Update on the **Disc DIRC**

conceptual design

Oliver Merle, Justus Liebig Universität Gießen

PANDA Collaboration Meeting 06/2013

dSiPM based "3D Disc DIRC"

dSiPM based "3D Disc DIRC"

What did we accomplish ?

What did we accomplish ?

high modularization

monolithic radiators

10.1016/j.nima.2010.09.132

What did we accomplish ?

high modularization

monolithic radiators

• pattern reconstruction (for standalone & PROOT simulations)

• **PID on top of PANDA background** ("time based sim" @ 10 MHz / 15 GeV/c)

• simulation in PandaROOT

(material budget, magnetic field, ...)

 "time based" simulation (pile-up across event boundaries)

• event mixing (mix signal/probe tracks with DPM)

systematic study

 (1k equal probe tracks for each [θ,φ])

1k equal probe tracks

 ΔT evenly distributed in time

stream of DPM events *exponential distribution of ΔT*

reconstruction of probe tracks

─}

select hits in time window around track time

(-5 ns to +40 ns)

run "stock" reconstruction

(determine T0 & likelihood for each hypothesis by comparing hits with on-the-fly computed pattern prediction)

Conclusions on PID study

Reconstruction feasible at highest PANDA rates

Noise (here of dSiPMs) is not a major issue

Track extrapolation: need $\sigma_{\theta,\phi} \sim 1 \text{ mrad}, \sigma_{x,y} \sim 2.5 \text{ mm}$

... back to MCP-PMTs

MCP-PMTs are not perfect

Photonis Planacon

Limited lifetime

Work in progress, > 5 C/cm² is in reach

5 C/cm² translates to:
about 18 photons / track
at 5 MHz sustained rate

Gain 10⁶, 10 MHz IR, 5 yrs continuous operation

Experiment: "LowRate" design

Experiment: "LowRate" design

works for dSiPM geometry but not for MCP designs (worse geometrical acceptance)

Crystals + filter as alternative ?

(2004) B. Morosov et al.

(2008) K. Föhl et al.

LiF without asphere !

And better resolution !

Will it fit in the foreseen space ?

More flexible: Focusing elements can be shifted along crystals

still some fine-tuning necessary

Performance studies in preparation

Burning questions:

Which MCP-PMT anode will work?

Timepix(3) Hybrid MCP-PMT usable? (only ns resolution)

*CaF*₂ *or LD glasses as alternative?*