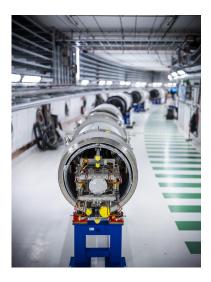
SIS100 tunnel installation Dipoles and Missing Dipoles

Florian Kaether

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt


Klausurtagung Kloster Eberbach September 22 - 24, 2025

Dipole transports to the SIS100 tunnel

- 88 dipoles and missing dipoles are inside the tunnel (of 130 in total)
 - o 80 dipoles (of 108)
 - o 8 missing dipoles (of 12)
- missing:
 - $\circ~$ sector 5 is still completely empty.
 - sector 4 cells 8,9,A,B were temporarily skipped to have more space at the labyrinth for other transports
 - cell E in sectors 4 and 6 were skipped beacause of the fire protection wall

Installation Phase A (before welding)

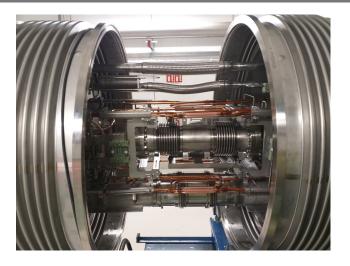
Completed in sectors 1, 2 and 3:

- Telescopic bellow mounting
- DP pairs positioned on blue line with 1 mm precision
- Beam chambers cleaned and connected
- Busbars soldered (exception: sector 3 has to be resoldered. This will be done together with the welding).

In sectors 4 and 6 not started yet. IFJPAN will be back in October to continue.

Test program in phase A

Completed in sectors 1, 2 and 3:

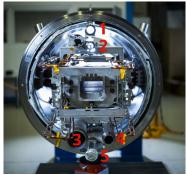

- Visual tests after transport
- HV / LV test
 (all single modules, but to avoid too much stress only one pair to gain experience)
- Continuity test
 (all single modules and pairs)
- Sensor alive test
 (all single modules and pairs)
- UHV leak check beamlines (all pairs)

Process lines - welding

First DP-DP pairs in sector 1 successfully welded! More infos in the talks of T. Winkler and T. Ziglasch.

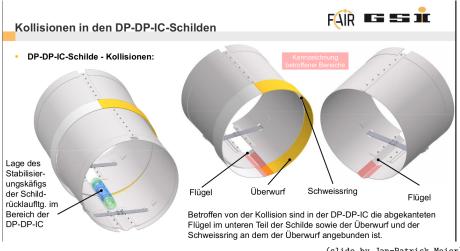
Process lines - cleaning

- Small particles were found in some Helium-pipes → creates risks for restrictor and cooling plant
- Analyzation by technology laboratory (see pics)
- Some metal parts probably created by welding team during pipe preparation \rightarrow solved by improved protection
- Other material unclear (epoxy like, brittle, maybe solder flux remains?)



Process lines - cleaning

- Cleaning of all pipes before the welding
- Easy access to pipes 1,3 and 5
- More difficult for return lines (2 and 4) because of recooler and holder inside, but vacuum cleaning with viedoscope is possible
- Final control with videoscope after welding



Thermal shield modifications

(slide by Jan-Patrick Meier)

Modification started at a small company in Darmstadt (Stahl-Metallbau Hirschmüller)

Open tasks: Busbar clamps

Clamps for soldered Busbar-connections

- small 220 pieces ordered + delievered for DP-DP connection
- not installed yet to keep space for the welding team

Movement-protection

- Pablo Knoblauch is working on this topic
- Two possible concepts:
 - o small clamps (like in the right picture)
 - epoxy bandage
- many pros and cons: accessibility, stability, sharp edges etc.
- no final decision yet

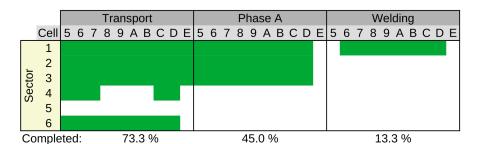
Damaged Dipole 93

Status:

- BNET and insurance both agreed to a fixed price
- Repair started in summer 2025
- Ongoing negotiations about GSI costs: administration, personnel for tests, STF infrastructure etc.

Strategy:

- Cryostat, thermal shield, beam chamber scrapped (too much damage).
- New yoke will be build from steel for quadrupoles.
- Delivery of repaired dipol to GSI without beam chamber. After magnetical field measurements beam chamber and CAP will be installed.



Actual picture (last Friday): half yokes are produced (laser welded by sub-contractor in Rostock)

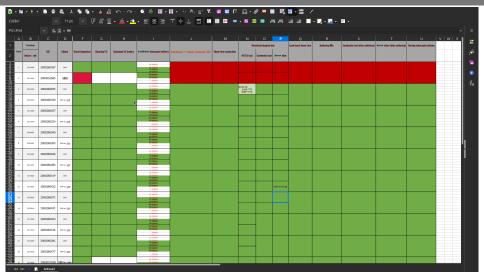
${f Summary}$ - ${f Dipoles}$ installation progress

The End

A posing scientist is doing something completely meaningless.

Backup slides: work plan phase A

DP-DP installation sequence


First round (DP-DP pairs)			
	Work step	Execution /Resp.	
1	Installation of accelerator sensors (Weiterstadt)	SCM	
2	Separation dipole - support frame (Weiterstadt)	Schenker/ TRI	
3	Installing the lining sheets (Futterbleche) (same thickness for all magnets?)	SCM	
4	Mounting the dipole on the transport frame (Weiterstadt)	Schenker/ TRI	
5	Loading of support frame on the truck (Weiterstadt)	TRI/ Schenker	
6	Transport dipole and support frame from Weiterstadt to the entrance of the tunnel	TRI/ Schenker	
7	Mounting the dipole on the support frame	TRI	
8	Transport the dipole + support into the tunnel and to the cell (zig-zag)	TRI	
9	Transport the telescopic bellows from Weiterstadt to the tunnel (one batch per arc, parking position)	TRI	
10	Removal of side walls of wooden boxes and transport out of tunnel	TRI	
11a	for first dipole of each pair: Positioning to the blue line in the final position (with "Galgen")	TRI	
12a	for first dipole of each pair: Anchoring process on the blue line (with final fixation)	TRI	
13	Visual inspection	SCM	

First round (DP-DP pairs)			
	Work step	Execution/Resp.	
14	Installation of new holders of the vacuum chamber	IFJ PAN	
15	Cleaning of the vacuum chamber	IFJ PAN	
16	Installation of telescopic bellows	IFJ PAN	
11b	for second dipole of each pair: Positioning to the blue line in final positon (with "Galgen")	TRI	
12b	for second dipole of each pair: Anchoring process at blue line (with final fixation)	TRI	
17	Purging with synthetic air (if required)	tbd	
18	Electrical integrity test (HV, LV, continuity)	SCM	
19	Sensor a-live test	SCM	
20	Closing of the beampipe	IFJ PAN	
21	Leak test of the beampipe connection	IFJ PAN	
22	Soldering of BBs (interconnection)	IFJ PAN	
23	Closing telescopic bellows for protection	IFJ PAN	
24	Sensor a-live test	SCM	

Backup slides: keeping track on work in progress

