Coaction of strong electrical fields in laser irradiated thin foils and its relation to field dynamics at the plasma-vacuum interface

F. Abicht¹, M. Schnürer¹, J. Bränzel¹, G. Priebe¹, A. A. Andreev¹, Ch. Koschitzki¹, Sven Steinke³, T. Toncian², O. Willi² and W. Sandner¹

¹Max Born Institut, Max Born Str. 2a, D-12489 Berlin, Germany

²Institut f. Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf

³Lawrence Berkeley National Laboratory, Berkeley, USA

September 30, 2013

э

A D F A B F A B F A B F

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Motivation
- Basics
- Experiment
- Results
- Discussion
- Conclusion

MBI's High Field Laser Infrastucture

XPW-Frontend:

- Synchronized Laser Operation
- Contrast Ratio[1]: 10⁻¹⁰ 10⁻¹¹

Laser Arm 1:

- Ti:Sapphire
- 100 TW
- 25 fs

Laser Arm 2:

- Ti:Sapphire
- 70 TW
- 35 fs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

[1] M.P. Kalashnikov et al., 2012 AIP Conf. Proc. 1462, 108

Motivation

- Quantitative temporal and spatial reconstruction of electromagnetic fields [2, 3, 4]
- Field effects in ultathin foils (30 nm) irradiated with pulses of high temporal contrast
- Post acceleration of ions [5]

[2] Th. Sokollik et al., 2008 Appl. Phys. Lett.92, 091503, [3] W. Schumaker et al., 2013 Phys. Rev. Lett. 110, 015003,
 [4] G. Sarri et al., 2012 Phys. Rev. Lett. 109, 205002, [5] S.M. Pfotenhauer et al., 2010 New J. Phys. 12, 103009

Target Normal Sheath Acceleration

1.) Pre-plasma on thin foil

3.) Formation of an electron sheath

2.) Main pulse interacts with pre-plasma

4.) Ion acceleration

Properties of a laseraccelerated proton beam:

- Divergent beam
- Low emittance
- Broad energy spectrum
- Short acceleration time (200-300fs) for femtosecond laser drive

 \implies well suited for imaging purposes

Principle of Proton Imaging

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Source: Th. Sokollik

Proton Streak Geometry

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Probing of the target-normal E-Field component

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Proton Streak Geometry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Probing of the B-Field and radial E-Field Components

・ロト ・個ト ・モト ・モト

₹ 9Q@

Experimental setups for probing the electromagnetic field distribution of ultrathin foils with high temporal contrast

Different probing geometries together with recorded spectrograms

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Experimental setup for post acceleration

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Experimental setup for post acceleration

Experimental setup for post acceleration

Data Analysis

- Bending due to the inhomogeneous field of the permanent magnet
- Measurement of all field components, Particle Tracing & Interpolation ⇒

Processed density distribution of the detector

Results - Averaged Energy Distribution

[5] S.M. Pfotenhauer et al., 2010 New J. Phys. 12, 103009

2D3V PIC Simulation

Modelling of the experiment:

- Field lifetime $t \approx 100$ fs
- Field Extension d $pprox 2\mu m$
- Ambipolar Field with an amplitude $E \approx 0.15~E_{Laser}$
- Dips and Peaks depend on target distance and proton energy (time delay)
- Protons move in a temporally and spacially changing field geometry \Rightarrow Field components from target rear and front side do not cancel out
- For a small part of protons an averaged field acts which points in one direction

Analytical Model

• Force located in some point:

$$F(x,t) = U(t)\delta(x-l_t)$$

• Time dependance:

$$U(t) = rac{\pm U_2}{1 + [\omega_{
hoi}(t-t_{12})]^2} \Theta(t-t_{12})$$

 ω_{pi} : ion plasma frequency

$$t_{12} = I_t / \sqrt{\epsilon_{p12}/2m_p}$$

 I_t : target distance

 Θ : Heaviside step function

 $U_2 \approx \epsilon_{e2}$: fast electron energy pulse 2 ϵ_{e1} : fast electron energy pulse 1 • Isothermal model spectrum:

$$f_i = \frac{\alpha \exp(-\alpha \sqrt{\epsilon_0/\epsilon_{e1}})}{2\sqrt{\epsilon_0 \epsilon_{e1}}}$$

• Changed proton energy distribution:

900

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ()

Extension of the model (preliminary):

- Two potentials for front (U_1) and back surface (U_2) of the foil
- Expansion of the foil

The proton redistribution depends strongly on the amplitude ratio $U_1/U_2!$

Conclusion

- The coaction of strong electrical fields at a laser irradiated foil can have a pronounced influence on the propagation of a proton probe beam.
- The redistribution of kinetic energies is restricted to a sharp but relatively narrow energy range.
- A strong effect to proposed staged laser driven TNSA-like acceleration has not been observed experimentally.
- With our experiments and comparison to model calculation and simulation a better knowledge of the field dynamics will be obtained in order to discuss modified additive acceleration scenarios in laser ion acceleration.

うして ふゆう ふほう ふほう うらつ

Acknowledgements

Thank you!

This research was supported by Transregio18 (DFG). A.A.A. acknowledges support from LaserLab Europe (Charpac Programme.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- M. P. Kalashnikov, K. Osvay, G. Priebe, L. Ehrentraut, S. Steinke, and W. Sandner. Temporal contrast of high intensity laser systems above 10¹1 with double cpa technique. *AIP Conf. Proc.*, 1462:108–111, 2011.
- [2] T. Sokollik, M. Schnurer, S. Ter-Avetisyan, P. V. Nickles, E. Risse, M. Kalashnikov, W. Sandner, G. Priebe, M. Amin, T. Toncian, O. Willi, and A. A. Andreev. Transient electric fields in laser plasmas observed by proton streak deflectometry. *Applied Physics Letters*, 92(9), 2008.
- [3] W. Schumaker, N. Nakanii, C. McGuffey, C. Zulick, V. Chyvkov, F. Dollar, H. Habara, G. Kalintchenko, A. Maksimchuk, K. A. Tanaka, A. G. R. Thomas, V. Yanovsky, and K. Krushelnick. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. *Phys. Rev. Lett.*, 110:015003, Jan 2013.
- [4] G. Sarri, A. Macchi, C. A. Cecchetti, S. Kar, T. V. Liseykina, X. H. Yang, M. E. Dieckmann, J. Fuchs, M. Galimberti, L. A. Gizzi, R. Jung, I. Kourakis, J. Osterholz, F. Pegoraro, A. P. L. Robinson, L. Romagnani, O. Willi, and M. Borghesi. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction. *Phys. Rev. Lett.*, 109:205002, Nov 2012.
- [5] S M Pfotenhauer, O Jäckel, J Polz, S Steinke, H-P Schlenvoigt, J Heymann, A P L Robinson, and M C Kaluza. A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams. *New Journal of Physics*, 12(10):103009, 2010.