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INTRODUCTION The generation of hot electron component with temperature

The influence of different regimes of preplasma formation on higher than 1 MeV is observed for long scale warm preplasma

the hot electron acceleration is studied at the action onto the due to excitation of relativistic effects in subcritical density

surface of solid targets of a sub-relativistic femtosecond laser region. The experimental results are supported by PIC P N Lebedev Physica
pulse with varied prepulse temporal and amplitude structure. simulations and optical shadowgraphy of preplasma cloud. In 5;[ -‘lilfﬁ ':;1'1- * ."-.IL’ \1 lll '=
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