H dibaryon is not a DM candidate

EMMI Workshop, Salerno, Italy, Nov. 2025 Avraham Gal, Hebrew University, Jerusalem, Israel

- Q: does observing $\Lambda\Lambda$ hyp exclusively by weak decay $(\tau_w \sim 10^{-10} \text{ s})$ rule out a deeply bound H(uuddss)?
- A: $_{\Lambda\Lambda}^{6}$ He 3-body model gives $\tau_s(_{\Lambda\Lambda}^{6}$ He \rightarrow H+ 4 He) $\gg \tau_w$ for $m_H \leq m_{\Lambda} + m_n$, so a deeply bound H is fine.
- Q: how slow is the ΔS =2 weak decay H \rightarrow 2n with respect to τ (Universe) $\approx (13.8 \times 10^9 \text{ yrs})$?
- A: constrained by Λ hyp lifetimes, $\tau_w(H\rightarrow 2n)\sim 10^5$ s, by far too short to make H dark-matter candidate.
 - A. Gal, PLB 857 (2024) 138973 [arXiv:2404.12801]

The elusive H dibaryon

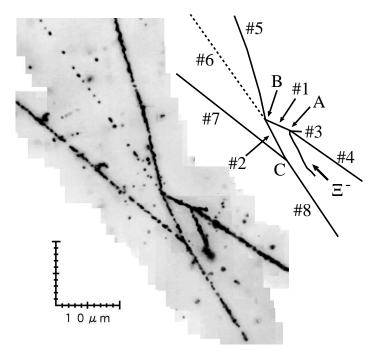
A stable H(uuddss) predicted by Jaffe PRL 38 (1977) 195

$$\mathbf{H} \sim \mathcal{A}[\sqrt{1/8} \Lambda\Lambda + \sqrt{1/2} N\Xi - \sqrt{3/8} \Sigma\Sigma,]_{I=S=0}$$

- No H signal in past (K^-, K^+) experiments at AGS-BNL & PS-KEK. Awaiting J-PARC E42.
- Bound H above $\Lambda p\pi^-$, ~37 MeV below $\Lambda\Lambda$, ruled out by ALICE search for a weakly decaying $\Lambda\Lambda$ bound state [PLB 752 (2016) 267].
- Bound H above $\Lambda p\pi^-$ ruled out in Belle study of $\Upsilon(1\mathrm{S},2\mathrm{S})$ decays [PRL 110 (2013) 222002].
- Deeply bound H below Λ n, m_H \leq 2.05 GeV, ruled out in BaBar's $\Upsilon(2S,3S) \rightarrow H\bar{\Lambda}\bar{\Lambda}$ search [PRL 122 (2019) 072002].

- Bound H in LQCD calculations: S.R. Beane et al (NPLQCD) PRL 106 (2011) 162001, T. Inoue et al. (HALQCD) PRL 106 (2011) 162002, Green-Hanlon-Junnarkar-Wittig, PRL 127 (2021) 242003, bound by just 4.6 ± 1.3 MeV w.r.t. $\Lambda\Lambda$.
- But unbound by 13±14 MeV when chirally extrapolated to physical quark masses: Shanahan-Thomas-Young, PRL 107 (2011) 092004.
- SU(3)_f breaking might push it to ≈ 26 MeV in the $\Lambda\Lambda$ continuum, near NE threshold: HALQCD Collaboration [NPA 881 (2012) 28] & Haidenbauer-Meißner [NPA 881 (2012) 44]. Consistent with J-PARC E42 final results?

Hypernuclear Constraints: Nagara event



 $_{\Lambda\Lambda}^{6}$ He (KEK-E373) PRL 87 (2001) 212502, PRC 88 (2013) 014003 $B_{\Lambda\Lambda}(_{\Lambda\Lambda}^{6}\text{He}_{g.s.})$ =6.91±0.16 MeV, uniquely identified.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay $^{6}_{\Lambda\Lambda}\text{He} \rightarrow ^{5}_{\Lambda}\text{He} + p + \pi^{-}$ (no $^{6}_{\Lambda\Lambda}\text{He} \rightarrow ^{4}\text{He} + \mathbf{H}$)
- C: ${}^{5}_{\Lambda}$ He nonmesic weak decay to two Z=1 recoils + n Few other weakly decaying ${}^{A}_{\Lambda\Lambda}$ Z hypernuclei identified.

Dark-Matter H Dibaryon?

Work triggered by Farrar's 2003-4 idea that a deeply bound H dibaryon would make a long-lived Dark-Matter particle.

G.R. Farrar, Int'l. J. Theor. Phys. 42 (2003) 1211.
G.R. Farrar, G. Zaharijas, Phys. Rev, D 70 (2004) 014008.
A recent review: G.R.F+Z. Wang, arXiv:2306.03123 [hep-ph].

assuming (i) compact 6q configurations of size down to 0.2 fm and (ii) outdated hard-core BB strong-interaction potentials. Here, we try to do better...

H(uuddss) model wavefunction

• Symmetric L=0, Antisymmetric $1_S(S=0)$, 1_F , 1_C .

•
$$\Psi_H = N_6 \exp\left(-\frac{\nu}{6} \sum_{i< j}^6 (\vec{r}_i - \vec{r}_j)^2\right)$$

•
$$\Psi_H = \psi_{B_a}(\rho_a, \lambda_a) \times \psi_{B_b}(\rho_b, \lambda_b) \times \psi_{B_aB_b}(r)$$

• $\psi_{B_aB_b} = \left(\frac{3\nu}{\pi}\right)^{\frac{3}{4}} \exp(-\frac{3\nu}{2}r^2)$, Need to add SFC factors.

$$\bullet < r_{B_a}^2 > = < r_{B_b}^2 > = < r_{B_aB_b}^2 > = \frac{9}{8\nu}, < r_H^2 > = \frac{5}{8\nu}.$$

$$\sqrt{\langle r_{\Lambda\Lambda}^2 \rangle}$$
 (fm) vs. $B_{\Lambda\Lambda}$ (MeV)

$B_{\Lambda\Lambda}$	5	20	5 0	100	200	300	400
$\sqrt{\langle r_{\Lambda\Lambda}^2 \rangle}$	2.134	1.206	0.854	0.689	0.560	0.501	0.463

calculated for a short-range potential $C_0^{(\lambda)}\delta_{\lambda}(r)$, λ =4 fm⁻¹, where $\delta_{\lambda}(r) = \left(\frac{\lambda}{2\sqrt{\pi}}\right)^3 \exp\left(-\frac{\lambda^2}{4}r^2\right)$, $\int \delta_{\lambda}(r) \,\mathrm{d}^3r = 1$.

⁶He model wavefunction

- Use a $\Lambda \Lambda {}^4\text{He}$ model inspired by a #EFT study of s-shell $\Lambda\Lambda$ hypernuclei in PLB 797 (2019) 134893 by Contessi-Schaefer-Barnea-Gal-Mareš.
- $\Phi_{\Lambda\Lambda}^{6}_{He} = \phi_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda}) \phi_{\alpha}, \quad \sqrt{\langle r_{\Lambda\Lambda}^{2} \rangle} = 3.65 \pm 0.10 \text{ fm}.$
- For Gaussians, $\sqrt{\langle R_{\Lambda\Lambda}^2 \rangle} = \sqrt{\langle r_{\Lambda\Lambda}^2 \rangle}/2$.
- Short-Range suppression:
 - $\phi_{\Lambda\Lambda}(r_{\Lambda\Lambda}) = (1 j_0(\kappa r_{\Lambda\Lambda})) \phi_{\Lambda\Lambda}(r_{\Lambda\Lambda}), \ \kappa = 2.534 \text{ fm}^{-1} \text{ fitting a G-matrix calculation by Maneu-Parreño-Ramos,} PRC 98 (2018) 025208.$
- To evaluate ${}_{\Lambda\Lambda}{}^6{\rm He}{} \rightarrow H + {}^4{\rm He}$ decay rate (next page), represent final state by $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \times \exp{(i\vec{k}_H \cdot \vec{R}_H)}$, where $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) = \psi(r_{\Lambda\Lambda})/\sqrt{1000}$ to account for SFC structure.
- Recall: no short-range suppresssion for H $(1_F BB)$.

$^{6}_{\Lambda\Lambda}$ He $\rightarrow H + ^{4}$ He decay rate

- $\Gamma({}_{\Lambda\Lambda}^6{\rm He} \to H + {}^4{\rm He}) = \frac{\mu_{H\alpha} \, k_H}{(2\pi\hbar c)^2} \int |<\Psi_f| V_{\Lambda\Lambda} |\Psi_i>|^2 \, {\rm d}\vec{k}_H,$ where $<\Psi_f |V_{\Lambda\Lambda}| \Psi_i>$ is a product of two factors.
- 1st factor: $\langle \tilde{\psi}_{\Lambda\Lambda} | C_0^{(\lambda=4)} \delta_{\lambda=4}(r_{\Lambda\Lambda}) | \tilde{\phi}_{\Lambda\Lambda} \rangle$, where $C_0^{(\lambda=4)} = -152 \text{ MeV} \times \text{fm}^3$ fitted to $a_{\Lambda\Lambda} = -0.8 \text{ fm}$. SRC reduction: a factor of 4 to 5. Altogether this matrix element varies from -59 to -53 keV as $B_{\Lambda\Lambda}$ is increased from 100 to 400 MeV.
- 2nd factor: $\int \exp(i\vec{k}_H \cdot \vec{R}) \Phi_{\Lambda\Lambda}(R) d^3\vec{R}$, overlap integral between a $\Lambda\Lambda \alpha$ smooth Gaussian $\Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda})$ in $_{\Lambda\Lambda}^{6}$ He and the $H \alpha$ oscillatory plane-wave $\exp(i\vec{k}_H \cdot \vec{R}_H)$. Strong cancellations occur, reducing it as k_H increases.

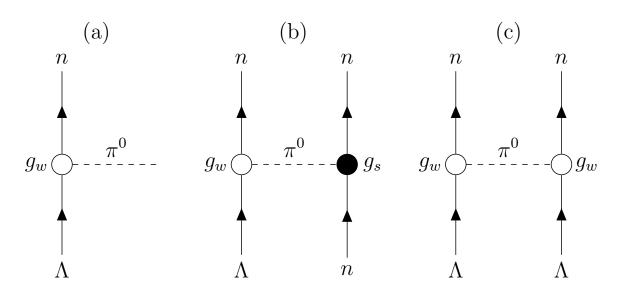
 $^{6}_{\Lambda\Lambda}$ He $\to H + {}^{4}$ He decay rate Γ and decay time \hbar/Γ .

$B_{\Lambda\Lambda}$ (MeV)	$\mathbf{k}_H old{(\mathbf{fm}^{-1})}$	Γ (eV)	τ (s)
100	2.547	$0.782 \cdot 10^{-2}$	$0.841 \cdot 10^{-13}$
200	3.612	$0.501 \cdot 10^{-8}$	$1.315 \cdot 10^{-7}$
300	4.377	$0.679 \cdot 10^{-14}$	$0.970 \cdot 10^{-1}$
400	4.980	$2.436 \cdot 10^{-20}$	$2.703 \cdot 10^4$
176	3.393	$1.550 \cdot 10^{-7}$	$4.245 \cdot 10^{-9}$

 $B_{\Lambda\Lambda}=176 \text{ MeV corresponds to } \mathbf{m}_H=\mathbf{m}_{\Lambda}+\mathbf{m}_n.$

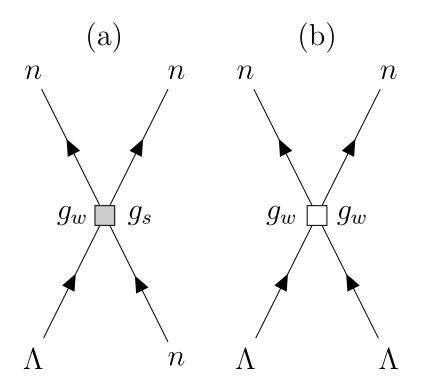
- $_{\Lambda\Lambda}^{6}$ He $\to H + {}^{4}$ He strong-interaction lifetime becomes longer than Λ hypernuclear lifetimes of order 10^{-10} s for m_H below $m_{\Lambda}+m_n$, where decay of H requires a $\Delta S = 2$ weak decay H \to nn, assuming H is above nn.
- A lower-mass H would be in conflict with nuclear stability limits, e.g. ¹⁶O.

$\Lambda n \to nn$ and $\Lambda \Lambda \to nn$ weak decays



- $\Lambda \to n\pi^0$ weak decay vertex (a) embedded in nonmesonic weak decay OPE diagrams: $\Delta S = 1 \ \Lambda n \to nn$ (b), $\Delta S = 2 \ \Lambda \Lambda \to nn$ (c).
- For ${}^1S_0 \to {}^1S_0$ transitions, OPE contributes little at the large momentum transfers involved; K exchange interferes destructively with OPE in $\Lambda n \to nn$, so a contact term is sufficient. ${}^1S_0 \to {}^3P_0$ appears suppressed w.r.t. ${}^1S_0 \to {}^1S_0$.

$\Lambda n \to nn$ and $\Lambda \Lambda \to nn$ weak decays



- Use low-energy constants (LECs) $C_{\Delta S}^{(\lambda)}$ proportional to g_w for $\Lambda n \to nn$ and to g_w^2 for $\Lambda \Lambda \to nn$ in 1S_0 transitions, thereby replacing $g_s(\text{OPE}) \approx 13.6$ effectively by $g_s \sim 1$.
- EFT approach for nonmesonic weak decay of hypernuclei: Parreño-Bennhold-Holstein, PRC 70 (2004) 051601(R).

H \rightarrow nn decay rate Γ_H and decay time τ_H = \hbar/Γ_H

$B_{\Lambda\Lambda}$ (MeV)	\mathbf{k}_n (fm $^{-1}$)	Γ_H (10 ⁻²⁰ eV)	$ au_H$ (10 ⁵ s)
176	2.109	$1.57{\pm}0.19$	$0.78{\pm}0.09$
200	$\boldsymbol{1.955}$	$\boldsymbol{1.44 {\pm} 0.17}$	$0.83{\pm}0.10$
300	1.130	$\boldsymbol{0.86 {\pm} 0.10}$	$1.35{\pm}0.16$

 $B_{\Lambda\Lambda}=176 \text{ MeV corresponds to } \mathbf{m}_H=\mathbf{m}_{\Lambda}+\mathbf{m}_n.$

- Extract $C_1^{(\lambda)}$ for a given λ by evaluating $\Gamma_n(C_1)$, $\Gamma_n = v_{\Lambda n} \, \sigma_{\Lambda n \to nn} \, \frac{1}{4} \rho_n$, requiring $\Gamma_n = (0.35 \pm 0.04) \Gamma_{\Lambda}$ where $\Gamma_{\Lambda} = \hbar/(\tau_{\Lambda} = 263 \, \mathrm{ps})$.
- Use $C_2^{(\lambda)} = g_w C_1^{(\lambda)} = (G_F m_\pi^2) C_1^{(\lambda)} = (2.21 \times 10^{-7}) C_1^{(\lambda)}$.
- $\Gamma(H \to nn) = \frac{\mu_{nn} k_n}{(2\pi\hbar c)^2} \int |\langle \exp(i\vec{k}_n \cdot \vec{r})|C_2^{(\lambda)}\delta_{\lambda}(\vec{r})|\tilde{\psi}_{\Lambda\Lambda}(r) \rangle|^2 d\vec{k}_n$.
- Weaker cancellations over a smaller range than for $\Gamma({}_{\Lambda\Lambda}{}^6{\rm He}\!\to\!{\rm H}\,+\,{}^4{\rm He}).$

Deeply Bound H Dibaryon: Summary

- Observing $\Lambda\Lambda$ hypernuclei by their weak decay does not rule out a deeply bound H(uuddss) dibaryon.
- Assuming H is deeply bound, between nn and Λ n thresholds, its $\Delta S = 2$ H \rightarrow nn lifetime is shorter than 1 yr, disqualifying it from serving as a Dark-Matter particle candidate.

Thanks for your attention!