
Progress on the online tracking
algorithm

Yutie Liang, Hua Ye, Martin Galuska, Jifeng Hu, Wolfgang Kühn,

Jens Sören Lange, David Münchow, Björn Spruck

II. Physikalisches Institut, JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Jun. 25 2013

2

1. Introduction
Straw Tube Tracker

Tracking using conformal & hough transformation

Adaptive design

2. Recent progress on the algorithm

3. VHDL implementation

4. Test on FPGA

5. Summary and outlook

Outline

3

Straw Tube Tracker(STT)

4636 Straw tubes
23-27 planar layers
• 15-19 axial layers(green) in beam direction
• 4 stereo double-layers for 3D reconstruction,

with ±2.89 skew angle(blue/red)

From STT : Wire position + drift time

X’

Y’

Method of Pt reconstruction with STT

Coordinate space CF space

4

• Transform the drift circle to CF space.

• Draw lines around the “circle” in CF space.

• Fill the line parameter into the Hough space.

x

y

A look at one example event

Coordinate Space Conformal Space

x(cm)

y
(c

m
)

x’(cm-1)

y
’(c

m
-1)

Hough Space

5

r

θ θ

r

C
o
u
n

ts

6

Adaptive Hough Transformation

Iteration 0 1 2 3 4 5

Hough space 16X16 64X64 256X256 1024X1024 4096X4096 16384X16384

7

Performance Study

* Realistic drift distance: fast approximation from the true distance to the reconstructed one, using Juelich exp curve COSY-TOF

σpt/pt@1GeV/c

A: Using drift circle is as good as using MC truth point.

B: No improvement after iteration 4, using realistic drift circle.

1000 events of single μ track with pt @ 1GeV/c

A

B

Tracking efficiency: ε ~ 99%

X’

Y’

Improvement on the algorithm

CF space

8

X’

Y’

9

1: New method has less lines to be dealt with.

If 100 hits, assume we divide the detector into 10 layers: 10 hits/per layer

10 hits in layer N need to combine with the other 10 hits in layer N+1:

(10 * 10)combinations * 4 lines/ combination * 10 layers = 4000 lines

Previous method:

Iteration 1: 100 hit * 16 lines/hit = 1600

Iteration 2: 100 hit * 16 lines/hit * 16 (peaks from iteration 1) = 25600

Iteration 3: same as iteration 2…

2: No adaptive design is required.

Comparison of new & previous algorithm

X’

Y’

10

 Scheme I (Full): Four lines tangent to

two circles.

 Scheme II (Simply): One line connects

centers of two circles.

Two schemes

X’

Y’

σ ~ 4.6%

σ ~ 10% For the detailed performance study

of the new algorithm, please see

the next talk, given by Hua Ye.

11

VHDL coding, different from C++

VHDL: Very-high-speed integrated circuits Hardware Description Language.

It’s a dataflow language, unlike procedural computing languages such as C++

which runs sequentially, one instruction at a time.

Conformal
transformation

clock

x1_in

r_in

x_out

R = x1_in/r_in ;

x_out = x2_in + R ;

x2_in

Divider: A 32 bits divided by 16 bits

has latency ~ 50 clock cycles

……

……

x1_in

r_in
R

clock cycle: 50

x2_in X2_delay

R <= x1_in/r_in ;

x_out <= x2_delay + R ;

12

Tracking algorithm in VHDL

A line of 96 bits represents one hit: pos_x, pos_y, pos_z, drift distance
……

000000011010100101110010000000000000110011101101000000100000000000000000000000000000011001101011

(1.6619, 0.0505, 2, 0.0250782) Unit (0.1m)

……

000

Tracking module

x,y,z,r

Wire position

+drift distance

Hough
Transformation/

Tangent line
calculation

Peaking
16X1616

24 bits fixed point number: 000000011010100101110010

first 8 bits for the integer part (1 sign bit), last 16 bits for the fractional part

Conformal
transformation

Fill Hough
space

13

Peaking

clock

start

value_out_16
reset

value_in_256

theta_in_256

r_in_256

theta_out_16

r_out_16

stop

0

1

2

3

…

…

254

255

0/1

2/3

…

…

…

… Max

s
ta

rt

Stop reading.

Clock 0

Save max_0

Erase max_0

Clock 2

Save max_1

Erase max_1

…

…

…

Clock 30

Save max_15

Erase max_15

s
to

p

value_out_16

prepared

2 clock cycles to locate one maximum

Peaking module

14

PC as data source and receiver.

 Ethernet.

 Optical link (UDP by Grzegorz Korcyl)

(not integrated yet)

FPGA

FIFO Tracking
algorithm

Ethernet via

Optical Link

Setup and test

FIFO

15

Data Check (Scheme II)

 Input package: 8-bit binary data

00000000

Flag bits: Bit 0,1

01: head 00: body

10: tail 11: invalid

 Output package: 8-bit binary data

 Results:

Pt input : 1GeV/c

Pt output: 0.9788 GeV/c

16

Device utilization Summary

Scheme II Latency: ~ 100 clock cycle

PANDA@20MHz. 2*107 events/second

1 event: ~3 tracks/event * ~16 hits/track * ~ 2 (overlap factor) ~100 hits/event

When dividing STT into 16 layers, ~6 hits/layers. 6*6*15 = 540 combinations

~1~2 clock cycles/combination. 500~1000 clock cycles/event

If FPGA running at 100MHz, (500~1000)*10ns/ 50ns 100~200 FPGA 25~50

CN

17

Summary

 Algorithm upgraded: four lines tangent to a pair of drift circles.

 Very simplified VHDL code implemented and tested in FPGA.

 Many designs tried.

Next to do:

 A LOT to do.

X’

Y’

18

Thank you

19

Conformal
transformation

clock

x_in

y_in

r_in

x0_in

y0_in

x_cf_out

y_cf_out

r_cf_out

Real space

x

y

A(x,y)

CF space

X’

Y’

B(x’,y’)

R2 = (x_in-x0_in)^2 + (y_in-y0_in)^2-r_in^2

x_cf_out = (x_in-x0_in)/R2 + x0_in

y_cf_out = (y_in-y0_in)/R2 + y0_in

r_cf_out = r_in /R2

Conformal transformation module

20

Tracking module

CF Peaking…

stop

value_out_16

theta_out_16
r_out_16

clock

read_en

reset

theta_start

r_start

point_x, y, z…

iteration
i_max

Design A:

Only one module,

change i_max every

loop

Design B:

16 modules,

paralized

Helix
iteration

Helix
iteration

Helix
iteration

Helix
iteration

Helix
iteration

Helix
iteration

i_max = 0 1 ……15

5 iterations

Iteration 0

16 maximums

Iteration 1

Design A,

Design B

……

…

Iteration 4

Adaptive design of tracking module

21

Status of the tracking algorithm in VHDL

Tracking Algorithm

Conformal
transformation

x,y,z,r

Wire position

+drift distance

Legendre
transformation

Find peak

Done Done Done Done

For more realistic input, like id of
tube or amplitude, lookup tables
need to be added here.

Fill
Legendre space

128X128 Legendre space (r, θ)
used.

Simulation

with ISim

Pt(GeV/c)

22

Can we extract the event start time?

• Need fast detector to provide T0.

• With T0, are the overlapped hits

problem?

1: If T0 is known, the contamination hits

from other events have wrong drift circle.

2: Wrong T0 Wrong drift circle bad peak

Can we use this to extract T0?

Wrong drift circle bad peak in legendre space

T0 + 220ns window size

T0=50

T0=80

T0=120

X(cm)

Y
(c

m
)

23

ToT

If large burst:
T0 scan + 220ns window size

Time based simulation of one burst with 50 events

T0 extraction — for large burst

Time (ns)

24

PC as data source and receiver.

 Ethernet.

 Optical link (UDP by Grzegorz Korcyl)

(not integrated yet)

FPGA

FIFO Tracking
algorithm

Ethernet via

Optical Link

Setup and test

FIFO

25

x

y

X’

Y’

2
0

2
0

2

2

0

2

0

)()(

'

'

yyxxr

r

yy
y

r

xx
x

Conformal transformation and Hough transformation

Transform circles to straight lines Describing lines by parameters
y = mx + b (m,b) or (r, θ)
Use all possible angles
Save data in histogram
Peaks in histogram represent possible lines
in point set

26

Momentum resolution can reach this good, if no energy lost in the detector.

27

σ ~ 3.2%

28

Scheme II

