
S. Brauckmann, M. Swantusch, I. Engin, M. Cerchez, O.Willi  (Heinrich Heine Universität Düsseldorf)
J.A. Green, K. Naughton, H. Ahmed, S. Kar, M. Borghesi  (Queen‘s University Belfast)

H. Powell  (Strathclyde University Glasgow)

Optical probing of plasma dynamics generated 
by high intensity laser pulses on ultrathin foils 

Introduction
Extensive experimental and theoretical studies on the topic of high 
intensity laser- target interaction, investigating new e�cient accele-
ration regimes and optimizing the electron and ion beam properties
(brilliance, energy spectrum, duration, divergence) undergo large 
scienti�c interest. Here we report on recent experimental investi-
gations of ion acceleration by sub-picosecond, high-intensity (3x1020  W/cm2) laser pulses interacting 
with ultra-thin foil targets of di�erent materials at the VULCAN Laser facility in Didcot (UK). In particular, 
we are presenting the temporal evolution of plasma expansion and the formation of plasma jets on the 
rear side detected by optical interferometry and shadowgraphy over time intervals of 0-150ps after the 
laser pulse irradiation.
The investigations of plasma expansion of the targets irradiated by high intensity laser can o�er rele-
vant information in order to characterize the ion acceleration regime (TNSA, RPA-HB or RPA-LS) [2,3].
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Setup and Main Diagnostics
  

Experimental conditions  
 1056 nm laser beam
 with intensities up to 3x1020 W/cm2
 Plasma mirror to enhance the contrast to
 109 between main pulse and ns-long 
 ampli�ed spontaneous emission
 700fs - 5ps pulse duration
 focused down to 7μm spot 
 on Au, Cu, Ag foils with thicknesses between
 10nm - 100nm

Interferometry and Shadowgraphy

Experimental Outcome and Evaluation

Conclusions and further Work
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Chamber setup

Examples of raw data and analysis
Interferometry                        Shadowgraphy

The phase map is reconstructed by using fast Fourier 
transformation of the traced fringe pattern.
Solving the Abel inversion gives the �nal density map [5]
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Laser energy coupling of thin foils
 transmitted energy measurement
 in a certain distance behind the 
 target with calorimeter
 Analysis of laser energy absorption 

Ion spectra diagnostics
  5 Thomson parabolas at -6.5°, 0°, 4.5°, 9.5° 
 and 24° to target normal
 Image plates for detection and recording 

Nomarski-Interferometry
 Wollaston prism divides the beam in two separated 
 beams of perpendicular polarization 
 Polarizor  45° to both beam to let them interfere
 2 partially overlapped images of region of interest

Shadowgraphy
 Beamsplitter devides probe beam for use of both 
 diagnostics at the same time

Images taken between 15-130ps after main beam 
arrives at the target

Data selection
 just half of the expansion 
   due to cylindrical symmetry
 left image due to fringeshift in
   the direction of the expansion

Shadow of the 
target and 
the overdense 
plasma.

Optical probe
 frequency doubled (527nm)
 fraction of the interaction beam
 delay controlled by double pass 
 timing slide 
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Correlation between target parameters, jet generation and the dominant 
acceleration process
 

„hole boring“ 
time

Classi�cation for di�erent acceleration regimes  

HB not yet or just �nished by the end of the laser 
pulse 
 collimated electron jet 

HB �nished before the end of the laser pulse
 no jet generation
 explosion or transition to LS instead

Relevant parameters [6]

FWHM pulse duration

Intensity regime predicts transition between TNSA 
and RPA
Ion spectra of thin foils (e.g. 10nm Au) show RPA 
feature, whereas thick foils (e.g. 2μm Cu) show 
typical TNSA spectra
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Double pulse con�guration to increase the acceleration path
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50nm Ag
50ps late

50nm Ag
50ps late

1ps delay

Impact of circular polarized pulses on the 
expansion

Absence of jxB heating leads to 
 slower but more uniform expansion at the front 
 surface
 less expansion of the bulk plasma (inaccessible 
 area)
 lower proton cut of energy 

stronger expansion in form of a collimated jet with steep density 
gradient in the periphery
symmetric geometry indicates spacial overlap of both pulses
higher proton cut of energy despite lower laser input energy 
low single pulse energy a�ects re�ectivity of Plasma mirror and 
contrast of the pulses which has an impact on the heating process
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Aim 
Second pulse continues to drive the compressed 
foil as soon as �rst pulse decreases, in order to 
enhance the interaction length 

Irradiation at best focus is 
followed by second suitably 
delayed pulse a Rayleigh range 
or fraction beyond 
the focus of the �rst pulse.

50:50 split of energy, focal displacement ~20μm

The experimental outcome of the investigation gives more information to further characterize, optimize and
control electron and ion beams to make them suitable for potential application in many di�erent �elds
e.g. in particle therapy of cancer.
Irradiation of thin foils by double pulse, with a controlled temporal delay leads to new interaction regimes 
which could a�ect the acceleration mechanism (e.g. better energy coupling of the second beam onto 
expanded preplasma generated by the �rst pulse, lower density target by decompression realized by the �rst 
pulse, etc.). Further investigation on the experimental data are planed to identify the dynamics of the 
acceleration process on the double pulse con�guration.  The generation of a collimated plasma expansion 
with steep density gradients strongly depends on the target thickness and the duration of the laser pulse. 
The evolution of the plasma expansion o�ers indications regarding the dominant ion acceleration regime.

Follow up campains will concentrate on exploring the potential o�ered by double pulse geometry on 
controlling parameters like: the acceleration length, the density pro�le of the target by the arrival of the 
second peak pulse, pulse duration which are relevant for RPA or BOA regimes. The new upgraded ARCTURUS 
laser system at HHUD, with two ultrashort (30fs), high contrast (XPW module and 2 PM) beams of 200TW 
power and a probe beam, o�ers the opportunity of large �exibility on the selection of the proper interaction 
conditions in order to explore these promising regimes.
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