

Hot electron transport in magnetized targets

Dienstag, 27. Januar 2026 11:40 (20 Minuten)

We report on further simulations for an experiment studying hot-electron transport in a magnetized planar target conducted on the OMEGA-EP laser system [1]. The magnetic field strength was set at 20 Tesla, which is sufficient to divert hot electrons and hinder their propagation toward a copper fluor layer. By analysing the heating of that layer by hot electrons both with and without the applied magnetic field, we intended to differentiate between radiative and hot-electron preheating. However, the experimental results were unexpected, as the K α yields were similar with and without the applied magnetic field. In addition, broadening of the copper K α lines was observed with the magnetic field.

To understand the experimental results, we have conducted 2-D MHD simulations with the FLASH code [2] and hot-electron transport simulations in a magnetized target with the 3D hybrid code PETRA [3]. One possible explanation that aligns with the findings of Enright and Burnett [4] is that the magnetic field increases the average energy of hot electrons, which are primarily generated via SRS. With higher energy, these electrons can reach the fluor layer and produce increased K α emission, like that achieved in the absence of the magnetic field. The broadening of the K α emission from the copper layer when an external magnetic field is applied may be attributed to several effects that are still under investigation. These findings could help in managing hot-electron preheating in direct-drive central hot-spot ignition and shock-ignition targets.

References

- [1] A. Tentori et al. Experimental characterization of hot electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion, *Phys. Plasmas* 28, 103302 (2021).
- [2] B. Fryxell et al., FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes, *ApJS* 131, 273 (2000).
- [3] J.J. Honrubia and J. Meyer-ter-Vehn, Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. *Nuclear Fusion* 46, L25 (2006).
- [4] G.D. Enright and N.H. Burnett, Effect of external magnetic field on the generation and transport of hot electrons in laser-target irradiation, *The Physics of Fluids* 29, 3456 (1986).

Autor: Herr ROSCIANO, Vincenzo (Universidad Politecnica de Madrid)

Co-Autoren: Prof. HONRUBIA, Javier (Universidad Politecnica de Madrid, Focused Energy GmbH); Prof. BATANI, Dimitri (CELIA, Université de Bordeaux); Prof. THEOBALD, Wolfgang (Focused Energy GmbH)

Vortragende(r): Prof. HONRUBIA, Javier (Universidad Politecnica de Madrid, Focused Energy GmbH)

Sitzung Einordnung: Session 5 - Inertial Confinement Fusion 2