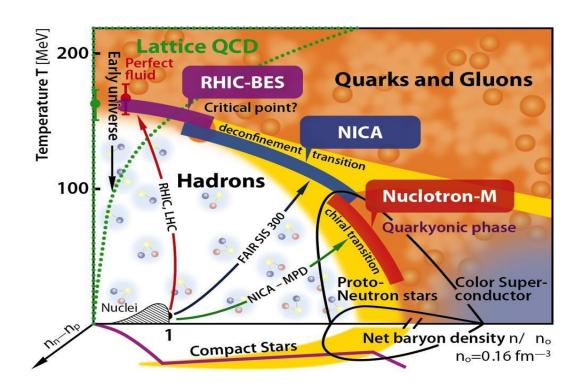
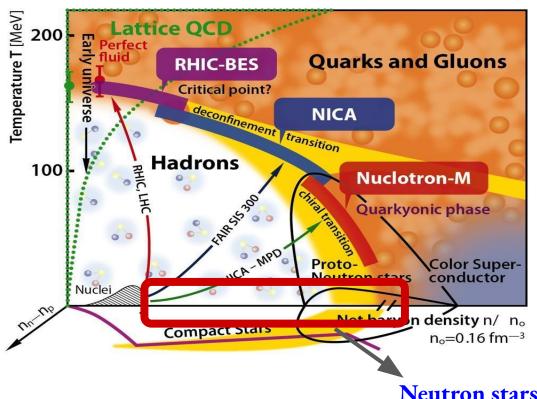
Tidal heating as a direct probe of strangeness inside neutron stars

Suprovo Ghosh

Based on Phys. Rev. D 109,103036 (2024)

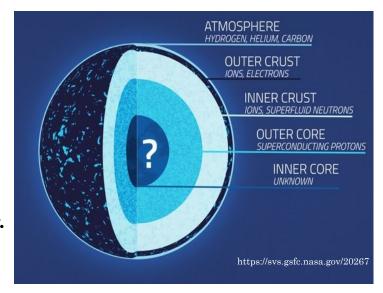
In collaboration with Bikram Pradhan and Debarati Chatterjee.


Workshop on Anti-matter, Hyper-matter and Exotica Production 13 November, 2025



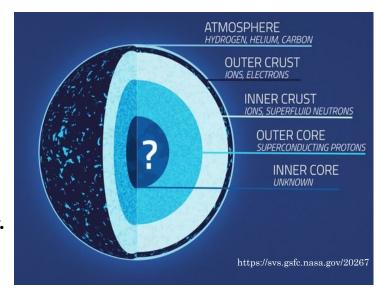
QCD Phase Diagram

QCD Phase Diagram



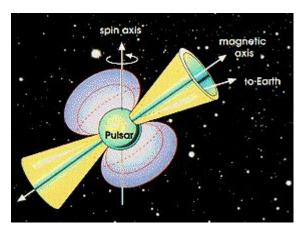
Neutron stars

Low T, High ρ, neutron-proton asymmetric


Neutron star: Astrophysical Laboratory to study Dense Matter

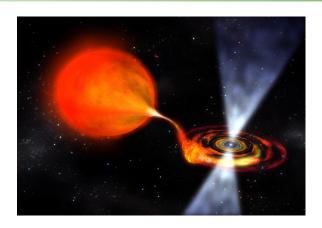
- > Neutron stars: Endpoint of stellar evolution of massive stars (> 8M_O)
- > One of the densest objects in the Universe $M \sim 1-2 M_{\odot}$, $R \sim 10-14 \text{ km}$, $\varrho \sim 2-10 n_{\odot}$
- Composition of the NS core still unknown.
- > Theoretical models to describe the dense matter behaviour.
- Equation of State (EoS): Pressure-density relation.
 Uncertain because of the extrapolation to higher density, finite temperature, and isospin asymmetry

Neutron star: Astrophysical Laboratory to study Dense Matter


- Neutron stars: Endpoint of stellar evolution of massive stars (> $8M_{\odot}$)
- ➤ One of the densest objects in the Universe $M \sim 1-2 M_{\odot}$, $R \sim 10-14 \text{ km}$, $\varrho \sim 2-10 n_{\odot}$
- Composition of the NS core still unknown.
- > Theoretical models to describe the dense matter behaviour.
- ➤ Equation of State (EoS): Pressure-density relation.
 Uncertain because of the extrapolation to higher density, finite temperature, and isospin asymmetry

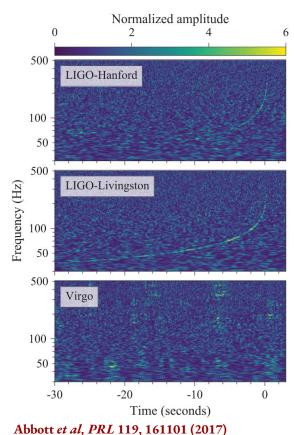
Multi-messenger observations of neutron stars

Equation of state,
Composition of neutron
star core


Neutron star: Multi-messenger observations

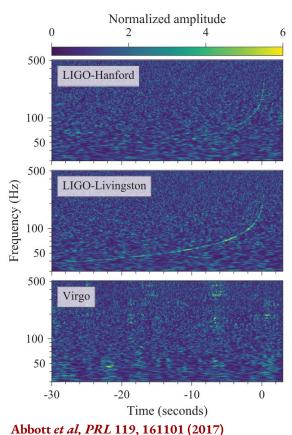
Pulsars: Radio Emission from Magnetised rotating neutron stars

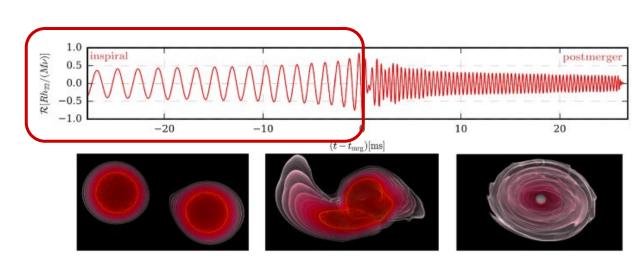
Magnetars: Giant magnetic flares



Low mass X-ray Binaries:
Thermal emission from
Accretion powered NSs

Gravitational wave as a probe of neutron star interior

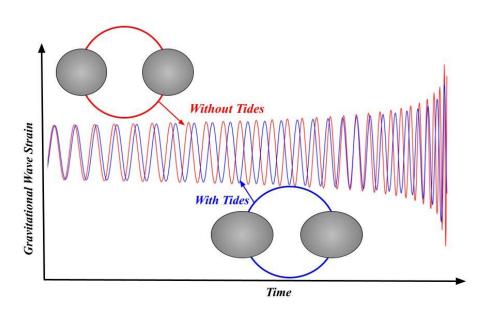

BNS merger event GW170817



Dietrich et al, Gen Relativ Gravit 53, 27 (2021).

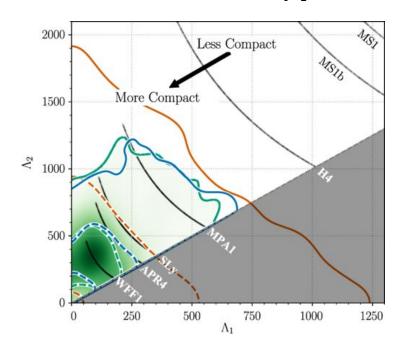
Gravitational wave as a probe of neutron star interior

BNS merger event GW170817

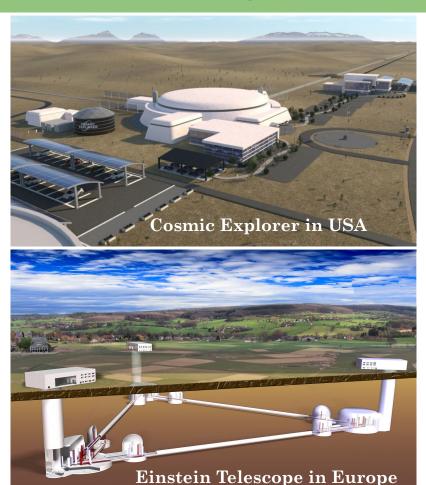


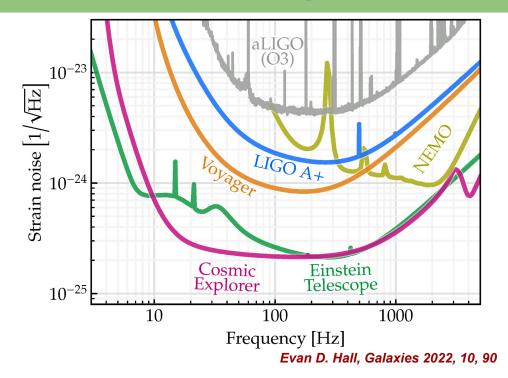
Dietrich et al, Gen Relativ Gravit 53, 27 (2021).

Gravitational wave as a probe of neutron star interior

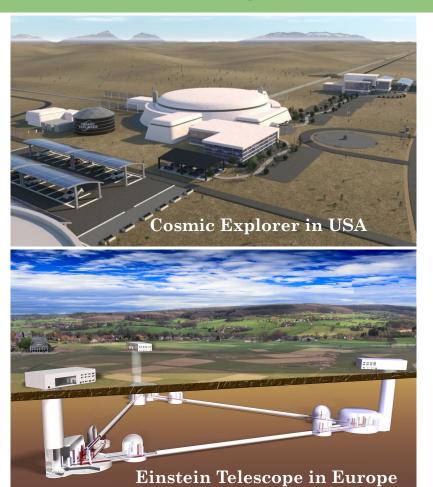

$$\Lambda = \frac{2}{3}k_2 \left(\frac{R}{M}\right)^5$$

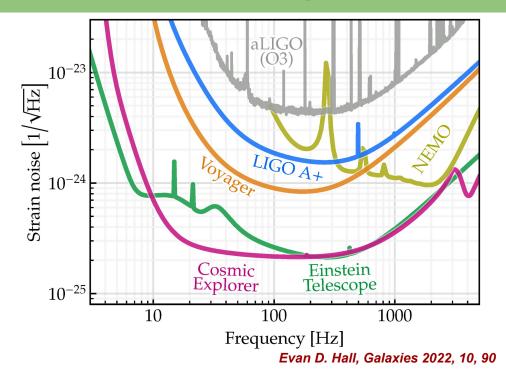
Hinderer et al., PRD 81, 123016(2010)




BNS merger event GW170817

Constraint on dense matter EOS from mass & tidal deformability posterior.



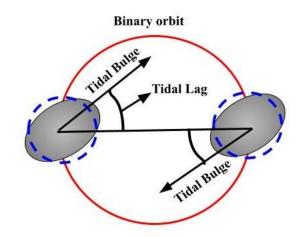

Next -generation GW detectors and BNS mergers

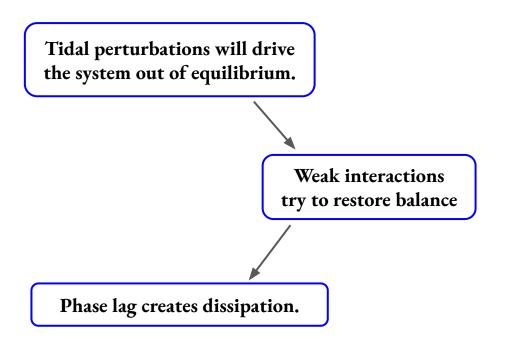
Next -generation GW detectors and BNS mergers

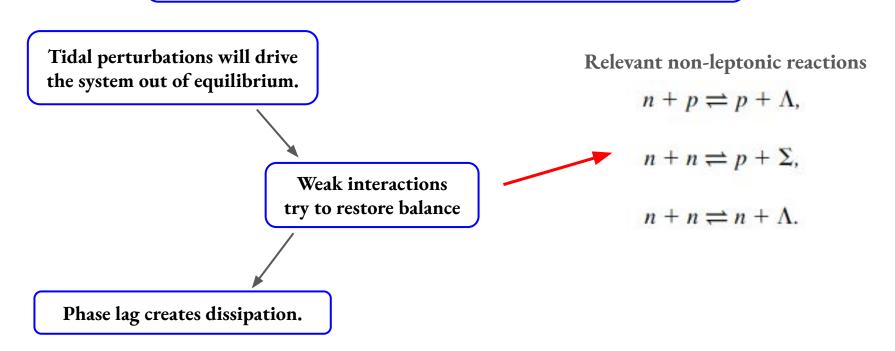
Signature of neutron star interior on gravitational wave data beyond adiabatic tidal effects within the reach of next-gen GW detectors?

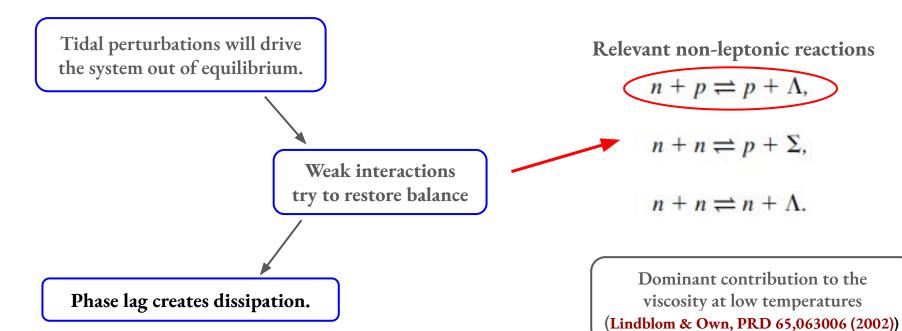
Tidal interaction during binary neutron star inspiral

- Adiabatic Tides: Parameterized as 'Tidal deformability'; has the dominant contribution towards the late inspiral
- > Dynamical Tides: Associated with individual mode (e.g., f,g-mode) resonances


Tidal interaction during binary neutron star inspiral


- Adiabatic Tides: Parameterized as 'Tidal deformability'; has the dominant contribution towards the late inspiral
- > Dynamical Tides: Associated with individual mode (e.g., f,g-mode) resonances
- Dissipative Tides: Dissipation of the oscillation modes due to GW emission and viscous dissipation.

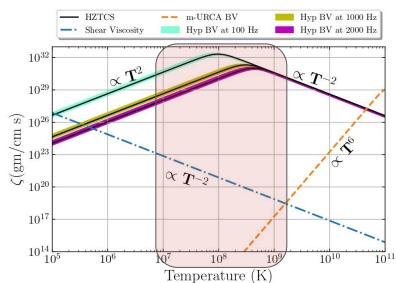

Tidal interaction during binary neutron star inspiral


- Adiabatic Tides: Parameterized as 'Tidal deformability'; has the dominant contribution towards the late inspiral
- > Dynamical Tides: Associated with individual mode (e.g., f,g-mode) resonances
- Dissipative Tides: Dissipation of the oscillation modes due to GW emission and viscous dissipation.
 - > Dissipative effects in inspiral:
 - Tidal Lag or dissipation
 - Tidal torquing for spinning NS (tidal spin)
 - ➤ Dominant source at low temperature (T<< 1 MeV): Shear viscosity from n-n/e-e scattering (Bildsten & Cutler, ApJ 400(1992))

Bulk viscosity from hyperons

Relaxation rates are expressed as
$$\frac{1}{\tau} = \frac{\Gamma_{\Lambda}}{\delta \mu} \frac{\delta \mu}{\delta n_n}$$

For harmonic oscillations
$$\zeta = n_B \frac{\partial P}{\partial n_n} \frac{dn_n}{dn_B} \frac{\tau}{1 + (\omega \tau)^2}$$


Bulk viscosity from hyperons

• Relaxation rates are expressed as

$$\frac{1}{\tau} = \frac{\Gamma_{\Lambda}}{\delta \mu} \frac{\delta \mu}{\delta n_n}$$

• For harmonic oscillations

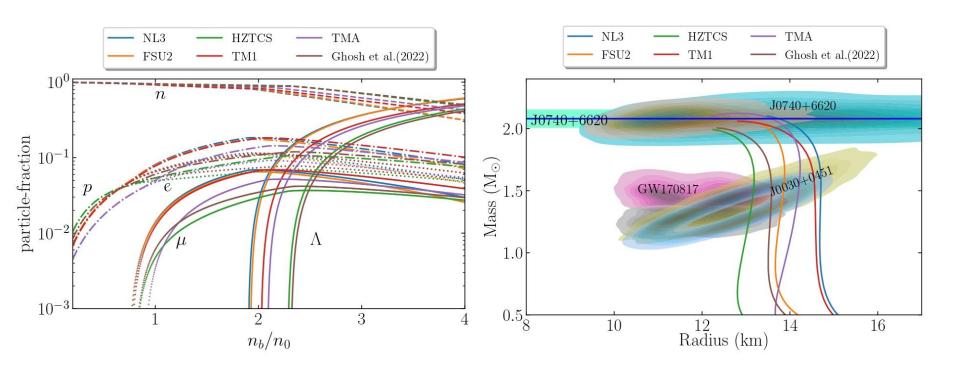
$$\zeta = n_B \frac{\partial P}{\partial n_n} \frac{dn_n}{dn_B} \frac{\tau}{1 + (\omega \tau)^2}$$

Ghosh et al, PRD 109, 103036(2024)

Equation of State Framework

Microscopic description:

Ghosh, Pradhan, Chatterjee, Schaffner-Bielich, Front. Astron. Space Sci. 9:864294 (2022)


- > Phenomenological Relativistic Mean Field (RMF) model.
- \triangleright Strong interaction mediated by scalar(σ), vector(ω) & isovector(ρ) mesons.
- \succ Interaction among hyperons is mediated by the exchange of strange vector (ϕ) meson.
- > Coupling constants are determined by fitting them to the nuclear saturation properties.

$$\mathcal{L} = \sum_{B} \bar{\psi}_{B} \left(i \gamma^{\mu} \partial_{\mu} - m_{B} + g_{\sigma B} \sigma - g_{\omega B} \gamma_{\mu} \omega^{\mu} - g_{\rho B} \gamma_{\mu} \vec{I}_{B} . \vec{\rho}^{\mu} \right) \psi_{B} + \frac{1}{2} (\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2}) - U_{\sigma}
+ \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} - \frac{1}{4} (\vec{\rho}_{\mu\nu} . \vec{\rho}^{\mu\nu} - 2m_{\rho}^{2} \vec{\rho}_{\mu} . \vec{\rho}^{\mu}) + \Lambda_{\omega} (g_{\rho N}^{2} \vec{\rho}_{\mu} . \vec{\rho}^{\mu}) (g_{\omega N}^{2} \omega_{\mu} \omega^{\mu})
+ \sum_{Y} \bar{\psi}_{Y} (g_{\sigma^{*}Y} \sigma^{*} - g_{\phi Y} \gamma_{\mu} \phi^{\mu}) \psi_{Y} + \frac{1}{2} m_{\phi}^{2} \phi_{\mu} \phi^{\mu} - \frac{1}{4} \phi_{\mu\nu} \phi^{\mu\nu} + \frac{1}{2} (\partial_{\mu} \sigma^{*} \partial^{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2})
+ \sum_{\ell=\ell_{\sigma^{-}}} \bar{\psi}_{\ell} (i \gamma^{\mu} \partial_{\mu} - m_{\ell}) \psi_{\ell} \tag{1}$$

List of EOS

EOS	Max. mass	Λ onset	$\mathrm{Mass}(M_{\odot})$	Central	Radius	Hyperon core	f-mode	Max. temp(K)	$\Delta \Phi = 2\pi \Delta \mathcal{N}$
	(M_{\odot})	density		density	(km)	radius(km)	Freq.(Hz)	at $D/R = 3$	(rad)
NL3	2.10	$1.90n_0$	1.6	$2.07n_0$	14.7	3.42	1847	9.7×10^{8}	0.001
[47]	2.10	1.30110	1.8	$2.48n_0$	14.6	6.19	1909	3.3×10^{9}	0.001
[0.0]			2.0	$3.35n_0$	14.2	8.10	2009	6.2×10^9	0.3
TM1	2.06	$2.02n_0$	1.6	$2.24n_0$	14.55	3.16	1873	8.7×10^{8}	0.0008
48			1.8	$2.77n_0$	14.37	6.18	1947	3.4×10^{9}	0.09
11			2.0	$4.06n_0$	13.6	8.15	2092	6.7×10^9	0.34
TMA	2.12	$2.09n_0$	1.8	$2.54n_0$	14.2	5.13	1948	2.3×10^{9}	0.02
[48]			2.0	$3.35n_0$	13.89	7.36	1909	5.1×10^9	0.16
HZTCS	2.00	$2.28n_0$	1.6	$2.67n_0$	13.2	4.89	2108	2.3×10^{9}	0.02
49]	3.0000.00000000000000000000000000000000		1.8	$3.32n_0$	13.1	6.82	2171	4.7×10^{9}	0.16
5 15			2.0	$5.32n_0$	12.25	8.17	2305	7.9×10^{9}	0.44
FSU2	2.03	$1.92n_0$	1.6	$2.22n_0$	14.4	4.98	1898	2.1×10^{9}	0.03
[47]			1.8	$2.72n_0$	14.2	7.07	1968	4.5×10^{9}	0.19
			2.0	$3.82n_0$	13.6	8.54	2099	7.4×10^{9}	0.47
Stiffest EOS	2.01	$2.31n_0$	1.6	$2.71n_0$	13.5	3.88	2047	1.4×10^{9}	0.004
from Ghosh et al.			1.8	$3.39n_0$	13.4	6.34	2119	4.1×10^{9}	0.11
(2022) [50]			2.0	$5.5n_0$	12.5	8.05	2256	7.2×10^{9}	0.37

EOS properties

Particle fractions

M-R diagram

Ghosh et al, PRD 109, 103036(2024)

Binary Inspiral and Tidal Heating

Lagrangian fluid displacement vector can be decomposed in terms of normal modes.

$$\xi_{\alpha}(r) = \left[\zeta_{nl}^{r}(r)e_{r} + r\zeta_{nl}^{\perp}(r)\nabla\right]Y_{lm}(\theta,\phi)$$

The energy dissipated due to viscosity is given by (Lai, MNRAS 270(1994))

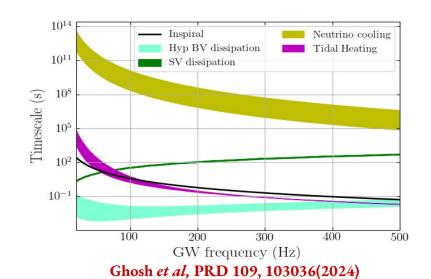
$$\dot{E}_{visc} = \int d^3x \sigma_{ij} v_{i,j} \text{ where } \sigma_{ij} = \eta \left(v_{i,j} + v_{i,j} - \frac{2}{3} \delta_{ij} \nabla . v \right) + \zeta \delta_{ij} \nabla . v$$

The mode damping rate is given by (Lai, MNRAS 270(1994))

$$\gamma_{bulk} = \frac{1}{2} \frac{(l+|m|)!}{(l-|m|)!} \int_0^R r^2 dr \zeta \left(\frac{\partial \xi^r}{\partial r} + \frac{2}{r} \xi^r - l(l+1) \frac{\xi^\perp}{r} \right)^2$$

> Leading order gravitational radiation energy

$$\dot{E}_{gw} = \frac{-32\mathcal{M}\Omega}{5c^5} (G\mathcal{M}\Omega)^{7/3}$$

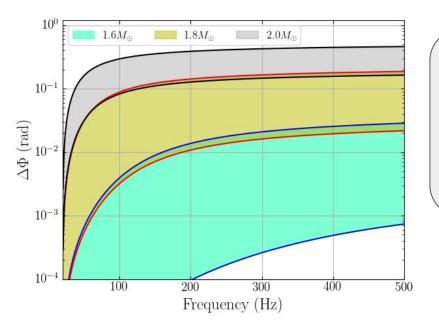

Binary Inspiral and Tidal Heating

The heating rate is given by

$$\frac{dU}{dt} = \dot{E}_{visc} + \dot{E}_{cool},$$

> Assuming degenerate Fermi gas, final temperature can be obtained

$$\left[\frac{T^4}{4} + Bln(T)\right] = \frac{\pi}{21870}\omega_0^{-4}Q_0^2q\frac{A}{10^{22}} \times \left(\frac{c^2R}{GM}\right)\left(\frac{c^3R^2}{G}\right)\left(\frac{3R}{D}\right)^5, \qquad \gamma_{bulk} = \frac{AT^2}{B + T^4}$$



Dissipation and heating happens well within the timescale of inspiral!!

Phase Error Estimation and Detectability

Additional torque to the viscous dissipation of energy will lead to a total change in the number of cycles.

$$\Delta \mathcal{N} = -\int_{f_a}^{f_b} t_D \left(\frac{\dot{E}_{visc}}{\dot{E}_{gw}}\right) df$$

Current phase uncertainty estimates is ~0.02 rad for A+ and 10³ rad for Cosmic Explorer (CE). (Read (2023))

Ghosh et al, PRD 109, 103036(2024)

Summary and Future Outlook

- Tidal dissipation effects in binary neutron stars inspirals 'will not be negligible' if hyperons are present in neutron star cores.
- > With next generation GW detectors, with increased sensitivity, detecting this effect is possible for high SNR events.
- If not accounted for in GW waveform models, this might lead to biased estimation of tidal deformability and thus biased equation of state inference (Ghosh et al., MNARS, 2025).
- A detection would provide "smoking-gun" signature for presence of exotic phases of dense matter inside neutron-star cores since nuclear matter does not have any source of high viscosity at low temperatures.

Future work: Developing a inspiral-merger waveform model incorporating fluid and gravitation radiation reaction dissipation accurately and constraining fluid viscosity (out-of-equilibrium behaviour of dense matter) from GW merger events.