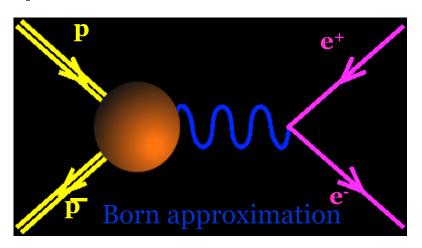
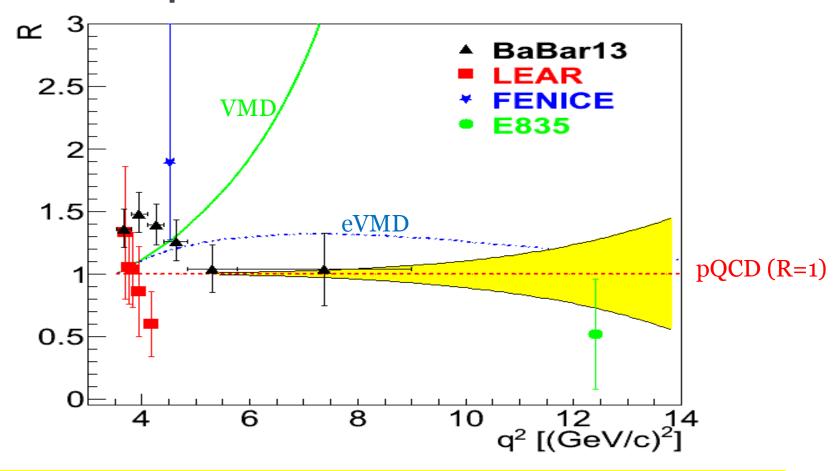
Feasibility study of time like form factor measurement in Pbar+p -> e+ e-

Alaa Dbeyssi

IPN Orsay, France


PANDA XLV. Collaboration Meeting-GSI 24/6/2013


Electromagnetic channels: Time-like proton form factor measurements

Hadronic vertex is parametrized in terms of two electromagnetic FFs: GE and GM

- Total cross section -> effective form factor
- Angular distribution of the electron -> R= |GE|/|GM|
- Angular distribution + normalization -> |GE| and |GM|
- Polarization observables -> relative phase between GE and GM.

Data on TL proton FF ratio

Yellow band: Expected statistical precision of PANDA using the BaBar framework for R=1.

[M. Sudol *et al.* EPJ **A44**, 373 (2010)]

Form factor measurements at PANDA: Challenges

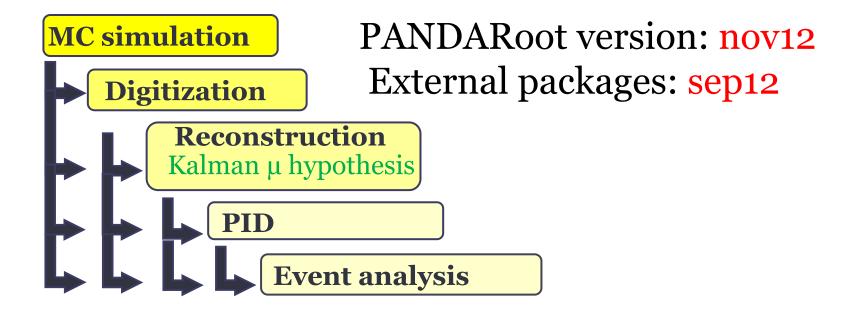
Huge hadronic background:

Signal:
$$\overline{p} + p \rightarrow e^+ + e^-$$
,
Main Background: $\overline{p} + p \rightarrow \pi^+ + \pi^-$
Total cross sections: $\frac{\sigma(\pi^+\pi^-)}{\sigma(e^+e^-)} \sim 10^6$

At least a rejection factor of 10^{-8} is needed

M. Sudol et al. EPJ A44, 373 (2010)

• Radiative corrections to $\overline{p} + p \rightarrow e^+ + e^-$:
PHOTOS @ PANDA: Final state radiations


Outline

1) $\pi^{+}\pi^{-}$ background suppression vs. e+ e- signal efficiency

2) Extraction of the error on the proton FF ratio

Based on MC simulations using PANDARoot framework

Standard chain of reconstruction

Simulation done on the PANDA grid and GSI batch farm (Paul Buehler)

3× 10⁸ events for the background reaction are generated and reconstructed

Monte Carlo parameters:

•
$$\bar{p} + p -> e^+ + e^-$$
 (PHSP).
• $\bar{p} + p -> \pi^+ + \pi^-$ (PHSP).

Full range in θ and ϕ angles.

• PHOTOS for FSR radiative corrections.

$p_{\overline{p}}$ [GeV/c]	3.3	6.4
$s [GeV/c]^2$	8.2	13.9
N(e+e-) [events]	10^{6}	10^{6}
$N(\pi^+\pi^-)$ [events]	108	108

Principal points of analysis:

Selected events 1: Reconstructed events which satisfy the conditions:

- One positive and one negative particle per event.
- Best back to back pair in the center of mass system was selected in the multi (positive or negative) particle events.

Selected Events 2:

After Cuts on the PID probabilities and kinematics.

Kinematical and PID Cuts

$p_{\overline{p}} [\mathrm{GeV/c}]$	3.3	6.4
Total <i>PID</i>	>99%	>99.9%
PID_i	>5%	>6%
Nb. of fired crystals in the EMC	>5	>5
$(\theta^+ + \theta^-)[CM]$	[178°-182°]	[175°-185°]
$ \mathbf{\Phi}^+ - \mathbf{\Phi}^- $	[178°-182°]	[175°-185°]
Invariant mass \sqrt{s}	>2.14	>2.5

PID: probability for the detected particle to be identified as electron. Information from EMC, STT, DIRC and MVD.

Signal efficiency vs. background rejection power

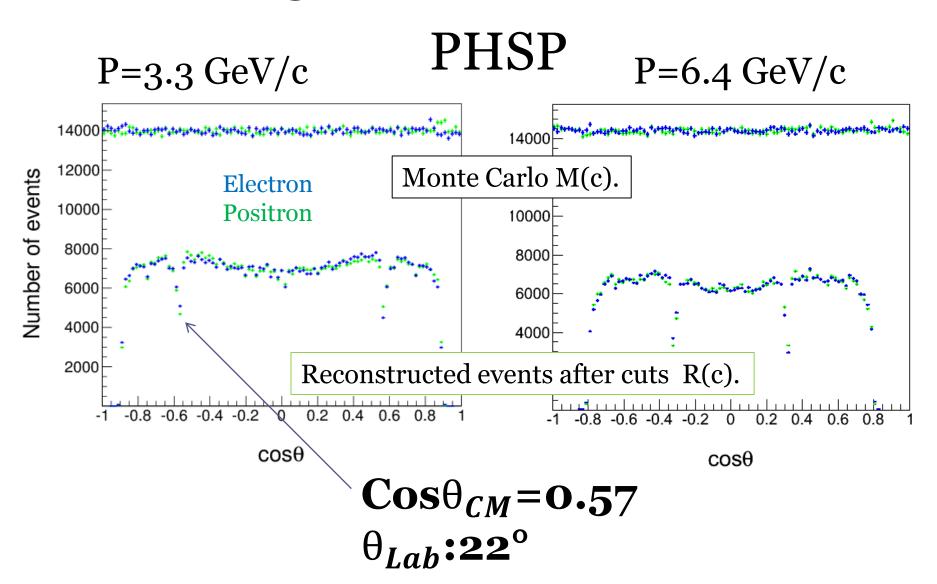
$p_{\overline{p}}$ [GeV/c]	3.3	6.4
Pions [events]	O	O
Electron efficiency integrated in the range of $\cos\theta = [-1,1]$	44 %	35 %

The efficiency is defined as:

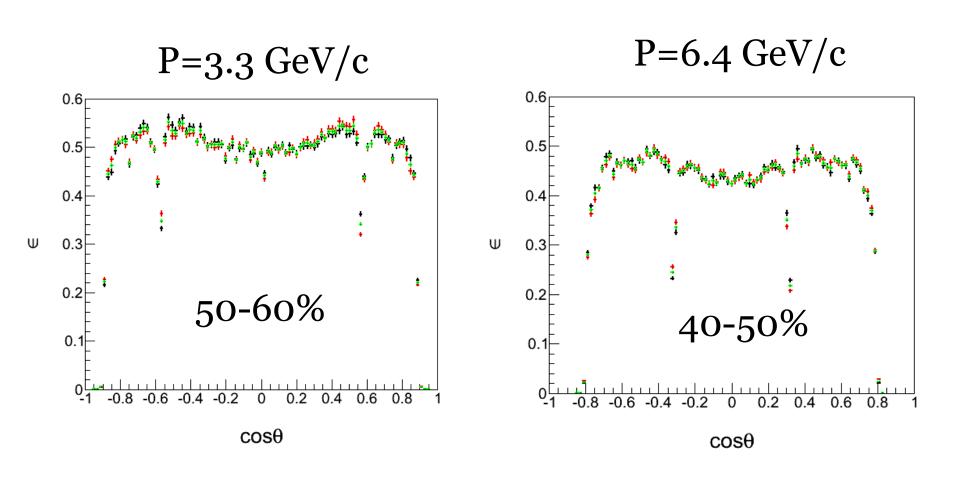
$$\epsilon = \frac{Number\ of\ reconstructed\ events\ after\ the\ cuts}{Number\ of\ the\ Monte\ Carlo\ events}$$

Extraction of the error on the proton FF ratio:

Differential cross section of pbar p->e+e- (OPE):


$$\frac{d\sigma}{d(c)} = \sigma_0 \left[1 + \mathcal{A}c^2 \right]$$
, $c = \cos\theta$, $\sigma_0 = \frac{d\sigma}{dc} \left(\theta = \frac{\pi}{2} \right)$.

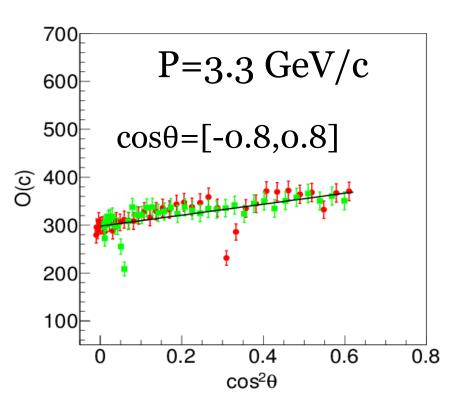
• The angular asymmetry:

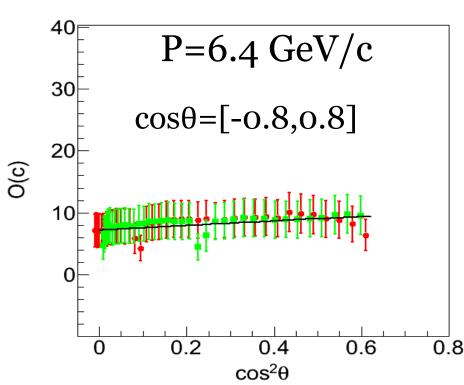

$$\mathcal{A} = \frac{\tau |G_M|^2 - |G_E|^2}{\tau |G_M|^2 + |G_E|^2} = \frac{\tau - \mathcal{R}^2}{\tau + \mathcal{R}^2}. \qquad \mathcal{R} = |G_E|/|G_M|$$

 $\tau = s/4M_p$ and θ is the CM angle of the electron

Electron angular distribution:

Signal efficiency:

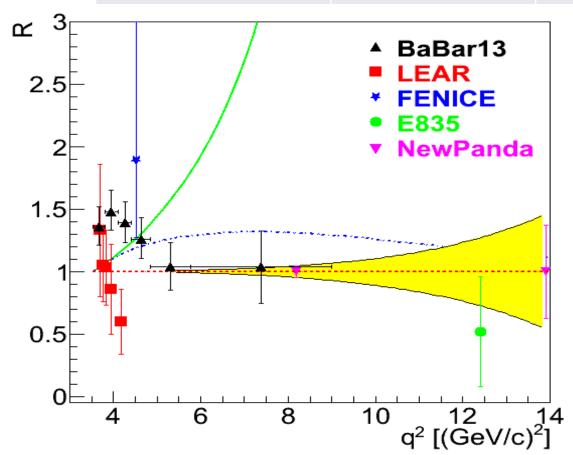



Angular cut: $\cos\theta = [-0.8, 0.8]$

Strategy:

```
Rec. PHSP after cuts [R(c)].
 Monte Carlo PHSP [M(c)].
                                                                Efficiency.
                (based on a model of proton FF ratio, R=1)
    ×Weight
Physical Monte Carlo, P(c).
    ×Efficiency
Physical reconstructed events, W(c).
      × Normalized to the expected events given by the theoretical cross section.
       L=2/fb
   Observed events O(c).
```

Linear Fit of the observed events:

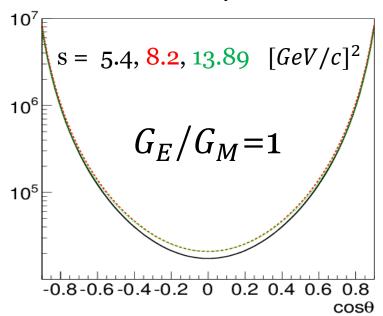


Fit function:

$$y = a_0 + a_1 x$$
 with $x = c^2$, $a_0 \equiv \sigma_0$, $a_1 \equiv \sigma_0 \mathcal{A}$

Results:

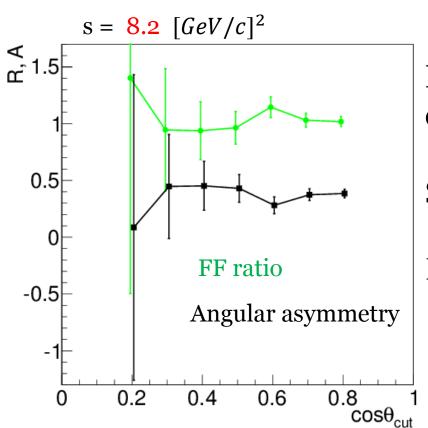
$\mathbf{s} [GeV/c]^2$	8.2	13.9
ΔA	0.038	0.245
ΔR	0.045	0.375


Effect of the angular cut

Rejection power should be effective in each bin of the angular distribution

$$\frac{\sigma(\mathbf{\pi}^+\mathbf{\pi}^-)}{\sigma(e^+e^-)} \sim 10^6$$

$$\frac{d\sigma(\mathbf{\pi}^{+}\mathbf{\pi}^{-})}{d\sigma(e^{+}e^{-})} \sim 10^{6}$$


$$d\sigma(\pi^+\pi^-)/d\sigma(e^+e^-)$$

Differential cross section for the pions

J. Van de Wiele et al., EPJ A46 (2010) 291

Effect of the angular cut

Experimental data on **R** have been extracted in the region of $|\cos\theta| < 0.8$:

Small effect of the angular cut

M. Ambrogiani et al., PRD 60 (1999) Bardin NPB 411 (1994)

$\cos \Theta_{cut}$	0.8	0.6
ΔR	0.045	0.092

Conclusions

In this work we studied the feasibility of the measurement of proton FF ratio at PANDA:

- Two values of momentum transfer squared are considered: s=8.2 and 13.9 $[GeV/c]^2$.
- Suppression of the main background with a rejection factor of 10^{-8} was achieved.
- Small errors are obtained on the proton FF ratio.

The simulation of the low energy point ($s=5.4 [GeV/c]^2$) is finished and will be analyzed soon.

Thank you for your attention

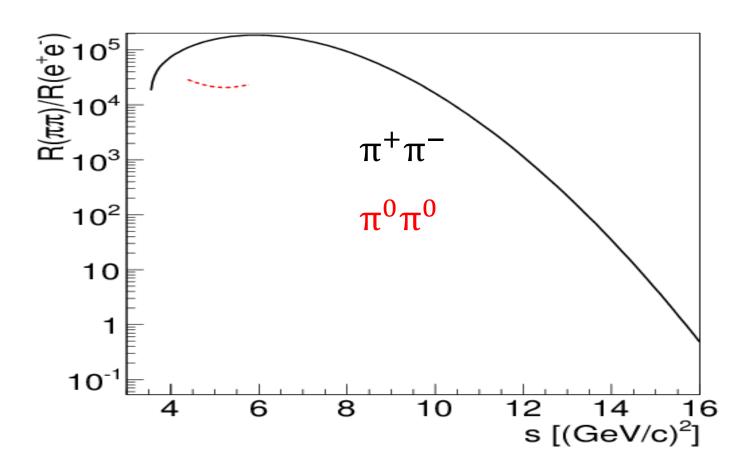
This work was done in collaboration with

Gosia Gumberidze and PANDA Orsay team.

Backup slides

Observed Events O (c):

- Generated Monte Carlo events $P = \int_{-0.8}^{0.8} P(c)$.
- Expected events with L=2/fb:

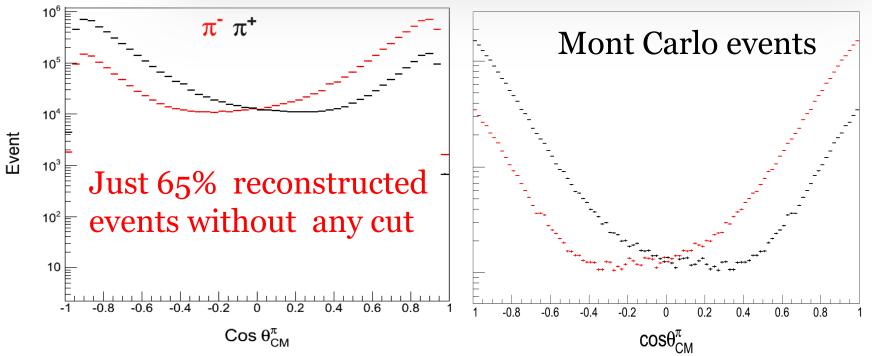

$\mathbf{s} [GeV/c]^2$	8.2	13.9
E[-0.8,0.8]	4.9×10^4	1.4×10^3

o The observed events are:

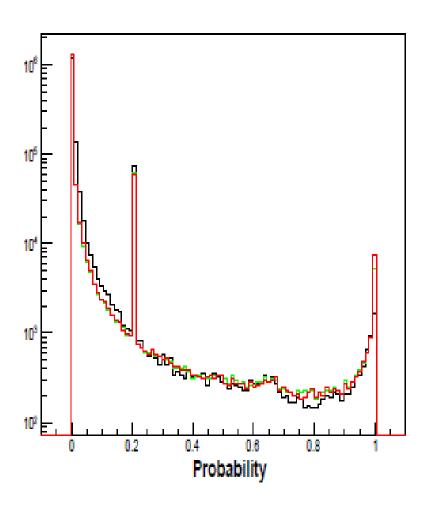
$$O(c)=W(c)$$
. E/P

W(c) are the electron reconstructed events for R=1

Total cross section ratio


Why PHSP?

PIONS: PANDARoot Event Generator (Mainz PANDA group)


2.43<p<5.0 GeV: No data are available.

Extrapolation of Regge theory approach from high energy limit.

[J. Van de Wiele and S. Ong, Eur. Phys. J. A46 (2010) 291]

Distribution of pi-/pi+ is very peaked forward/backward: loosing statistics

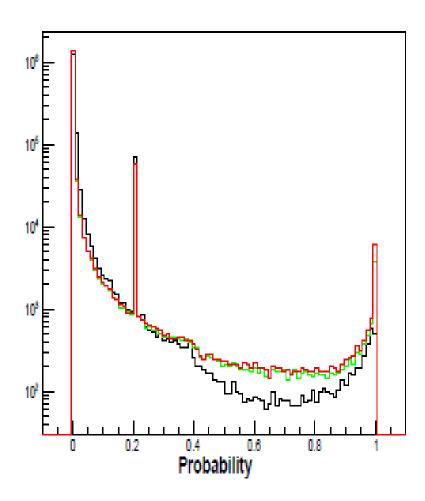
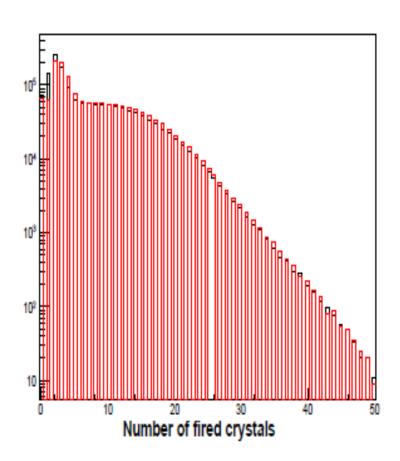



Figure 1.9: Distribution of the PID probability for the detected particles to be identified as positron or electron, in the case of positive pions (left) and negative pions (right).

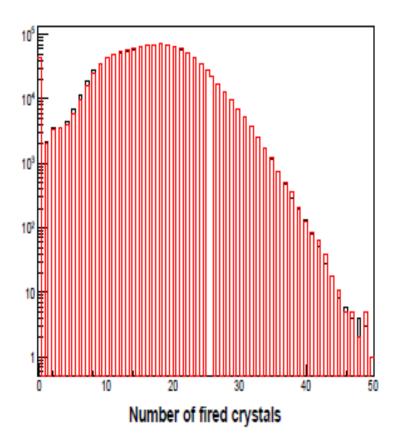


Figure 1.12: Number of the fired crystals in the EMC, for positive (black) and negative (red) particles, for pions (left) and electron (right).

Cut	pions [events]	electron efficiency
$PID^{tot} > 0.99, PID_i > 0.05$	693	61%
$Nb_c > 5$	268	60%
Kinematical cuts (θ, ϕ)	9	51%
$\sqrt{s} > 2$.	3, [-0.8,0.8]=1	/ L / 1
$\sqrt{s} > 2.135$	0	44%, [-0.8, 0.8] = 50%

Tab. 1.2: Effects of the PID and kinematical cuts on the electron and pion events.