PID Likelihoods for the Barrel DIRC

Harphool Kumawat GSI, Darmstadt

PANDA XLV. Collaboration Meeting 24-28 June 2013 GSI, Darmstadt, Germany

Outline

□ Maximum Likelihood mean of a Gaussian Distribution

Toy Monte carlo studies and effect of background on true Gaussian distribution

 \Box Reconstructed θ_c and Time in Barrel DIRC

Track based Maximum Likelihood and PID

□ Summary

Maximum likelihood mean of the Gaussian distribution

Probability $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$

PDF
$$f(x_1, ..., x_n \mid \mu, \sigma^2) = \prod_{i=1}^n f(x_i \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right),$$

Minimize For mean

$$0 = \frac{\partial}{\partial \mu} \log \left(\left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp \left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2} \right) \right)$$
$$= \frac{\partial}{\partial \mu} \left(\log \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} - \frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2} \right)$$
$$= 0 - \frac{-2n(\bar{x} - \mu)}{2\sigma^2}$$

$$\hat{\mu} = \bar{x} = \sum_{i=1}^{n} x_i / n.$$

Typical Gaussian events and the Maximum Likelihood mean

The Maximum likelihood value is obtained with zero cross over at the maximum

Gaussian + background and the Maximum Likelihood mean

Gaussian + background and the Maximum Likelihood mean

Reconstruction of Cherenkov angle (θ_c)

2.5 meter bars and 30 cm Expansion volume Ambiguities (different possibilities of reflections in expansion volume and bar)

Most probable reflection possibilities in expansion volume are Direct, Bottom, UP and Bottom + UP PANDA XLV. Collaboration Meeting, 24-28 June, 2013, GSI, Germany

Reconstructed Cherenkov angle (θ_c) at different polar angles

Effect of Chromatic Dispersion on photon time

119

103

RMS of $\Delta T (T_{rec} - T_{exp})$ Photon Path length

Right vs wrong Ambiguity time at different polar angles

Single Photon Resolution with charge particle polar angle

Log Likelihood function and selection criteria

Selection is based of the Separation power Log likelihood difference = -0.5, -2.0, -4.5 for 1σ , 2σ , 3σ separation, respectively

Track θ Resolution

Particle Selection criteria

First approach: To get the track theta independent of Particle Hypothesis

$$LogL = \sum_{i}^{N_{amb}} Log(\frac{1}{\sqrt{2\pi\sigma_s^2}}exp\frac{-(\Theta_c - \Theta_i)^2}{2\sigma_s^2} + \frac{\Theta_c}{\Theta_m^2})$$
(1)

Where, $\sigma_s = 10-20$ mrad is the single photon resolution.

$$LogL_{\pi,k,p} = Log(exp \frac{-(\Theta_{tr} - \Theta_{\pi,k,p})^2}{2\sigma_{tr}^2})$$
(2)

Where, $\sigma_{tr} = 1.-3.0$ mrad is the track resolution and

 Θ_{tr} is the Cherenkov angle of the track based on Maximum Likelihood $\Theta_{\pi,k,p}$ is the expected Cherenkov angle. Second approach: Maximize the Particle Hypothesis

$$Log L_{\pi,k,p} = \sum_{i}^{N_{amb}} Log \left(\frac{1}{\sqrt{2\pi\sigma_s^2}} exp \frac{-(\Theta_c - \Theta_{\pi,k,p})^2}{2\sigma_s^2} + \frac{\Theta_c}{\Theta_m^2}\right)$$
(3)

Selection is based on the Separation power Log likelihood difference = -0.5, -2.0, -4.5,... for 1σ , 2σ , 3σ ,... separation, respectively

Initial Momentum is a priory information required to calculate the expected θ_c

PID efficiency of Pion

Single Photon resolution $\sigma = 17$ mrad

Track resolution = 3 mrad

Summary

 Track based Maximum Likelihood method is developed and study has been carried out for tank type expansion volume.

• Further study for different geometries is continued.

Thanks for Attention!

Backup slides

Single Photon Resolution with polar angle

