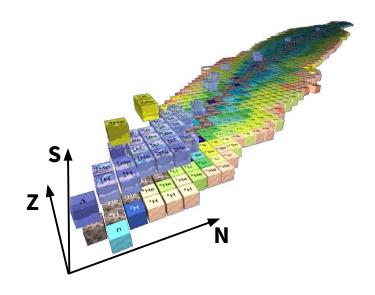
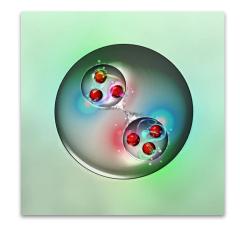


Recent Results in Hypernuclear Physics

Ramona Lea
University of Brescia
ramona.lea@cern.ch

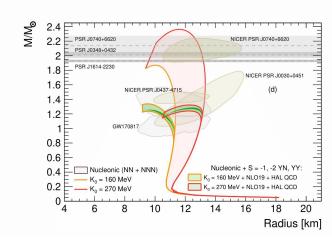

5th Workshop on Anti-Matter, Hyper-Matter and Exotica Production

• A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more strange quarks - Λ , Σ , Ξ , Ω) in addition to nucleons



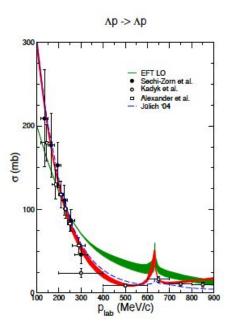
First hypernuclear event observed in a nuclear emulsion by Marian Danysz and Jerzy Pniewski in 1952

- A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more strange quarks Λ , Σ , Ξ , Ω) in addition to nucleons
- Main goals of hypernuclear physics:
 - Extension of nuclear chart to a third dimension



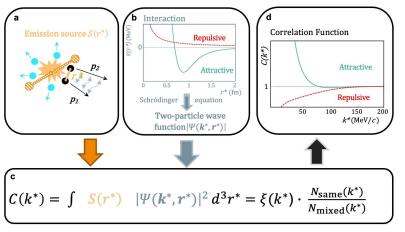
- A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more strange quarks Λ , Σ , Ξ , Ω) in addition to nucleons
- Main goals of hypernuclear physics:
 - Extension of nuclear chart to a third dimension
 - Study the structure of multi-strange systems

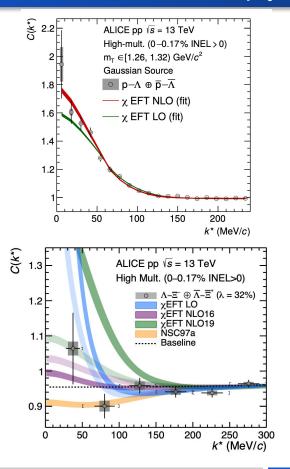
di-Omega dibaryon. Image credit: Keiko Murano.


- A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more strange quarks Λ , Σ , Ξ , Ω) in addition to nucleons
- Main goals of hypernuclear physics:
 - Extension of nuclear chart to a third dimension
 - Study the structure of multi-strange systems
 - Study nucleon-hyperon (N-Y) interaction:
 - Production of exotic bound states
 - Determination of the equation of state
 - Application to neutron stars:
 - Determination of NS properties
 - Hyperon puzzle: the problem of the strong softening of the EoS induced by the presence of hyperons which, although being energetically favorable, leads to values of M^{max} incompatible with the recent observations of 2M_☉ millisecond pulsars, is still an open issue

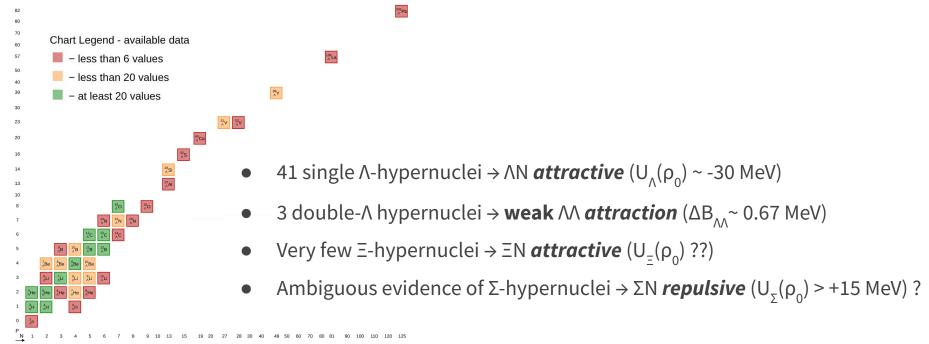
I. Vidaña et al., Eur.Phys.J.A 61 (2025) 3, 59

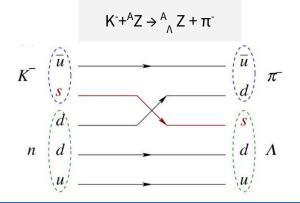
YN and YY interaction


- The main ingredients to understand the role of hyperons in NSs are the YN &YY interactions. But how much do we know to constrain them?
- Unfortunately, much less than in the pure nucleonic sector

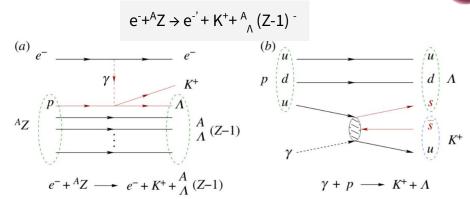

- Very few YN scattering data due to short lifetime of hyperons & low intensity beam fluxes
 - \circ ΛN and ΣN: < 50 data points
 - EN very few events
- No YY scattering data exists

NN: > 5000 data for $E_{lab} < 350$ MeV

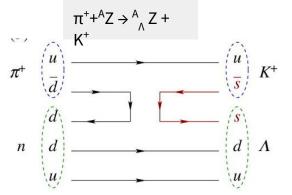

- New constraints on YN, YY, and YNN interactions obtained beyond traditional scattering data
 - Femtoscopy technique measures correlations of YN pairs and YNN triads in p-p and p-Pb collisions at the LHC (ALICE Collaboration)

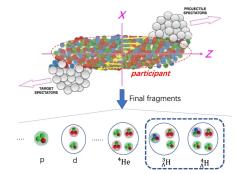


 Alternative and complementary information can be obtained from the study of hypernuclei with the goal of relating hypernuclear observables with the underlying bare YN & YY interactions



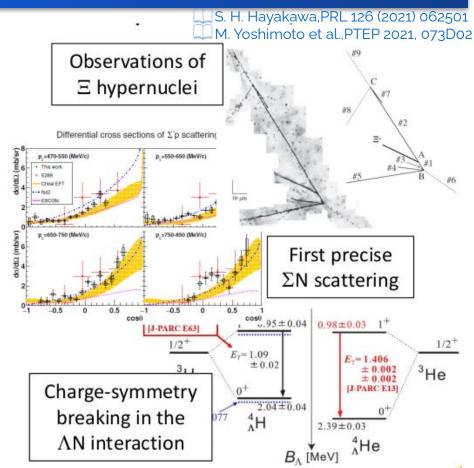
Production of single-\Lambda hypernuclei

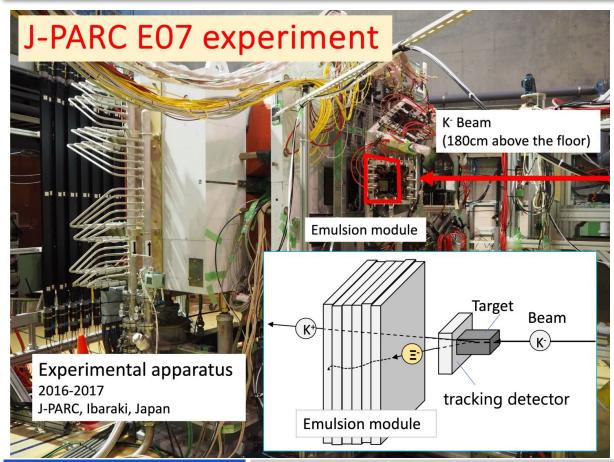

Strangeness exchange (BNL, KEK, JPARC)


Electroproduction (JLAB, MAMI-C)

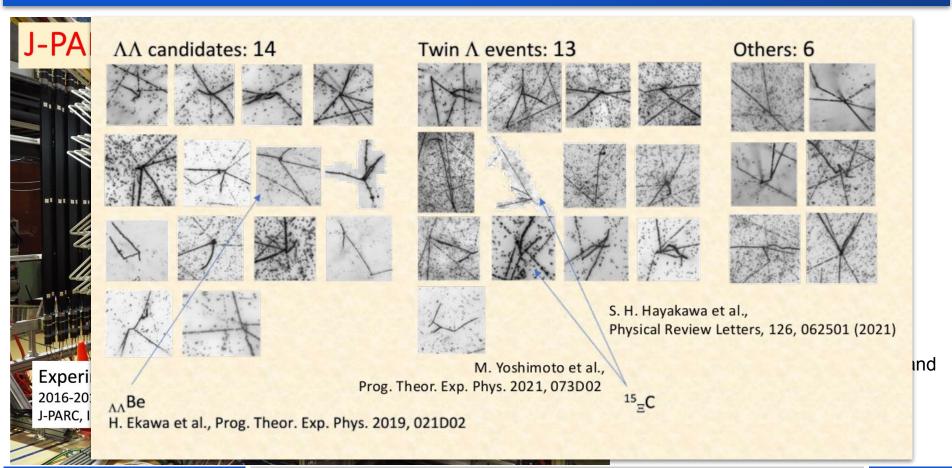
Associate production (BNL, KEK, GSI)

Hypernuclei production in relativistic heavy ion collisions (GSI,RHIC,LHC)

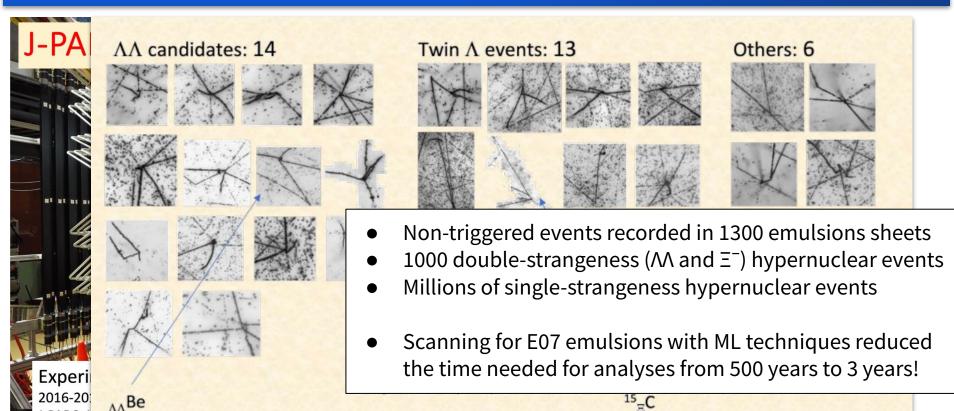



Hypernuclear physics at J-PARC

A lot of progress in hypernuclear research

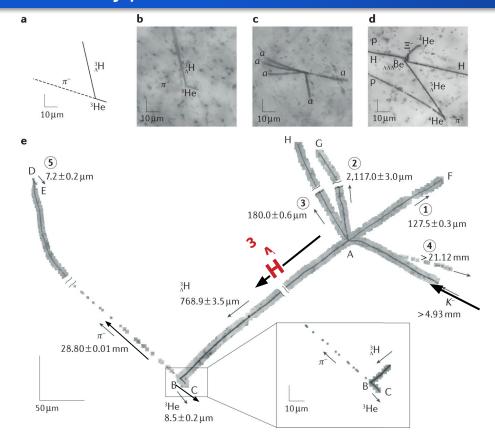

- High-resolution spectroscopic study of S=-2 hypernuclei
 - O Access to Ξ N (S=-2) interaction and deepened knowledge of Λ N, Σ N (S=-1) interactions
- Study of charge-symmetry breaking in the ΛN interaction
- Precise determination of ΣN scattering parameters

J-PARC E07 experiment


J-PARC E07 experiment

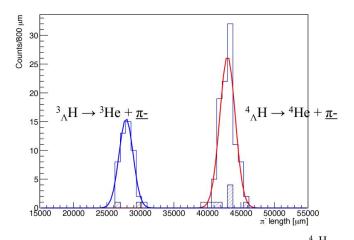
13/11/2025

J-PARC E07 experiment

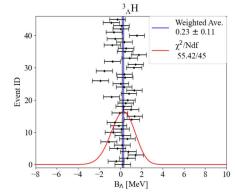

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

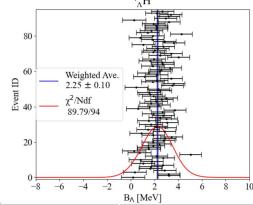
More details on **Christophe**'s slides

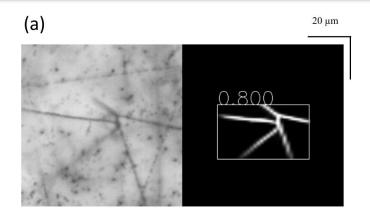
-PARC,


Discovery of the first hypertriton event in E07 emulsions

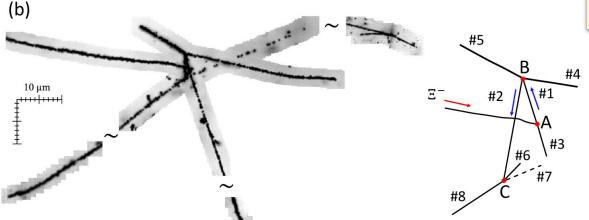
Takehiko R. Saito et al., Nature Reviews Physics, 803-813 (2021)

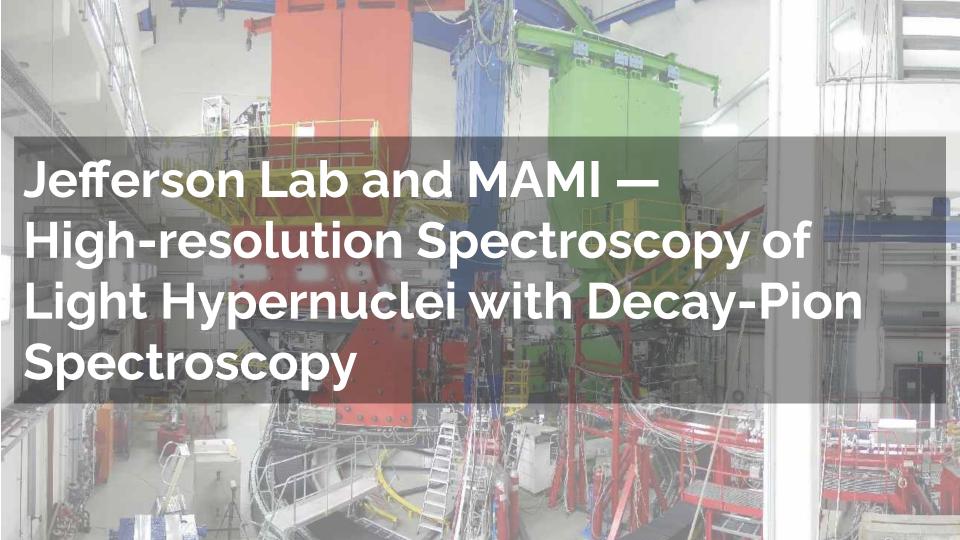

13/11/2025


³H and ⁴H binding energy

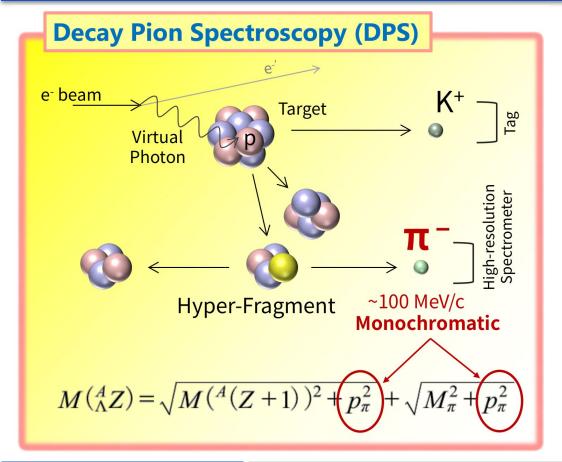

- \circ Theory: 0.13 ± 0.05 MeV
- STAR (2020): 0.41 ± 0.12 ± 0.11 MeV
- \rightarrow ALICE (2023): 0.102 ± 0.063 ± 0.067 MeV
- E07 (2025): 0.23 ± 0.11 MeV

- G. Bohm et al., NPB 4 (1968) 511
 M. Juric et al., NPB 52 (1973) 1
- M. Julic et al., NPB 52 (19/3/1
- STAR Collaboration, Nat. Phys. 16 (2020) 409
- ALICE Collaboration, Phys. Rev. Lett. 131, 102302 (2023)
- A. Kasagi et al., PTEP 2025, 8 (2025)


Discovery of double-∧ hypernucleus: ⅓B


- ¹³ MB: Uniquely identified
 - 2nd case in the history after <u>E176</u> event

$$B_{\Lambda\Lambda} = 25.57 \pm 1.18 \pm 0.07 \text{ MeV}$$


$$\Delta B_{\Lambda\Lambda} = 2.83 \pm 1.18 \pm 0.14 \text{ MeV}$$

Yan He, et al., arXiv:2505.05802

Hypernuclei detection via π spectroscopy

- Hypernuclear Mass Spectroscopy with high-resolution,
 high-precision, high-accuracy
- Principle:
 - Measurement of monochromatic decay pion from hypernuclei stopped in the target emitting pion in two-body decay
 (e.g. ⁴_ΛH → ⁴He + π⁻)
 - Identification from known (or expected) B_Λ
 - Tagging K⁺ for background suppression from non-strangeness production

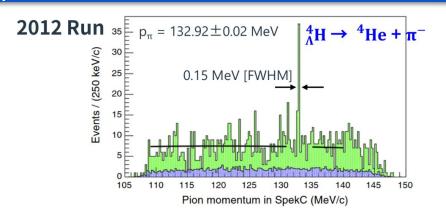
Possible hypernuclei & Expected Pion Momenta

- Specific decay pion momentum each hypernucleus
- Well known daughter particle masses
- Precise pion momentum → Precise hypernuclear ground-state mass

Example,
$${}^4_{\Lambda}\text{H} \rightarrow {}^4\text{He} + \pi^-$$

$$M({}^A_{\Lambda}Z) = \sqrt{M({}^A(Z+1))^2 + p_{\pi}^2} + \sqrt{M_{\pi}^2 + p_{\pi}^2}$$

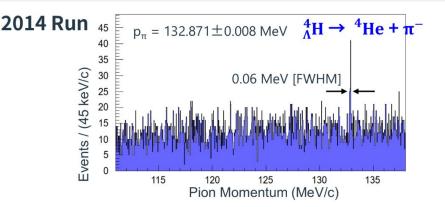
$$M(\alpha) = 3727.3794118(11) \text{ MeV/c}^2$$

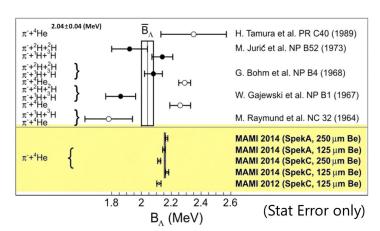

$$M(\pi) = 139.57039(18) \text{ MeV/c}^2$$

$$p(\pi) = 133.03(6) \text{ MeV/c}$$

$$M({}^4_{\Lambda}\text{H}) = 3922.56(4) \text{ MeV/c}^2$$

Hypernuclei	Decay mode	p_{π^-} (MeV/c)	comments		=
³ H	$^{3}\text{He} + \pi^{-}$	114.37	Comments	+ + +	^
4 H	$^{4}\text{He} + \pi^{-}$	133.03		$ \ \ $	
He	$^{4}\text{Li} + \pi^{-}$	98.17	Impossible 2-body decay	$ \ \ $	
-5 He	$5Li + \pi^-$	99.26	Impossible 2-body decay	$ \ \ $	
6 H	6 He + π^{-}	135.27	impossione 2 dealy areas	$ \ \ $	
He	$^{6}\text{Li} + \pi^{-}$	108.48		$ \ \ $	
Li	$^{6}\text{Be} + \pi^{-}$		No B _Λ data, above Sp	Ш	•
He	$^{7}\text{Li} + \pi^{-}$	115.10	A J		¹ Li target
⁷ Li	$^{7}\text{Be} + \pi^{-}$	108.11		Ш	Li taiget
- ABe	$^{7}\text{C} + \pi^{-}$	95.90	Impossible 2-body decay	$ \ \ $	
8 He	$^{8}\text{Li} + \pi^{-}$	116.47		$ \ \ $	
½ Li	$^{8}\text{Be} + \pi^{-}$	124.20		$ \ \ $	
8 Be	$^{8}{ m B} + \pi^{-}$	97.19	No 8B(g.s) decay		00
^Li	$^{9}\text{Be} + \pi^{-}$	121.31		$ \ \ $	⁹ Be target
9 Be	$^{9}B + \pi^{-}$	96.98		П.	
³ ⁄ _∆ B	$^{9}C + \pi^{-}$	96.82		Ш	
¹⁰ Li	$^{10}{ m Be} + \pi^-$	-	No B_{Λ} data	Ш	
foBe	$^{10}{ m B} + \pi^-$	104.41	11		_
$^{10}_{\Lambda} B$	$^{10}\text{C} + \pi^{-}$	100.49		Ш	
$^{11}_{\Lambda}\mathbf{B}$	$^{11}C + \pi^{-}$	86.54			20.
$^{\Lambda}_{\Lambda}^{\mathbf{B}}$	$^{12}\text{C} + \pi^{-}$	115.87			² C target
$\frac{\Lambda}{12}$ C	$^{12}N + \pi^{-}$	91.48	No ¹² N(g.s) decay		
$^{13}_{\Lambda}$ C	$^{13}N + \pi^{-}$	92.27			
$^{\Lambda_4}_{\Lambda}C$	$^{14}N + \pi^{-}$	101.20			
$^{14}_{\Lambda}N$	$^{14}O + \pi^{-}$	-	No B_{Λ} data		
$^{15}_{\Lambda}N$	$^{15}O + \pi^{-}$	98.40		16.	2.1
14N 15N 16N 16O	$^{16}O + \pi^{-}$	106.23		100	O target
^16O	$^{16}\text{F} + \pi^{-}$	86.54			_

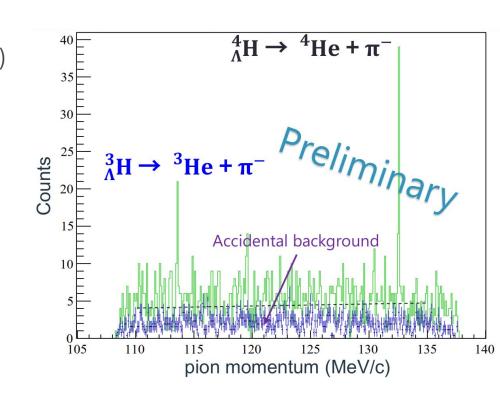

4 _^H in DPS at MAMI



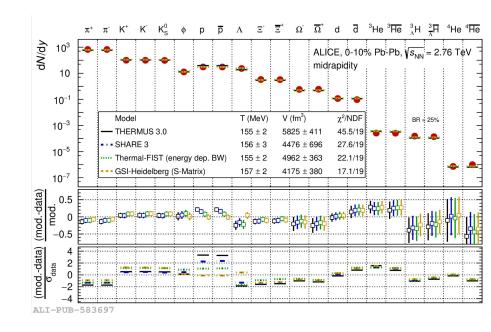
- Hypernuclear production with ⁹Be target
- Two-body decay peak from ⁴_^H
- Excellent peak resolution thanks to high-resolution spectrometer & thin target

$$B_{\Lambda} (^{4}_{\Lambda}H)(MAMI 2012) = 2.12 \pm 0.01 \pm 0.09 (MeV)$$

 $B_{\Lambda} (^{4}_{\Lambda}H)(MAMI 2014) = 2.157 \pm 0.005 \pm 0.077 (MeV)$

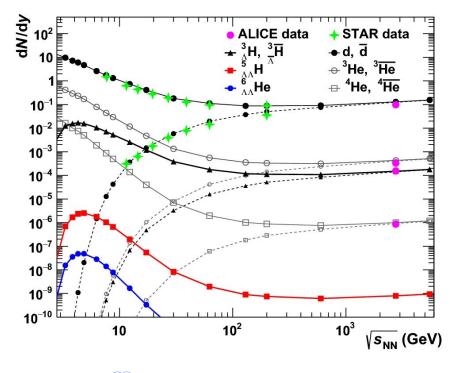

A1 Collaboration PRL 114 (2015) 232501
A1 Collaboration NPA 954 (2016) 149

Latest results of hypertriton data (MAMI)


- Subsequence exp. was done in 2022:
 - Different target (Be → Li 2.7 g/cm²)
- Finding two peaks on pion spectrum
 - $\circ \quad {}^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He} + \pi^{-} (\sim 133 \text{ MeV/c})$
 - $\circ \quad {}^{3}_{\Lambda}\text{H} \rightarrow {}^{3}\text{He} + \pi^{-} (\sim 114 \text{ MeV/c})$
- Reliable peak resolution
 - FWHM ~ 100 keV/c
- Statistical error:
 - ~ 10 keV/c
- Pion Yield:
 - $\circ {}^{4}_{\Lambda}H: {}^{3}_{\Lambda}H = 3:1$

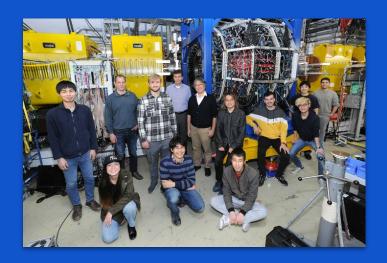
Results from heavy ion collisions

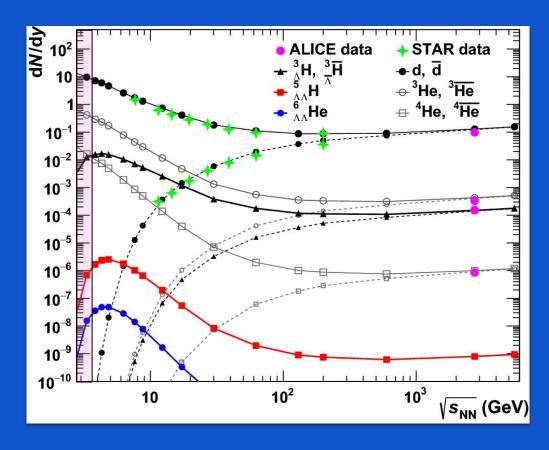
Production models


- Statistical hadronization models (SHMs)
 - describe the yields of light- flavoured hadrons by requiring thermal and hadron-chemical equilibrium
 - Parameters: (T, V, μ_B)
 - light (anti)(hyper)**nuclei** are treated as **point-like objects**

ALICE Collaboration Eur. Phys. J. C 84 (2024) 813

Production models: Statistical hadronization models

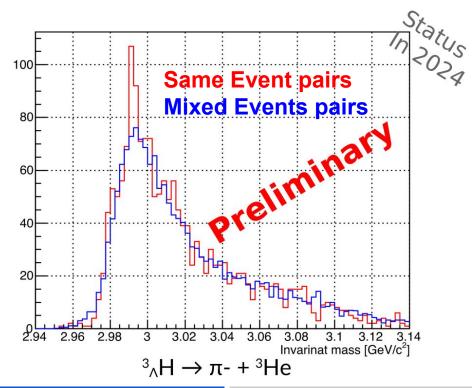

- Statistical hadronization models (SHMs)
 - describe the yields of light- flavoured hadrons by requiring thermal and hadron-chemical equilibrium
 - Parameters: (T, V, μ_B)
 - light (anti)(hyper)nuclei are treated as point-like objects
- Internal structure of hypernuclei plays no role
 - The heavier it is, the harder it is to produce
 - The strong enhancement at low energies, can be attributed to an interplay of the temperature dependence, baryochemical potential and canonical effects



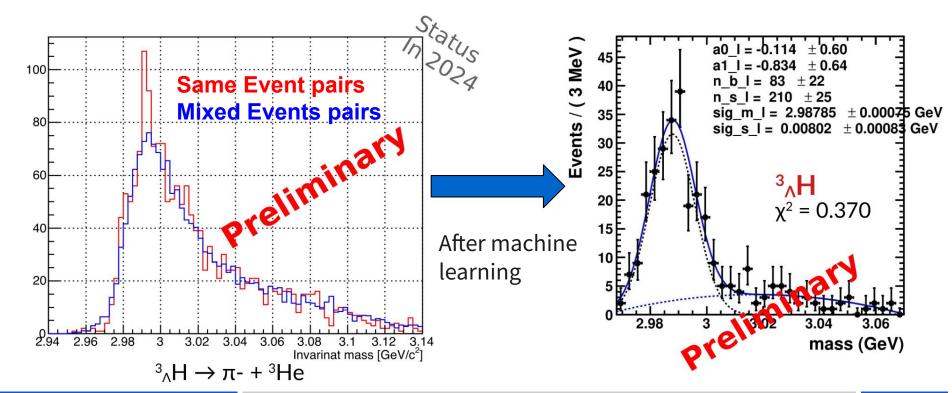
B. Dönigus, Eur. Phys. J. A (2020) 56:280

A. Andronic et al, PLB 697 (2011)203

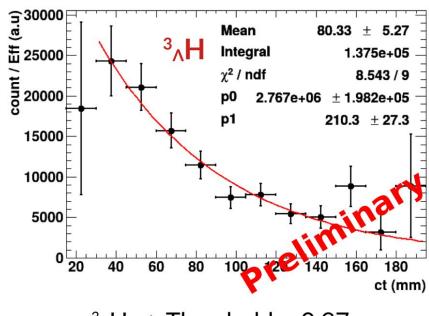
WASA-FRS HypHI (GSI)



More details on Christophe's slides

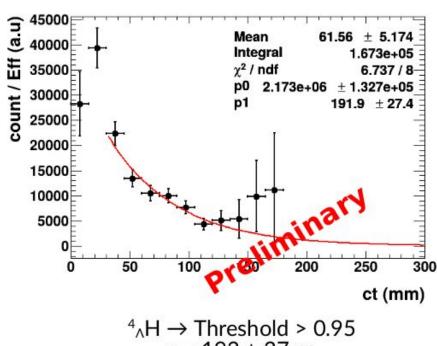

Light hypernuclei identification

• Fixed target, Reaction: ${}^{6}\text{Li} + {}^{12}\text{C} @ 1.96 \text{ AGeV or } \sqrt{s_{NN}} = 2.7 \text{ GeV}$

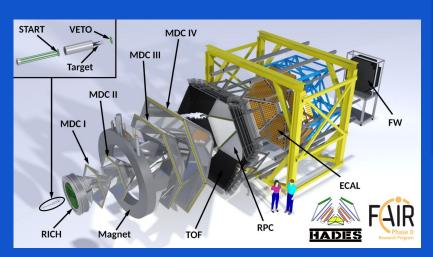


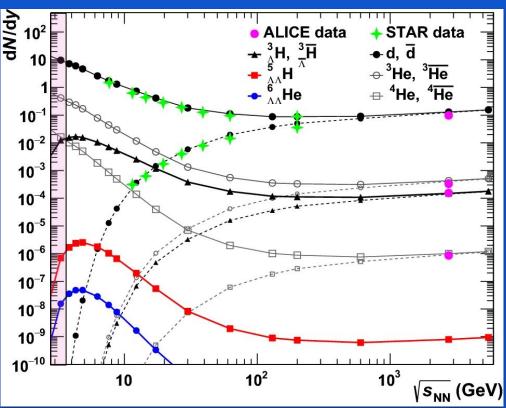
Light hypernuclei identification

• Fixed target, Reaction: ${}^{6}\text{Li} + {}^{12}\text{C} @ 1.96 \text{ AGeV or } \sqrt{s_{NN}} = 2.7 \text{ GeV}$



Light hypernuclei lifetime determinations


 3 _AH \rightarrow Threshold > 0.97

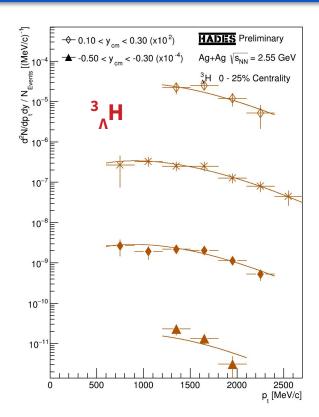

$$\tau = 210 \pm 27 \text{ ps}$$

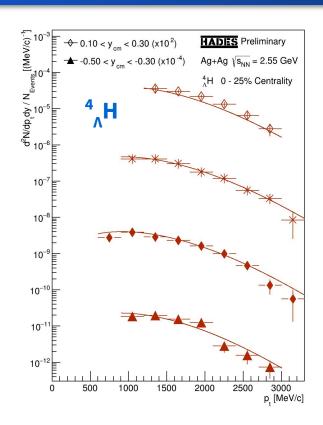
4
_ΛH → Threshold > 0.95
 $\tau = 192 \pm 27 \text{ ps}$


HADES EXPERIMENT (GSI)



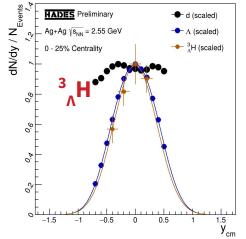
Hypernuclei from Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

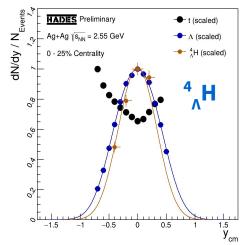

- Significant signals in the two-body-decay channels
- Three-body-decay channels more challenging due to increased combinatorial background
- Multi-differential analysis of Hypernuclei production possible



13/11/2025

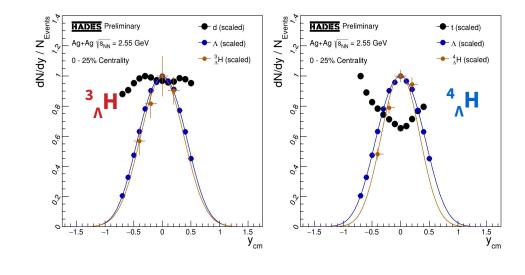
Light hypernuclei production

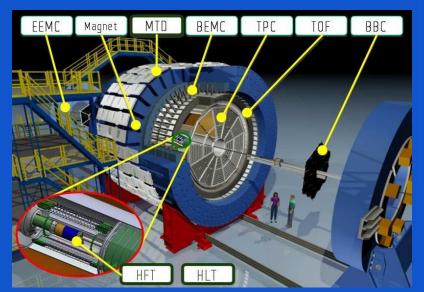


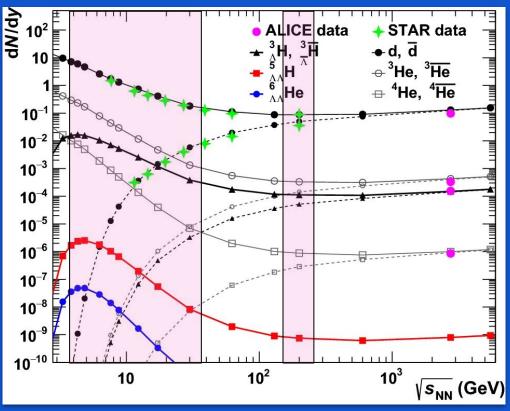


Production as a function of transverse momentum and rapidity

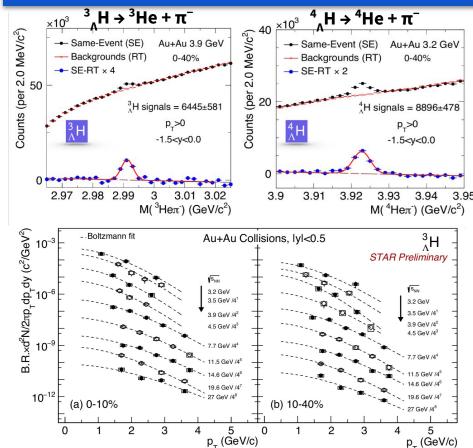
Hypernuclei production mechanism

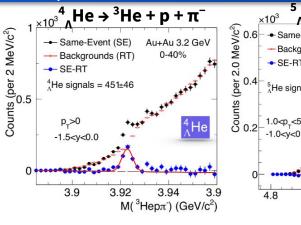

- Compare rapidity distributions of light nuclei, hyperons and hypernuclei
- Rapidity distributions of light nuclei (d, t) have a "coalescence-like" behavior
- Rapidity distributions of ∧ have a "thermal-like" behavior
- Rapidity distributions of hypernuclei have similar shape as the ones of ∧

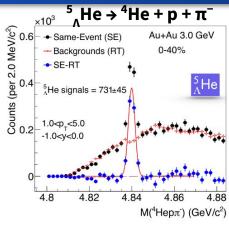

Hypernuclei production mechanism


- Compare rapidity distributions of light nuclei, hyperons and hypernuclei
- Rapidity distributions of light nuclei (d, t) have a "coalescence-like" behavior
- Rapidity distributions of ∧ have a "thermal-like" behavior
- Rapidity distributions of hypernuclei have similar shape as the ones of ∧
- Hypernuclei produced via coalescence d + Λ → ³_ΛH, t + Λ → ⁴_ΛH would be influenced by rapidity distributions of both d/t and Λ inheriting "coalescence-like" and "thermal-like" features

 More narrow rapidity distributions of hypernuclei hint towards "thermal-like" effects to be dominant, but statistical uncertainties are still large

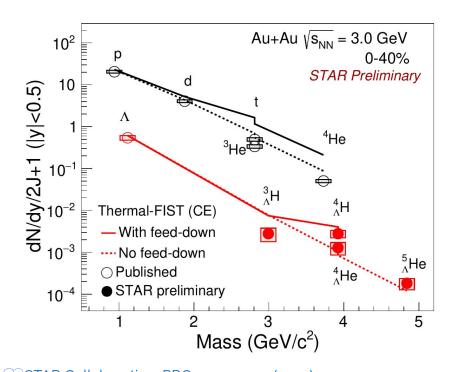

STAR experiment (RHIC)





More details on Yhuan's slides

Hypernuclei reconstruction and $p_{\scriptscriptstyle T}$ -spectra



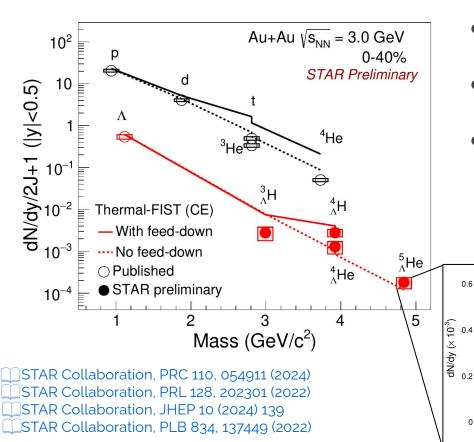
- Large production of hypernuclei with A = 2,4, and 5
- Multi-differential analysis as a function of p_T , energy and rapidity

Particle yield comparison with Thermal model at 3 GeV

- Thermal model predicts approximate exponential dependence of yields/(2J+1) vs A
- Light nuclei overestimated by thermal model with feed-down from unstable nuclei
- Model overestimate ⁴_ΛH and ⁴_ΛHe after including feed-down from excited states

$${}^{4}_{\Lambda}\text{H}^{\star} (1^{+}) \rightarrow {}^{4}_{\Lambda}\text{H} (0^{+}) + \gamma$$
 ${}^{4}_{\Lambda}\text{He}^{\star}(1^{+}) \rightarrow {}^{4}_{\Lambda}\text{He} (0^{+}) + \gamma$

STAR Collaboration, PRC 110, 054911 (2024)


STAR Collaboration, PRL 128, 202301 (2022)

STAR Collaboration, JHEP 10 (2024) 139

13/11/2025

STAR Collaboration, PLB 834, 137449 (2022)

Particle yield comparison with Thermal model at 3 GeV

- Thermal model predicts approximate exponential dependence of yields/(2J+1) vs A
- Light nuclei overestimated by thermal model with feed-down from unstable nuclei
- Model overestimate ⁴_ΛH and ⁴_ΛHe after including feed-down from excited states

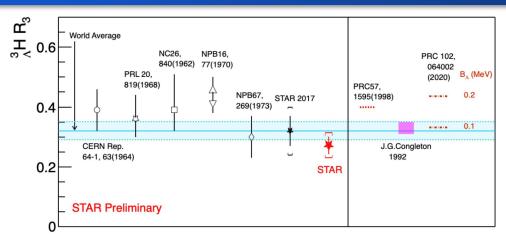
 $Au+Au\sqrt{s_{NN}} = 3.0 \text{ GeV}$

0-40%, mid-rapidity

$${}^{4}_{\Lambda}\text{H}^{\star} (1^{+}) \rightarrow {}^{4}_{\Lambda}\text{H} (0^{+}) + \gamma$$
 ${}^{4}_{\Lambda}\text{He}^{\star}(1^{+}) \rightarrow {}^{4}_{\Lambda}\text{He} (0^{+}) + \gamma$

First hint for the possible feed down from ${}^5_{\Sigma^0}He{\to}{}^5_{\Lambda}He{+}\gamma$

Mass (GeV/c2)

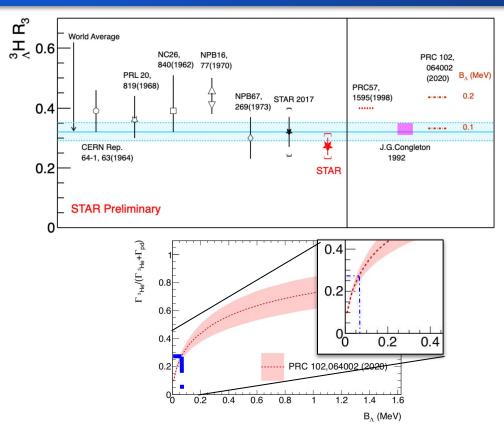

With 5He feed down

R₂ determination using STAR data

- Calculations propose that R₃
 (³ H) may be sensitive to B₁
- Β_Λ: Λ separation energy
- $B_{\Lambda}(^{3}_{\Lambda}H) = M(d) + M(\Lambda) M(^{3}_{\Lambda}H)$

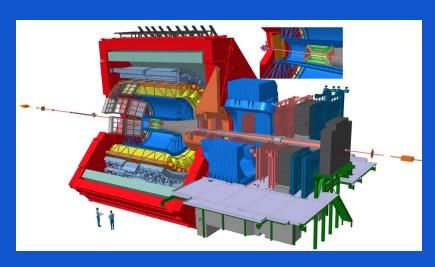
$$R_{3} = \frac{B. R. ({}^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-})}{B. R. ({}^{3}_{\Lambda}H \rightarrow p+d+\pi^{-})+ B. R. ({}^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-})}$$

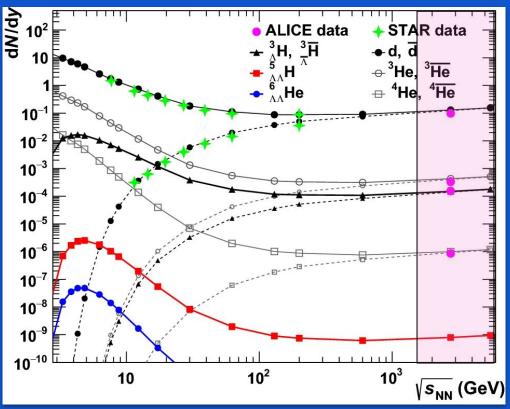
STAR: $R_3 = 0.272 \pm 0.030 \pm 0.042$



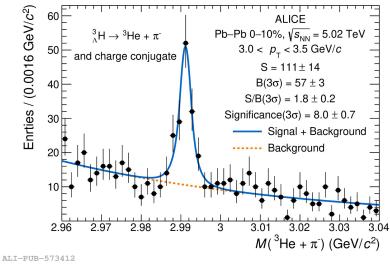
R₂ determination using STAR data

- Calculations propose that R₃
 (³ H) may be sensitive to B₁
- B_Λ: Λ separation energy
- $B_{\Lambda}(^{3}_{\Lambda}H) = M(d) + M(\Lambda) M(^{3}_{\Lambda}H)$

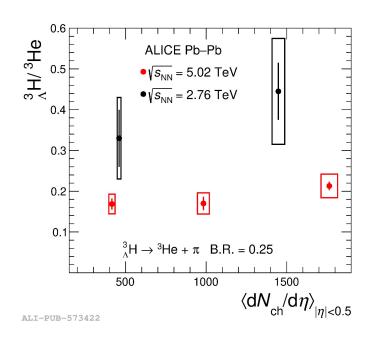

$$R_{3} = \frac{B. R. (^{3}_{\Lambda}H \rightarrow ^{3}He+\pi^{-})}{B. R. (^{3}_{\Lambda}H \rightarrow p+d+\pi^{-})+ B. R. (^{3}_{\Lambda}H \rightarrow ^{3}He+\pi^{-})}$$

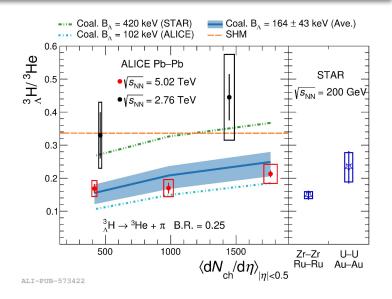

STAR: $R_2 = 0.272 \pm 0.030 \pm 0.042$

STAR new R_3 data favors small binding energy of $^3_{\Lambda}H$

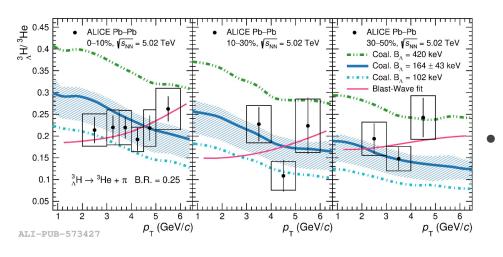

ALICE experiment (LHC)

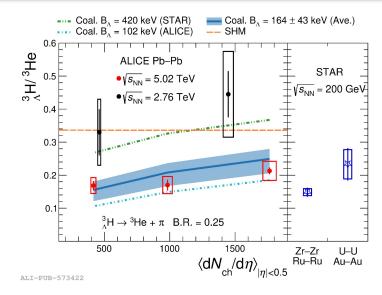
More details on Mario's slides


• $^{3}_{\Lambda}$ H has been measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV



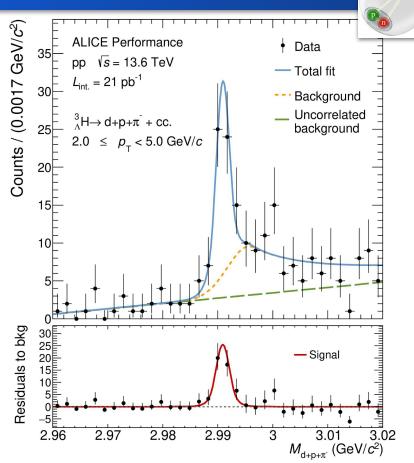
- $^{3}_{\Lambda}$ H has been measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV




ALICE Collaboration, PLB 860, 139066 (2025)

- $^{3}_{\Lambda}$ H has been measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV • More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
- ${}^{3}_{\Lambda}$ H/ 3 He shows good agreement with **coalescence**, assuming $B_{\Lambda} = 164 \pm 43 \text{ keV}$

- $^{3}_{\Lambda}$ H has been measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV • More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
- ${}^{3}_{\Lambda}$ H/ 3 He shows good agreement with **coalescence**, assuming $B_{\Lambda} = 164 \pm 43 \text{ keV}$

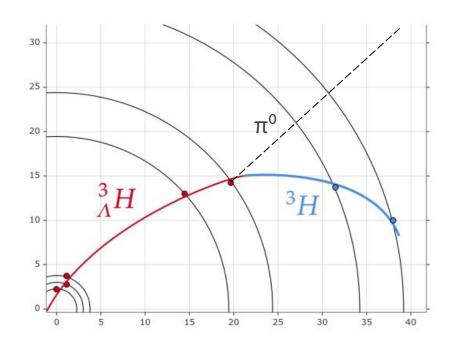

- p_{T} -differential measurement is also in agreement with **blast-wave** with common parameters with other nuclei
 - Large statistical uncertainties \rightarrow Ongoing p_{T} -differential analyses with Run 3 data are fundamental to disentangle the two models

ALICE Collaboration, PLB 860, 139066 (2025)

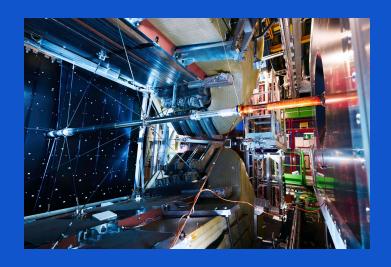
Ongoing measurements of ³ _^H

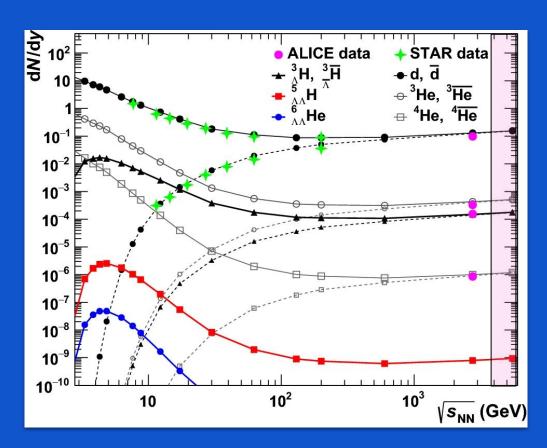
- ${}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$
 - Λ-d background modelled from data: correlated and uncorrelated background considered
 - Precision R₃ measurement underway

More details on **Carolina**'s slides

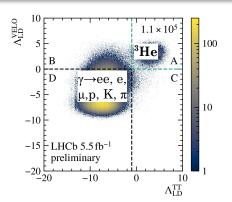


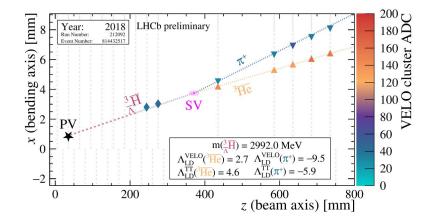
Ongoing measurements of ${}^{3}_{\Lambda}H$

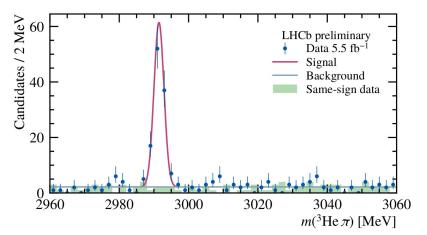



- $\bullet \quad {}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$
 - \(\Lambda\)-d background modelled from data:
 correlated and uncorrelated background
 considered
 - Precision R₃ measurement underway

- ${}^{3}_{\Lambda}H \rightarrow {}^{3}H + \pi^{0}$ decay
 - \circ Branching ratio never measured expected to follow ΔI rule
 - ³ H can be directly tracked into the ALICE innermost detector (ITS)

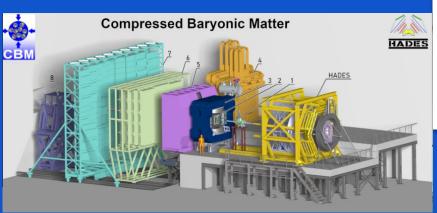

LHCb experiment (LHC)

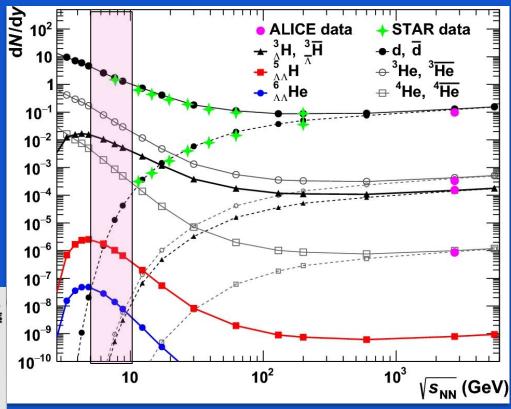




Hypernuclei in LHCb

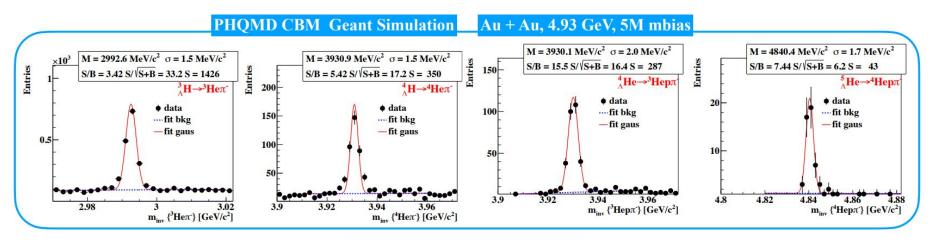
- LHCb observed the (anti-)hypertriton on Run 2 pp data: <u>link</u>
- $\sim 100 \text{ anti-}^{3}_{\Lambda} \text{H analysing 5.5 fb}^{-1}$
- Innovative methods for tagging nuclei
 - Allows for complementary measurements with ALICE in the forward region



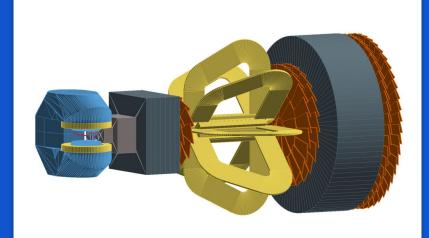


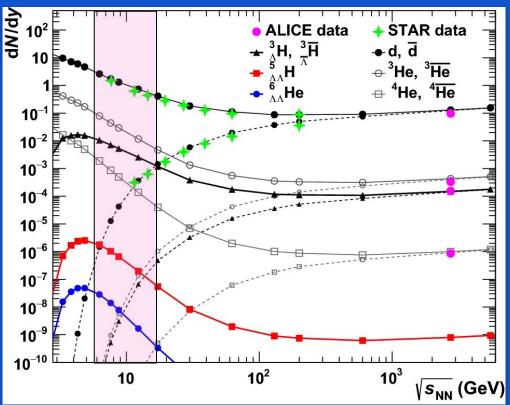
Future perspective

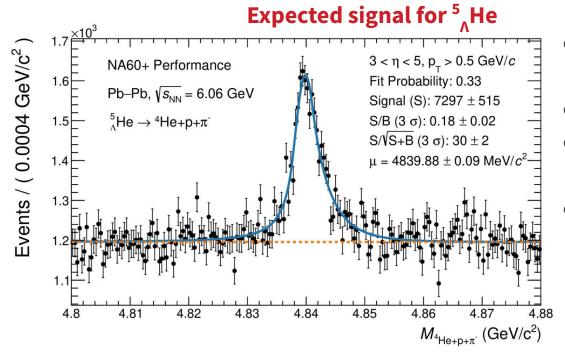
CBM (FAIR @ GSI)



More details on Viscol's slides

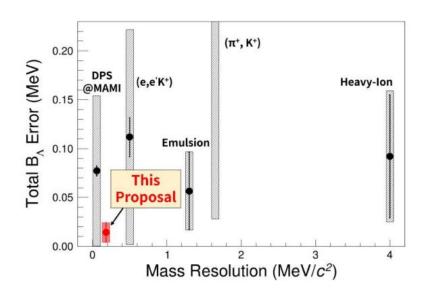

CBM

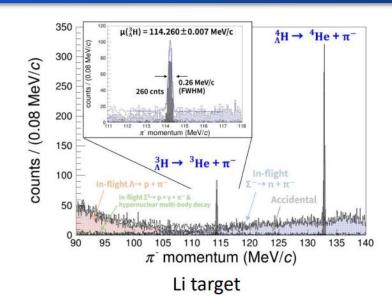

- Optimal beam energies for hypernuclei production
- Excellent vertexing and particle identification
- High interaction rates capability enabling raresignal studies, including double-A hypernuclei


Physics data taking by 2028!

NA 60+ (SPS)

NA 60+

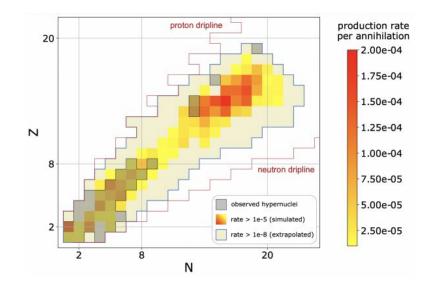

- Fixed-target experiment proposed at the CERN SPS
- Beam energy scan at 6-17 GeV
- Energy + rate combination is unique
 - Large (hyper)nuclei production
 - Identification in the tracker


- High precision measurement of the properties of Λ hypernuclei
- Possible discovery of light Ξ and Σ hypernuclei

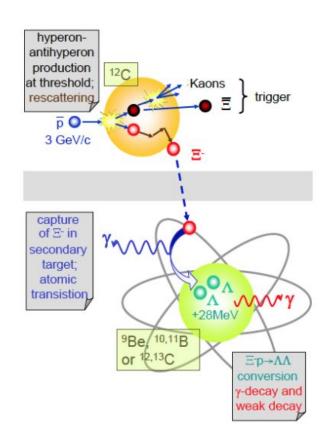
Data taking over 7 years from 2029

Hypernuclear program at JLab

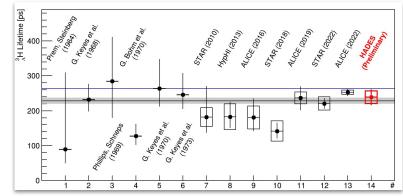
- Several experiments have been proposed (See <u>Guido</u>'s slide for more details)
- E12-20-013A/E12-15-008A
 - High resolution Decay Pion Spectroscopy (DPS)

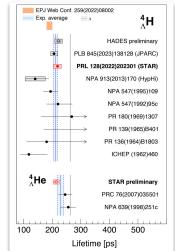


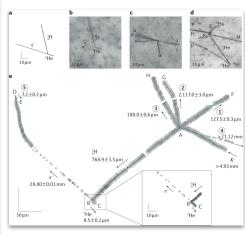
Expected resolution on B_{Λ} reduced by a factor ~ 10!


Other ways to produce and study hypernuclei

- Hypernuclei production from antiprotonic atoms: <u>HYPER</u> (Proposed to start by ~2030):
 - Antiproton capture (simulated with GiBUU and ABLA07) produces hypeHYPERrnuclei through surface annihilations and kaon-nucleon interactions
 - About 1% of annihilations result in hypernuclei formation, opening new opportunities to explore the hypernuclear landscape.

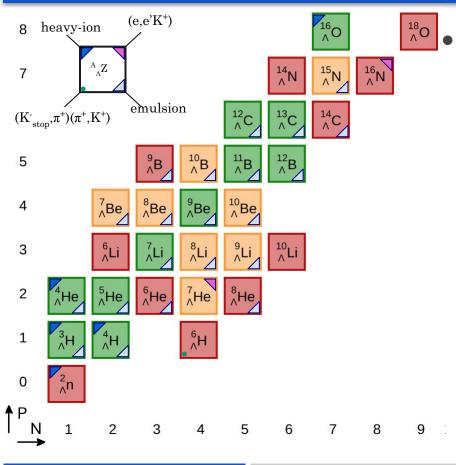

Other ways to produce and study hypernuclei


- Hypernuclei production from antiprotonic atoms: <u>HYPER</u> (Proposed to start by ~2030):
 - Antiproton capture (simulated with GiBUU and ABLA07) produces hypeHYPERrnuclei through surface annihilations and kaon-nucleon interactions
 - About 1% of annihilations result in hypernuclei formation, opening new opportunities to explore the hypernuclear landscape.
- High-energy-antiproton-induced production:
 - High-energy antiprotons (studied by the <u>PANDA</u> experiment at FAIR) are proposed as a powerful tool to produce hypernuclei through collisions and capture of strange baryons.
 - The PANDA program (phases 2–3, <u>beyond 2040</u>)
 aims to enable the production and spectroscopy of
 double-Λ hypernuclei.

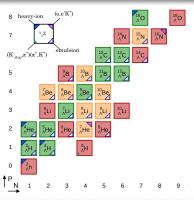


Conclusions

- Major advances in precision hypernuclear measurements (lifetimes, binding energies, new species)
- New discoveries: double-Λ and anti-hypernuclei observed at modern facilities
- Models improving, but further input needed to constrain YN / YY interactions
- Future experiments (CBM, NA60+, JLab, HYPER, PANDA) will expand the hypernuclear landscape and probe the hyperon puzzle

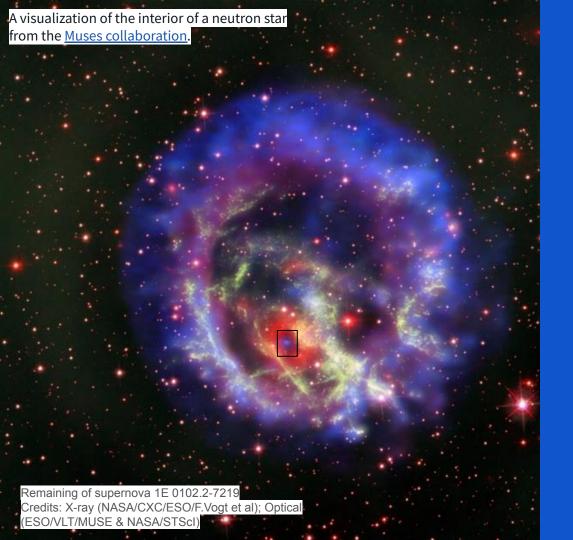


Backup slides

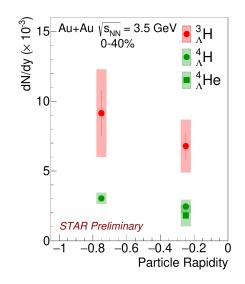

Production of single-\Lambda hypernuclei and limitations

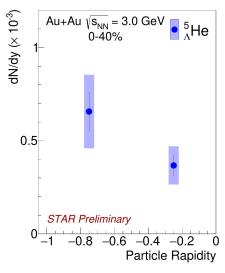
Challenges:

- low production rates, short lifetime (~200 ps)
- Missing mass and pion spectroscopy restricted to few hypernuclei
- Ultra-relativistic heavy-ion collision cannot reach more than A=4-5

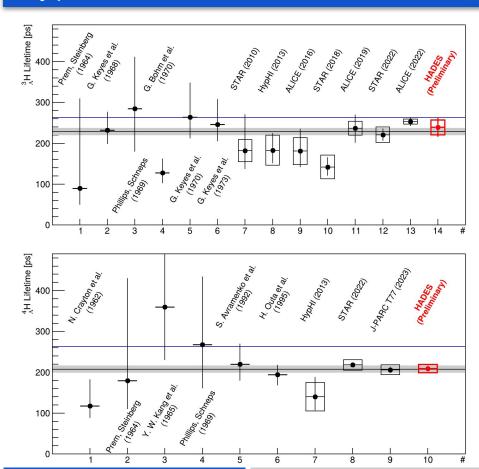

Production of single-\Lambda hypernuclei and limitations

Challenges:


- low production rates, short lifetime (~200 ps)
- Missing mass and pion spectroscopy restricted to few hypernuclei
- Ultra-relativistic heavy-ion collision cannot reach more than A=4-5

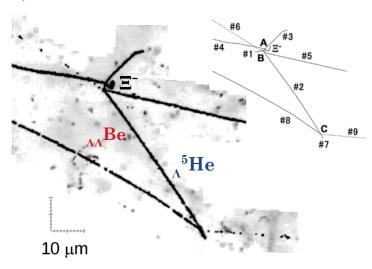

Production	Main lab(s)	Hypernuclei	Excited	Ground state	
	00.07	285.022 	states	binding	lifetime
In-flight (K^-, π^-)	CERN (90s), BNL	$Z_Y = Z_i - 1$	1	1	X
Stopped (K^-, π^-)	CERN (70s), LNF-	$Z_Y = Z_i - 1$	1	1	X
300 00	INFN, KEK, BNL				
(π^+, K^+)	KEK, BNL	$(A,Z)_Y = (A,Z)_i$	1	/	X
$(e, e'K^+)$	JLAB, Mainz	$Z_Y = Z_i - 1$			
Heavy-ion (GeV)	GSI/FAIR, HIAF	Potentially many	X	✓ 3 MeV	✓ Sys.
Relativistic HI	RHIC, ALICE (CERN)	$A_Y \leq 4$	X	/	✓
(100 GeV - 13 TeV)					Sys. $\sim 10 \text{ ps}$
Λ,Ξ from in-flight \bar{p}	PANDA (FAIR)	$(A,Z)_Y = (A,Z)_i$	1	X	X
Stopped \bar{p}	HYPER (CERN)	Potentially many	1	1	✓≤ 40 ps

Neutron Stars


Hypernuclei production as a function of rapidity

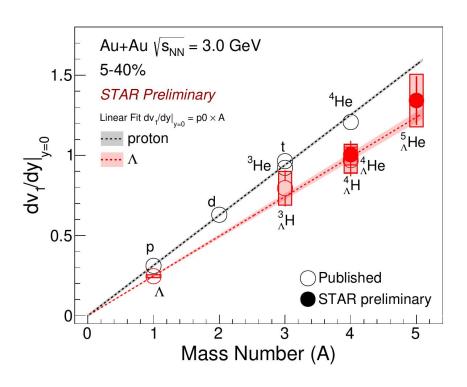
- Significant hypenuclei production at target rapidity, more pronounced for heavier hypernuclei
- Spectator matter matters at target rapidity

Hypernuclei Lifetimes

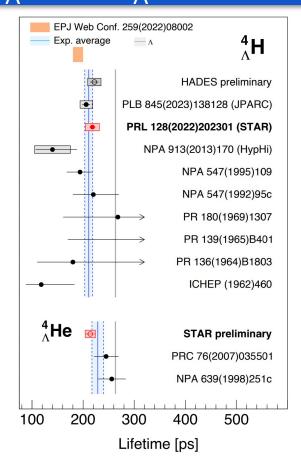


- ³ H and ⁴ H Lifetime measurement contribute to world data on hypernuclei lifetimes
- Lifetime of ${}^{3}_{\Lambda}H = (239 \pm 23 \pm 18)$ ps compatible with free Λ
- Lifetime of ${}^{4}_{\Lambda}H = (209 \pm 7 \pm 10)$ ps compatible with earlier measurements
- Extensive uncertainty evaluation performed

Production of double-∧ hypernuclei


- Best systems to investigate the properties of S = - 2 baryon-baryon interaction
- Contrary to single-∧ hypernuclei they are produced in a two-step process:
 - Ξ production in process like
 - (K⁻,K⁺) reaction (BNL, KEK)
 - $K^- + p \rightarrow \Xi^- + K^+$
 - Proton-antiproton reaction (GSI/FAIR)
 - $p + \bar{p} \rightarrow \Xi^- + \Xi^+$
 - Ξ⁻ captured in an atomic orbit interacts with the nuclear core producing two Λ's
 - $\Xi^- + p \rightarrow \Lambda + \Lambda + 28.5 \text{ MeV}$

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02 (2019)


$$^{16}\mathrm{O} + \Xi^{-} \rightarrow (^{10}_{\Lambda\Lambda}\mathrm{Be}, \ ^{11}_{\Lambda\Lambda}\mathrm{Be}, \ ^{12}_{\Lambda\Lambda}\mathrm{Be}) + ^{4}\mathrm{He} + (t, \ d, \ p),$$

$$\hookrightarrow ^{5}_{\Lambda}\mathrm{He} + (p, d, t) + p + xn,$$

$$\hookrightarrow ^{4}\mathrm{He} + p + \pi^{-}.$$

Directed Flow at 3 GeV

- Light nuclei mid-rapidity v₁ slope increase linearly with atomic mass number A
- Hypernuclei v₁ slope systematically lower than light nuclei of similar A, and compatible with Λ atomic mass number scaling (Similarly to HADES results)

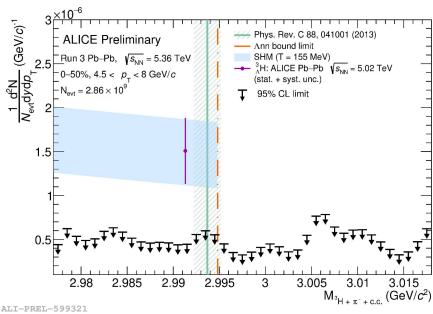
⁴_^H and ⁴_^He lifetimes


- STAR averaged results from $\sqrt{s_{NN}}$ = 3.2, 3.5, and 3 GeV:
 - \circ $\tau(_{\Lambda}^{4}\text{He}) = 12 \pm 10 \text{ (stat.)} \pm 10 \text{ (syst) ps}$
 - Most precise measurement of $\tau(^4_{\ \ }He)$

• $\tau(^4_{\Lambda}H)/\tau(^4_{\Lambda}He)=0.92\pm0.06$, consistent within 2.5 σ with theoretically estimated value 0.74 \pm 0.04 applying the isospin rule

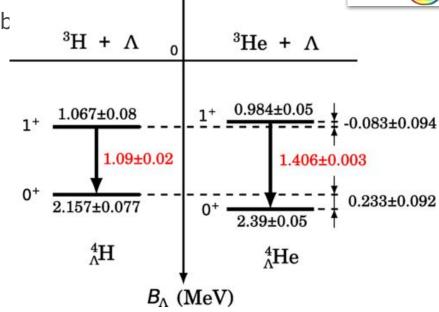
A. Gal, EPJ Web Conf., 259, 08002 (2022)

∧nn searches


- Excess observed in the t + π^- final state observed by HypHi Collaboration
- Ann not bound according to most of the theorist

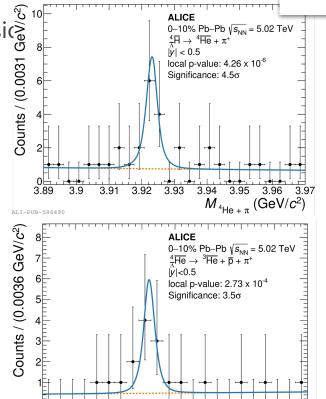
HypHI Collaboration, Phys. Rev. C 88, 041001 A Gal, H Garcilazo, Phys. Lett. B 736, 93-97 E. Hiyama et al. Phys. Rev. C 89, 061302

∧nn searches


- Excess observed in the t + π^- final state observed by HypHi Collaboration
- Ann not bound according to most of the theorist
- ALICE rules out the existence of a Λnn state stable under weak decay

HypHI Collaboration, Phys. Rev. C 88, 041001 A Gal, H Garcilazo, Phys. Lett. B 736, 93-97 E. Hiyama et al. Phys. Rev. C 89, 061302

Hypernuclei with A = 4


- SHM predicts hypernuclei with A = 4 in Pb-Pb
 - they are rare:
 - penalty factor for increasing A: ~ 300
 - suppression due to strangeness content
- Some factors may enhance the yield (x 4):
 - larger binding energy wrt A = 3
 - existence of excited states $\frac{\mathrm{dN}}{\mathrm{dy}} \propto 2J + 1$
 - spin degeneracy

M. Schäfer et al., PRC 106, L031001 (2022)

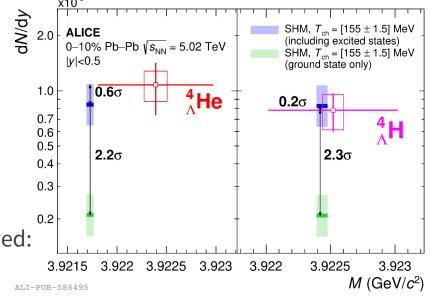
Hypernuclei with A = 4

- SHM predicts hypernuclei with A = 4 in Pb-Pb collisic $\frac{5}{8}$
 - they are rare:
 - penalty factor for increasing A: ~ 300
 - suppression due to strangeness content
- Some factors may enhance the yield (x 4):
 - larger binding energy wrt A = 3
 - existence of excited states
 - spin degeneracy
- In Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, ALICE has observed:
 - $\circ \quad {}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$
 - \circ ⁴ He \rightarrow ⁴He + p + π

3.92

3.93

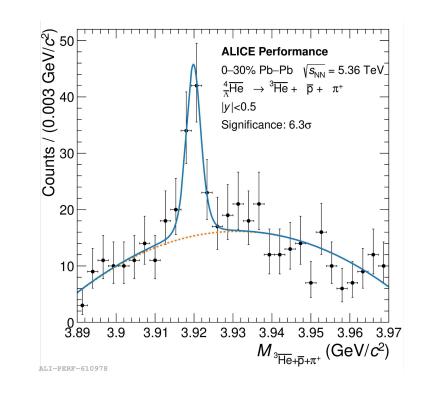
3.94


3.95 $M_{^{3}\text{He} + p + \pi} (\text{GeV}/c^{2})$

ALICE Collaboration, Phys. Rev. Lett. 134 (2025) 162301

Hypernuclei with A = 4

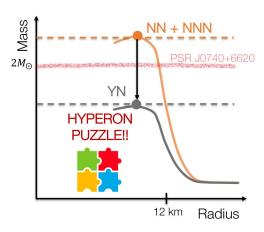
- SHM predicts hypernuclei with A = 4 in Pb-Pb collisions
 - o they are rare:
 - penalty factor for increasing A: ~ 300
 - suppression due to strangeness content
- Some factors may enhance the yield (x 4):
 - o larger binding energy wrt A = 3
 - existence of excited states
 - spin degeneracy
- In Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, ALICE has observed:
 - \circ 4 _AH \rightarrow 4 He + π ⁻
 - \circ 4 _{Λ}He \Rightarrow 4 He + p + π ⁻


- Yields in agreement with SHM prediction that includes feed-down from excited states
 - > SHM describes hypernuclei with A = 4 well

New results for A = 4 Hypernuclei

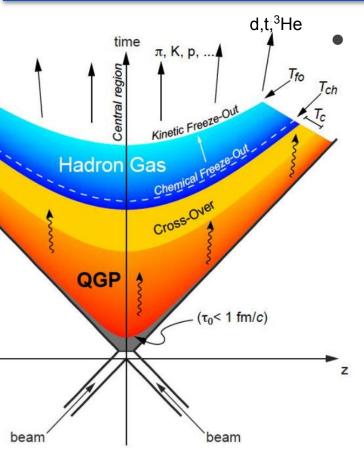
- First observation of antimatter ⁴_ΛHe hypernucleus
- Significance > 5σ measured in Run 3

 Factor 20 improvement in Run 3 will enable precise CSB measurements



Production of single- Σ and single- Ξ hypernuclei

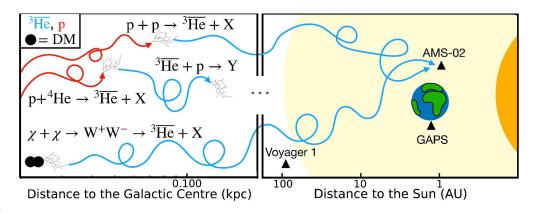
- Production of single- Σ hypernuclei mechanisms similar to the ones considered for Λ hypernuclei like, e.g., strangeness exchange (K^{-},p^{\pm}). However, their existence has not been experimentally confirmed yet without ambiguity, suggesting that the Σ nucleon interaction is most probably repulsive.
- Single- Ξ hypernuclei can be produced by means of (K⁻, K⁺) & proton-antiproton reactions
 - \circ A first analysis of 12 C(K⁻, K⁺) 12 _Ξ-Be reaction indicated an attractive Ξ-nucleus interaction of the order of about -14 MeV, but an independent analysis of the (K⁻, K⁺) Ξ production spectrum on 12 C found instead an almost zero Ξ-nucleus potential
 - \circ A deeply bound state of the Ξ^{-} ¹⁴N system with a binding energy of 4.38 \pm 0.25 MeV has been observed. Future Ξ -hypernuclei production experiments are being planned at JPARC

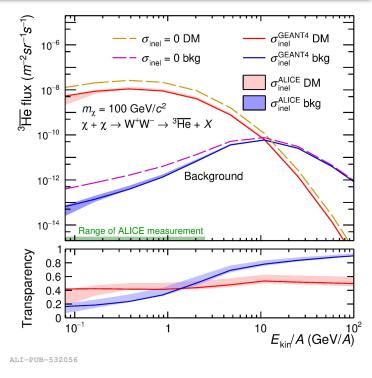

The Hyperon Puzzle

- Hyperons are expected to appear in the core of neutron stars at r~ $(2-3)r_{\odot}$ when μ_N is large enough to make the conversion of N into Y energetically favorable
- But, the relieve of Fermi pressure due to its appearance leads to a softer EoS and, therefore, to a reduction of the mass to values incompatible with recent observations

- Any reliable EoS of dense matter should predict Mmax [EoS] > 2 ${
 m M}_{\odot}$ NS
 - Can hyperons be present in the interior of neutron stars in view of this stringent constraint?
 - Three-body ΛΝΝ repulsive forces to stiffen EoS:
 - How much repulsion? → Model-dependent → Need for more experimental constraints
 - More exotics scenarios possible as well

Light nuclei in heavy-ion collisions

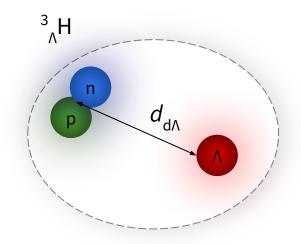


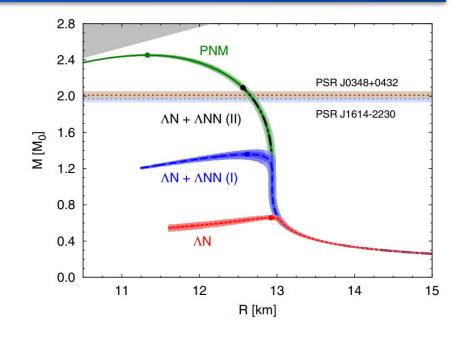

The study of light (anti)(hyper)nuclei is very important:

- Production mechanism is not well understood
 - How/when do they form?
 - "early" at chemical freeze-out (thermal production)
 - or "late" at kinetic freeze-out (coalescence)?
 - Do they suffer for the dissociation by rescattering?
- Low binding energy (few MeV) "Snowballs in hell": nuclei formation is very sensitive to chemical freeze-out conditions and to the dynamics of the emitting source
- Baseline for exotic bound state searches
- Light nuclei measurements in high energy physics can be used to estimate the background of secondary anti-nuclei in dark matter search

Antinuclei production

- Antinuclei can be a sign of Dark Matter annihilation:
 - Background: production in the collisions between cosmic rays (CR) and the interstellar medium (ISM) (pp and p-A collisions)
 - Nuclei production must be known very well!




- M. Korsmeier et al, Phys. Rev. D 97, 103011
- Nature Phys. 19 (2023) 1, 61-71

LI-PUB-532052

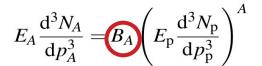
Hypernuclei production

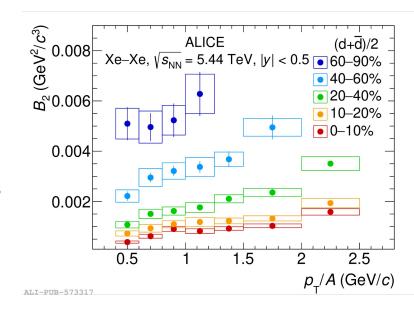
- Hypernuclei can be used to study nucleon-hyperon (N-Y) interaction
 - Production of exotic bound states
 - Determination of the equation of state
 - Application to neutron stars

- D. Lonardoni et al., PRL 114, 092301 (2015)
- D. Logoteta et al., EPJA 55 (2019) 11, 207

Hypertriton production

- Lightest known hypernucleus consisting of (p, n, Λ)
- Mass = $2.991 \text{ GeV}/c^2$
- $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV} (B_{d} = 2.2 \text{ MeV}, B_{t} = 8.5 \text{ MeV}, B_{3He} = 7.7 \text{ MeV})$
- ³ H has a large size:
 - \circ d_{d-A} = 10.79 fm, r (d) = 1.96 fm




- https://hypernuclei.kph.uni-mainz.de/
- F. Hildenbrand and H.-W. Hammer, Phys. Rev. C 100, 034002

Production models: Coalescence

Coalescence

- Nuclei are formed by nucleons emitted at freeze-out hypersurface
- Coalescence calculations incorporate the <u>size of</u> <u>nuclei</u>
 - convolution between nucleon phase-space
 distribution and Wigner function of the nucleus
- Coalescence parameter B_A, related to formation probability via coalescence:

_____J. I. Kapusta, PRC 21, 1301 (1980)

Mahlein et al., EPJC 83 (2023) 9, 804