

Mitglied der Helmholtz-Gemeinschaft

October 1st, 2013 |

Hydrogen cluster-gas mixtures as novel target concept for laser-acceleration experiments

EMMI Workshop on high energy density plasma diagnostics at FAIR: Novel laser based photon and particle sources

Ilhan Engin - IKP

i.engin@fz-juelich.de

Working group

- Peter Grünberg Institute (FZJ)
 Prof. M. Büscher *)
 Institute for Nuclear Physics (FZJ)
- Jülich Supercomputing Centre (FZJ) --> Prof. P. Gibbon *)
- Institute for Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf (HHUD)
 Prof. O. Willi *)
- Institute for Nuclear Physics, University of Münster (WWUM)
 Prof. A. Khoukaz *)
- Jülich Centre for Neutron Science (FZJ) -> Prof. T. Brückel *)

*) group leaders

Outline

Introductory Overview

· Cluster-Gas Mixtures

• Planned Experiments at HHUD

Düsseldorf ARCturus Laser facility

Laser-induced particle acceleration

gas ; jet ;

channel: relativistic

self-focusing

Cluster-gas mixture

2 standard mechanisms

laser

focus

- → TNSA
- → bubble

- · gas jet density: 10¹⁹ /cm³
- cluster density: up to **10⁶ molec./cluster**
- · cluster jet density: **10**¹⁵ atoms/cm²
- \cdot cluster radius: approx. **0.5 0.9 \mum**
- → in 10 x 10 x 10 µm³: **10² 10³ cluster**

October 1st, 2013

i.engin@fz-juelich.de

· lower intensities: wake fields

· high intensities: wake fields & bubble regime

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B 74, 355-361 (2002)

Target Normal Sheath Acceleration TNSA

proton acceleration from the surface of thin foils (solid targets)

Outline

Introductory Overview

· Cluster-Gas Mixtures

Planned Experiments at HHUD

Novel target concept: cluster-gas mixtures

fix target configuration: CO₂ cluster in ⁴He gas

Novel target concept: cluster-gas mixtures

· laser parameters:

- JLITE-X 4-TW Ti:sapphire
- → 7 x 10¹⁷ W/cm²
- → 30 µm (1/e² intensity)
- → 40 fs (FWHM), 150 mJ @ 1 Hz

Novel target concept: cluster-gas mixtures

Münster cluster source

Institute for Nuclear Physics Prof. A.Khoukaz - WWUM

- \cdot H₂ cluster
- temperature of ~20 K
- cluster density: up to 10⁶ molec./cluster
- cluster jet density: 10¹⁵ atoms/cm²

A.Täschner - http://arxiv.org/abs/1108.2653

Simulations

cluster explodes

- ARCturus 100 + 200 TW Ti:sapphire
- → 10²⁰ W/cm², 10 µm, 25 fs (FWHM), 2.5 J

· laser parameters:

Simulated energy spectra

i.engin@fz-juelich.de

Outline

Introductory Overview

Cluster-Gas Mixtures

• Planned Experiments at HHUD

Neutron production out of H₂ or D₂ targets

 1^{st} milestone: source for accelerated *p*, *d*

2nd milestone: meV neutron production

compact moderators / neutron source vs. nuclear reactors

Simulation for JuSPARC PW laser facility

Outlook

- · fundamental research
 - comprehension of Laser-acceleration mechanisms
 - advantages of Laser-accelerated high-energy protons from a constantly resupplied mass-limited cryogenic H₂ or D₂ target
- · possible applicability, *e.g.* possible neutron gap (~2030) can be filled
- integration in existing or planned infrastructure, *e.g.* the planned
 JuSPARC *) at FZJ

My call for help ;)

- pressure booster:
 - He gas
 - very fast response time
 - · 3 bar \rightarrow 10 15 bar

- piezo valve:
 - non-magnetic materials
 - · response time \sim ms
 - backing pressures ~ 15 20 bar