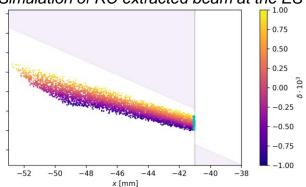
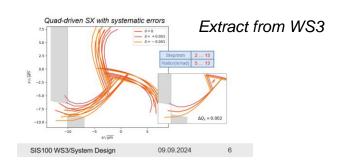




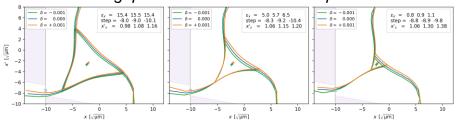

## Contents




- Slow extraction with field errors
- Xsuite studies of KO extraction
- Emergency beam dump
- Halo collimation
- Kicker cable issues
- Summary


## Slow Extraction with Field Errors




- Slow extraction design affected by errors
  - Main challenge: b<sub>5</sub> (dip) and b<sub>6</sub> (quad)
  - Reported during last SIS100 WS
  - Requires changes to SX design
- Adapted SX design defined
  - Working schemes with baseline lattice
    - KO extraction
    - COSE
  - Schemes requiring b<sub>5</sub> corrector
    - Quadrupole-driven SX
  - High extraction efficiency in ideal machine
  - Designed with margin for field errors

#### Simulation of KO extracted beam at the ES

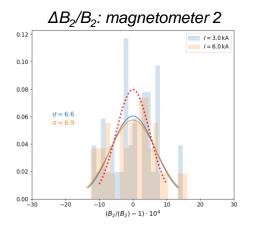


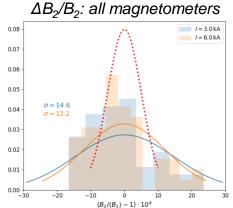


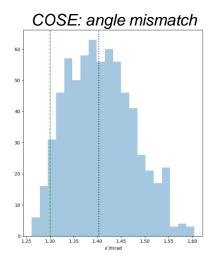
#### Working quad-driven SX with b5 compensation



#### SX performance of adapted design


| SX Scenario      | b5-Corr | Losses |
|------------------|---------|--------|
| KO, 8 um         | No      | 1.8%   |
| KO, 28 um        | No      | 2.2%   |
| COSE, 10 um      | No      | 2.1%   |
| COSE, 28 um      | No      | 3.5%   |
| Quad-scan, 10 um | Yes     | 3.2%   |
| Quad-scan, 15 um | Yes     | 3.9%   |


## **SX with Field Errors: Random Error Studies**



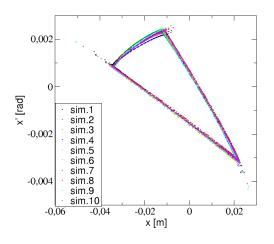

S. Sorge (APH)

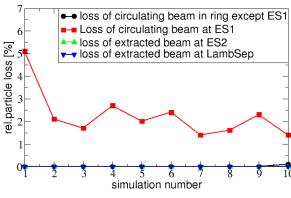
- Magnet errors taken into account
  - Alignment errors (±2mm)
  - Variation of integral field
  - Random multipole errors
- Simulation procedure per scenario
  - 10 random error seeds
  - Optimizer to match separatrix (size, step, angle)
  - Tracking with MAD-X: 1000 particles, 25000 turns
- Preliminary result: adapted design robust
- Remaining issues
  - Possible underestimation of quad field variation
  - Missing quadrupole roll
  - Difficulties with matching for COSE
  - To be solved before publishing of report







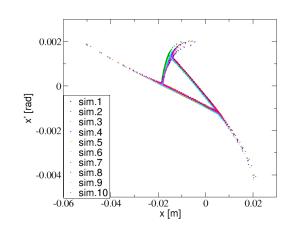

### Report available (draft)

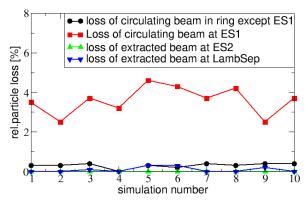



## **SX with Field Errors: Random Error Studies**



KO extraction, 28 mm\*mrad (U28+, 400 MeV/u)




| Losses (ideal)       | 2.2% |
|----------------------|------|
| Avg. losses (errors) | 2.3% |

GSI Helmholtzzentrum für Schwerionenforschung GmbH

## COSE, 10 mm\*mrad (U28+, 1.5 GeV/u)





| Losses (ideal)       | 2.1% |
|----------------------|------|
| Avg. losses (errors) | 3.9% |

probably artefact from angle mismatch

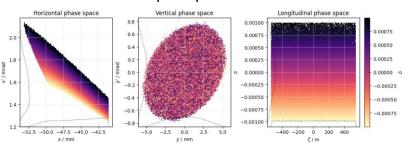
22.09.2025

## **KO Extraction: Excitation and Spill Quality**

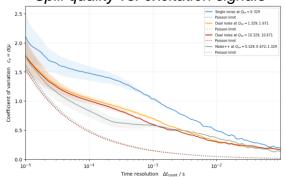


## Simulation toolbox for SIS100 established

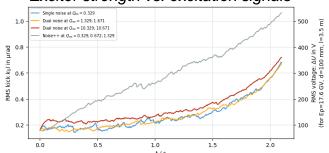
- Xsuite on HPC (0.1Mpart \* 0.6Mturns in few hours)
- First runs (U28+, 1.5 GeV/u) by Ph. Niedermayer
- Successfully benchmarked with Elegant
- Training of SYS members ongoing


### Preliminary results

- 95% extracted within 2 s with  $\Delta U_{RMS} \le 500 \text{ V}$
- Much better spill quality for multi-freq signals
- Most signals within present KO exciter spec


#### Work to be continued within SYS

Systematic study to validate exciter requirements


#### Phase space plots from Xsuite

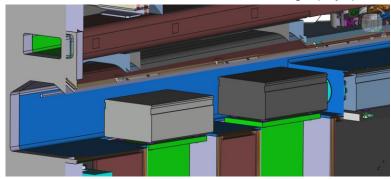


#### Spill quality vs. excitation signals

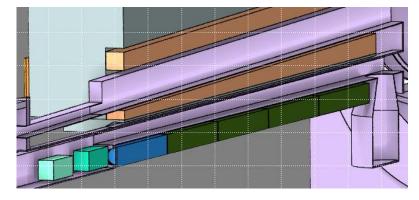


#### Exciter strength vs. excitation signals




# **Beam Dump: Missing Pieces**

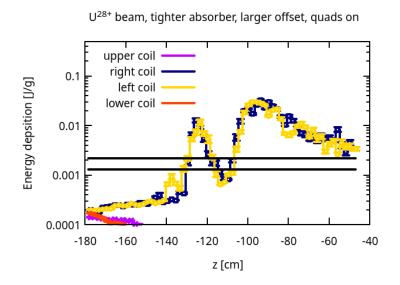


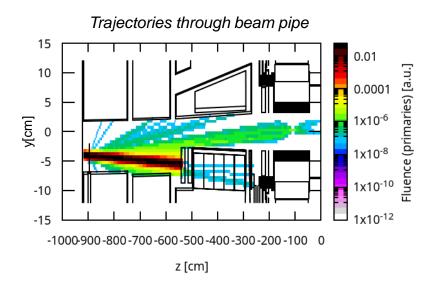

- Internal carbon absorbers
  - Supplier only delivers pedestal (I-beam)
  - Carbon absorber including holder must be designed and procured
    - Sandwiched structure of CFC material
    - Test of sample by vacuum group pending (handling for installation)

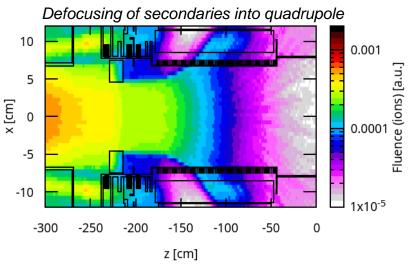
- Material for external absorbers decided
  - First block made from Ti6Al4V
    - Required to avoid damage from proton dumps
  - 5 Densimet blocks to be delivered by Elytt
  - Ti6Al4V block needs to be procured

#### Present status of carbon holder design (Elytt)




#### Internal and external absorbers



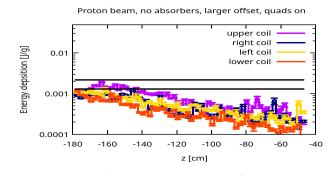


## **Beam Dump: Quenching for U28+**

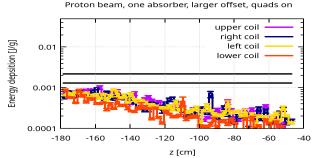


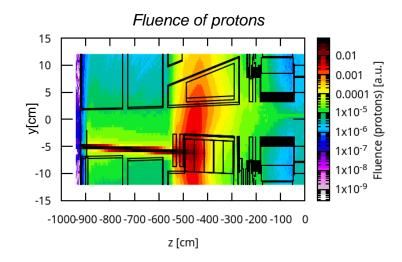
- FLUKA simulations for 5·10<sup>11</sup> U28+ at 1.5 GeV/u
- Quench limit exceeded by more than factor 10
- Root cause: secondaries created in diffusor
- Strong defocusing in first quad behind dump
- Mitigation by tungsten wedge will be investigated



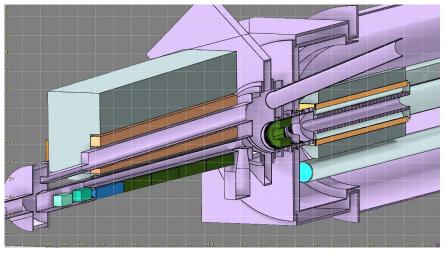






# **Beam Dump: Quenching for Protons**

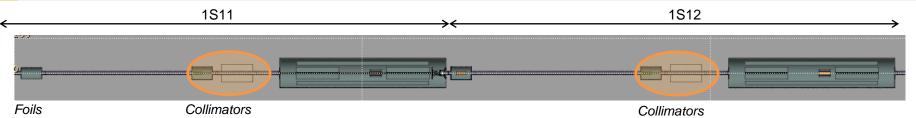



- FLUKA simulations for 2.5·10<sup>13</sup> p at 29 GeV/u
- Lower quench limit exceeded
- Root cause: shower created in external dump
- Mitigation through tungsten absorber proposed
- Challenging integration between valve and cryostat

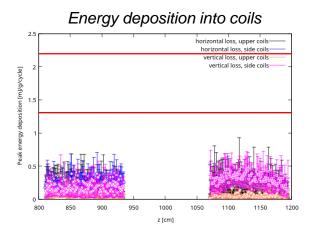

#### Energy deposition w/ and w/o absorber

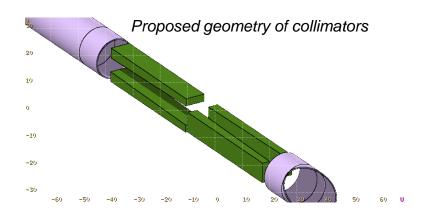


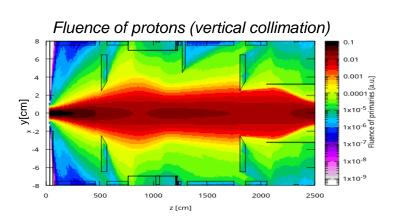





## Tungsten absorber within beam pipe



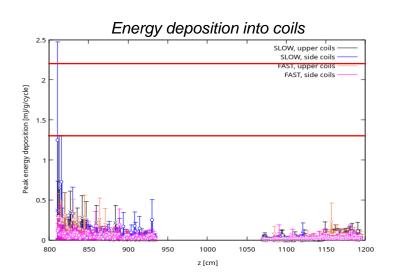


# **Halo Collimation: Protons and Fully Stripped Ions**

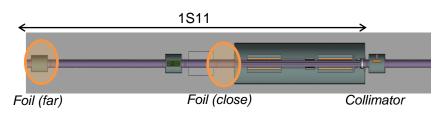




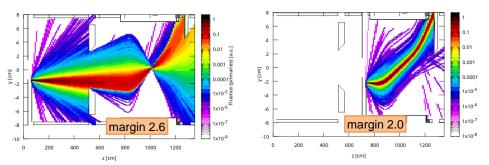

- Geometry of collimator blocks decided
  - Separate collimators for H and V
  - Much simpler manufacturing and handling
- Quadrupoles will not quench
- Verification of multi-pass performance ongoing

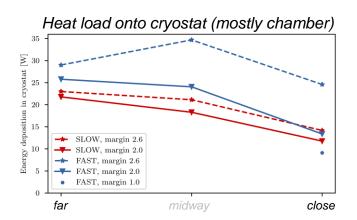





# Halo Collimation: Partially Stripped Ions (Vertical)





- High energy deposition in chamber
  - U28+, design intensity: 10 to 30 W for 5% loss
  - Additional losses in CWT
- Position of stripping foil to be decided
  - Close position: 15 W loss but only margin 2.0
  - Far position: 30 W loss but full margin (2.6)
  - Alternative: install two stripping foils
- Quadrupoles will not quench
- Radiation damage seems acceptable

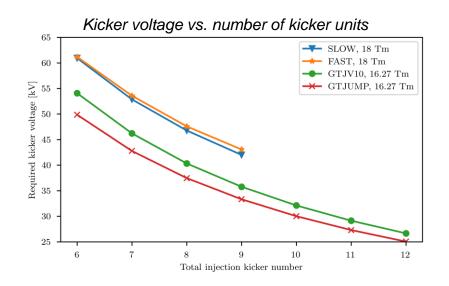


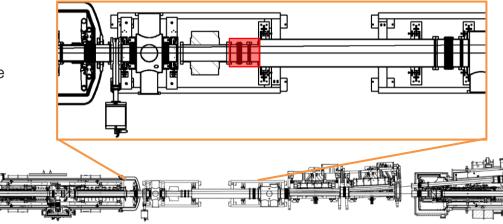


#### Stripped particles for far and close foil position (margin 2.6)






# **Kicker Cables: Injection**



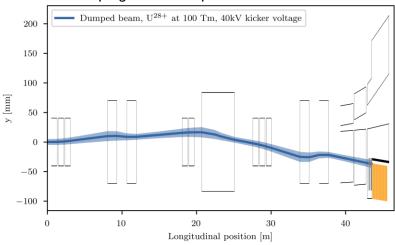

- Installation of two additional kicker units
  - Second module downstream of first
  - Relaxes requirements on max. voltage
- Extensive studies of scenarios
  - Example: SLOW optic
    - Design injection at 18 Tm
      - 6 units: 61 kV 8 units: 48 kV
    - Limit of max. 40 kV voltage, injection with 'tricks'
      - 6 units: injection at 13 Tm possible
      - 8 units: injection close to 18 Tm possible



- Reasons: more units and margin for 'tricks'
- Larger aperture for at least 20 cm more
- Shift BI components as far downstream as possible






## **Kicker Cables: Extraction**



## Consequences of 40 kV max. voltage

- Slow extraction (optic SLOW)
  - Safe emergency dumping up to 69 Tm
  - Sufficient for NUSTAR U28+ reference beam
  - No experiments with high intensities above 69 Tm
    - Dumping of 10<sup>10</sup> above 69 Tm is acceptable (and better than uncontrolled loss!)
- Protons for pbar (optic GTJV10,  $Q_v = 10.3$ )
  - Extraction up to 100 Tm possible with jump optic
  - Polarity change from cycle to cycle required!
- Limitations for other modes
  - Fast extraction (optic FAST)
    - Extraction and dumping up to 85 Tm
  - Protons (optic GTJUMP with  $Q_v = 18.3$ )
    - Extraction and dumping up to 73 Tm

#### Dumping in SLOW optic with 40 kV at 100 Tm



#### Max. rigidity vs. available kicker voltage



# **List of Open Topics**



| Category             | Topic                                                        |
|----------------------|--------------------------------------------------------------|
| SX with errors       | Eliminate remaining issues and finalize report               |
| KO extraction        | Systematic study to validate exciter requirements            |
| Beam dump            | Design and procurement of carbon absorber including holder   |
| Beam dump            | Switching of first external absorber from W to Ti            |
| Beam dump            | Study on preventing quenches from U28+ dumps                 |
| Beam dump            | Decision on W absorber to prevent quenches from proton dumps |
| Halo coll. (p + fsi) | Verification of multi-pass collimation efficiency            |
| Halo coll. (psi, v)  | Decision on foil layout (number of foils, position)          |
| Injection system     | Shift of aperture transition in cell 1S61                    |

# **Summary**



- Robust design for SX in presence of b<sub>5</sub> and b<sub>6</sub> developed
  - KO extraction and COSE work without b<sub>5</sub> corrector
  - Draft version of report ready, finalization after resolution of issues
- KO extraction simulation with Xsuite support present KO exciter design
- Few beam dump topics require decisions and actions
- Foil configuration for vertical halo collimation must be decided
- Consequences of reduced kicker voltage determined
  - Injection: essentially no more issue due to 2 additional units
  - Extraction/Dumping: no issues for First Science++, even protons work

# Thanks for your attention!

Special thanks go to those who did most of the work presented here: L. Bozyk (SIS); B. Galnander, R. Martin (SYS); Ph. Niedermayer (ACC); S. Sorge (APH)