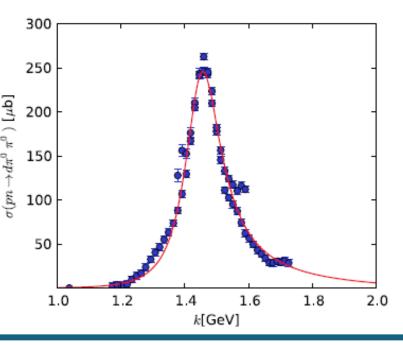
$$\sigma_{pn\to d\pi^{+}\pi^{-}} = 2 \sigma_{pn\to d\pi^{0}\pi^{0}} + \frac{1}{2} \sigma_{pp\to d\pi^{+}\pi^{0}}$$

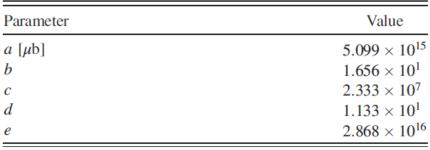
$$\sigma_{nn\to d\pi^-\pi^0} = \sigma_{pp\to d\pi^+\pi^0}$$

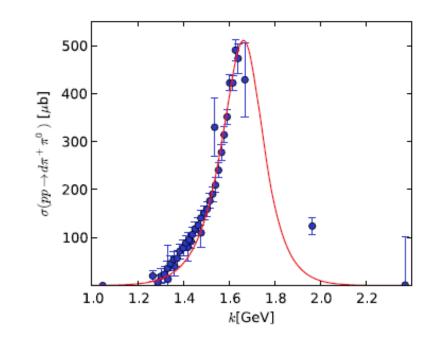
Big influence of isospin breaking effects ($\sim 25\%$) \rightarrow individual fit for each process with data of the other processes included but weighted down (1/100 in the χ^2) + dummy points at kinematic cutoff

• For the pp $\rightarrow \pi^+\pi^0$ d and pn $\rightarrow \pi^0\pi^0$ d reactions the experimental data are fitted by:

$$\sigma(\kappa) = \frac{a\kappa^{b}}{\left(c - \exp(d\kappa)\right)^{2} + e}$$



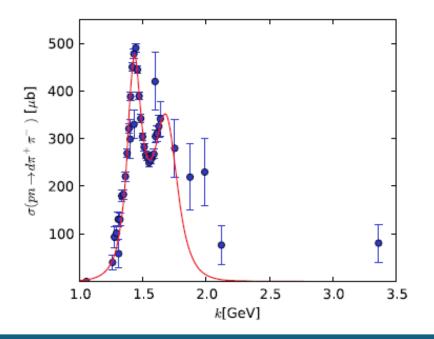




Parameter	Value
<i>a</i> [μb]	2.855×10^{6}
b	1.311×10^{1}
c	2.961×10^{3}
d	5.572×10^{0}
e	1.461×10^{6}

• For the pn $\rightarrow \pi^-\pi^+$ d reactions the experimental data are fitted by:

$$\sigma(\kappa) = \frac{a_1 \kappa^{b_1}}{\left(c_1 - \exp(d_1 \kappa)\right)^2 + e_1} + \frac{a_2 \kappa^{b_2}}{\left(c_2 - \exp(d_2 \kappa)\right)^2 + e_2}$$



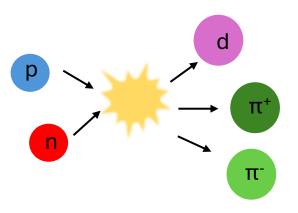
Parameter	Value
<i>a</i> ₁ [μb]	6.465×10^{6}
b_1	1.051×10^{1}
c_1	1.979×10^{3}
d_1	5.363×10^{0}
e_1	6.045×10^{5}
$a_2 [\mu b]$	2.549×10^{15}
b_2	1.657×10^{1}
c_2	2.330×10^{7}
d_2	1.119×10^{1}
e_2	2.868×10^{16}

L. A. Dal and A. R. Raklev, *Phys. Rev. D* 91(12), 123536 (2015)

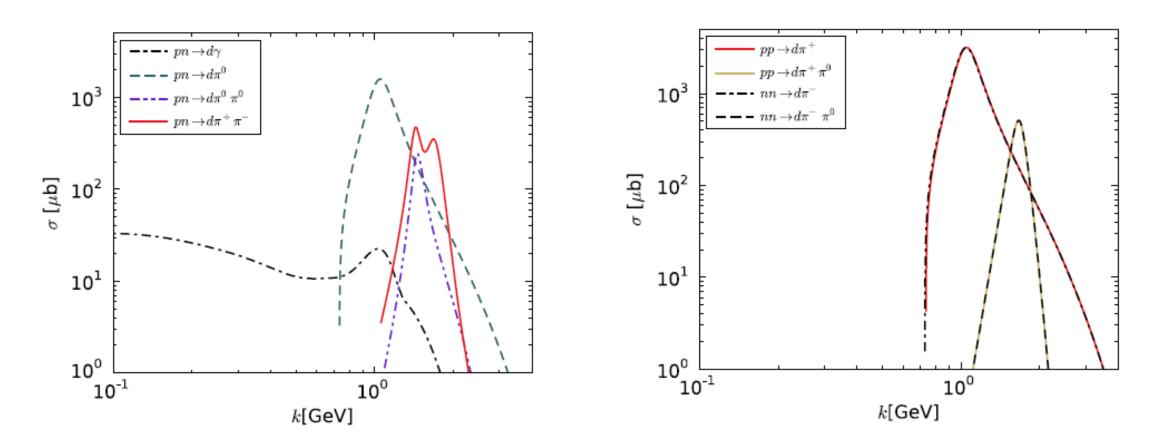
- Having a 3-body final state, the kinematic here is more involved
- Not enough data to parametrize the deuteron momentum distribution in the c.m. frame
 - Assumption of no angular correlation between the deuteron and the pions
 - The distributions are made considering the phase space alone
- The deuteron momentum is calculated as:

$$p_{d} = \sqrt{\left(\frac{s + m_{d}^{2} - m_{d\pi}^{2}}{2\sqrt{s}}\right) - m_{d}^{2}}$$

The direction is takes from an isotropic distribution in the c.m. frame



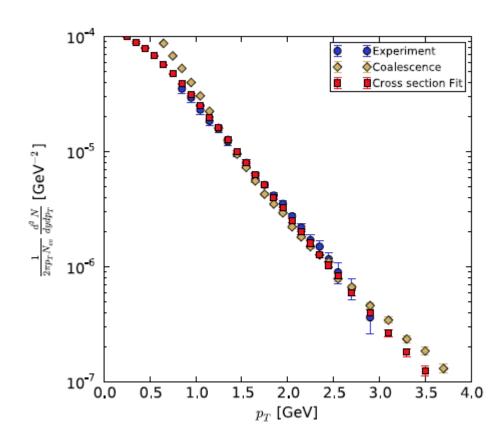
Total fit parametrization



The majority of deuterons are produced at k values corresponding to the Δ resonance

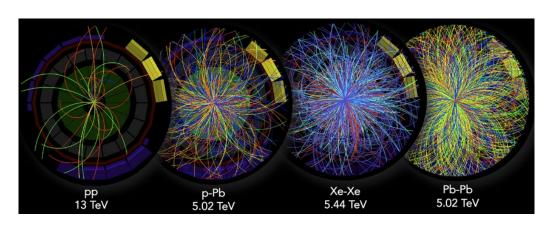
Reaction vs Coalescence – ALICE comparison

- Both the coalescence model and the reaction-based one have a free parameter to be tuned against experimental data
- Different results are available as an example the comparison with pp collisions at 7 TeV collected by ALICE is reported using PYTHIA 8.1 simulations and applying the coalescence and the reaction-based approach
- The shape of the spectrum in the coalescence model does not match the experimental data.
- The cross section based model reproduces the shape of the spectrum better, but an overshoot a low $p_{\rm T}$ and a undershoot at high $p_{\rm T}$ are present

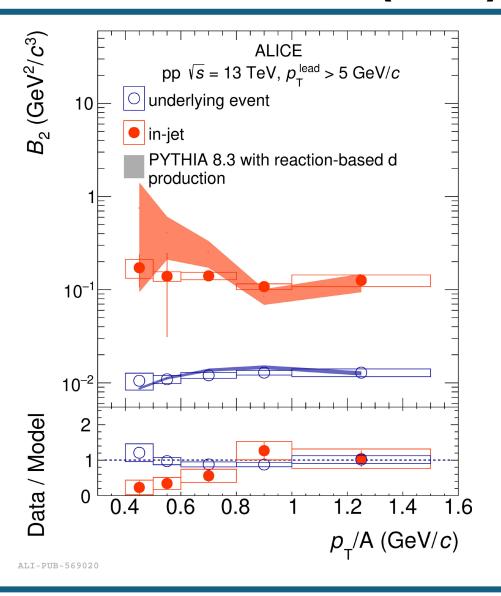


Comparison with data

- Most of the current prediction of light (anti)nuclei production uses or thermal models (e.g. Thermal FIST, THERMUS etc) or advanced coalescence predictions implemented with afterburners using the Wigner formalism
- Still, a couple of recent results employ the «pure» PYTHIA 8.3 nuclei production without any afterburner
- Is the model capable of reproduce these experimental results?



Data vs Model - (Anti)deuteron in and out of jets

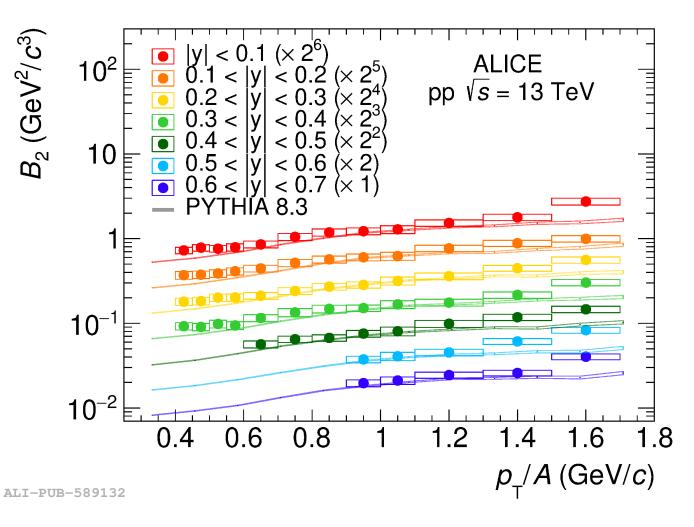


See Chiara's talk for more details!

- The model is able to reproduce the large gap between the jet and the underlying event
- Good agreement vs p_T/A in the underlying event
- The model overestimates the deuteron coalescence parameter at low p_T/A

ALICE Collaboration, Phys. Rev. Lett. 131 (2023) 042301

Data vs Model – Antideuteron rapidity dependence

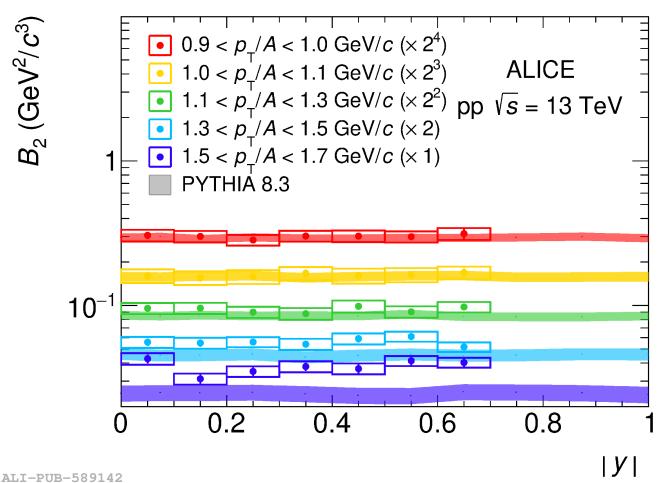


See Mario's talk for more details!

• The rising trend of the coalescence parameter as a function of p_T/A is reproduced by the model

ALICE Collaboration, Phys. Lett. B 860 (2025) 139191

Data vs Model – Antideuteron rapidity dependence



See Mario's talk for more details!

- The rising trend of the coalescence parameter as a function of p_T/A is reproduced by the model
- For selected intervals of p_T /A the coalescence parameter is studied as a function of rapidity.
- The model reproduce the measured trend, mostly with an agreement within 2σ .
- Some deviations beyond the 2σ level are present at high p_T/A (> 1.5 GeV/c)

ALICE Collaboration, Phys. Lett. B 860 (2025) 139191

Model predictions – deuteron balance function

- Not only comparison with data, but prediction of new observables are investigated using PYTHIA 8.3
- Balance function are a sensitive probe for the hadronization:
 - They probe the quantum number balance
 - At LHC B \approx 0, hence a deuteron (B = 2) must be balanced by B = -2 baryons
 - If the deuteron is produced by coalescence, its balance is equal to the one of proton and neutron
 - If the deuteron is produced directly in the collision the baryon number must be conserved globally
- Is then possible to study the balance function of the deuteron with proton, Λ and pions:

$$B_{d\bar{X}}(\Delta y, \Delta \varphi) = Y_{d\bar{X}}(\Delta y, \Delta \varphi) - Y_{dX}(\Delta y, \Delta \varphi)$$

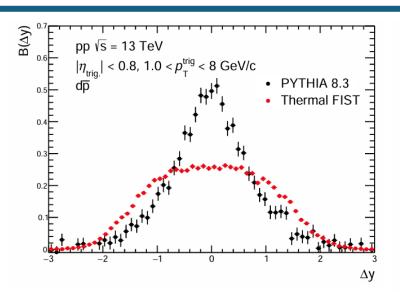
$$Y(\Delta y, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N_{pairs}}{d\Delta y \, d\Delta \varphi}$$

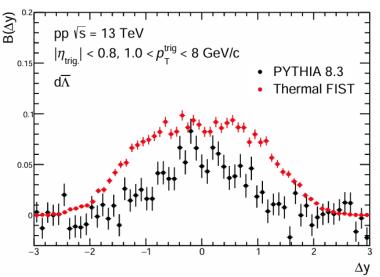
$$\Delta y = y_{assoc} - y_{trig} \qquad \Delta \varphi = \varphi_{assoc} - \varphi_{trig}$$

S. Tripathy, P. Christiansen, arXiv:2509.03195 [hep-ph]

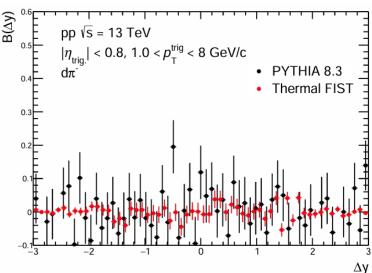
Model predictions – deuteron balance function

- Is it possible to estimate the balance function for all the cases
- Different shape for the one predicted by PYTHIA and THERMAL FIST due to the instrinsic differences of the models





- More observations can be made comparing these balance functions with the one triggered by protons
- But still, no experimental data available for these observables



S. Tripathy, P. Christiansen, arXiv:2509.03195 [hep-ph]

Not a summary, but a starting point for discussion...

- The reaction-based nuclear production implemented in PYTHIA is a valid alternative of the coalescence afterburners?
- What improvement can be done?
 - More precise measurement of the cross sections?
 - New data to fit for the missing channel that are approximated?
 - Consider all the possible corrections (Coulomb, isospin breaking, etc..)?
- Only (anti)deuteron production is implemented:
 - Heavier nuclei to consider?
 - 3He to be considered as a two body (d + p) or a three body (p + p + n) case?
 - Which are the dominant processes?
- Relatively few comparison with the experimental data: does this model work properly for different physical cases? What observable can we use to «stress» the model?

