Overview of

FAIR ECE Review of PANDA Target TDR, June 11th 2013 Lars Schmitt, GSI Darmstadt

- Antiprotons at FAIR
- PANDA Overview
- PANDA Systems
- Timeline and Conclusions

Antiprotons at FAIR

Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version

- RESR is postponed (Mod. 4)
 Accumulation in HESR
- 10x lower luminosity

Antiprotons at FAIR

Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version

- RESR is postponed (Mod. 4)
 Accumulation in HESR
- 10x lower luminosity

Antiprotons at FAIR

Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

Modularised Start Version

- RESR is postponed (Mod. 4)
 Accumulation in HESR
- 10x lower luminosity

High Energy Storage Ring

PANDA Overview

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons
→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks

Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons**:

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure
 Generalized Parton Distributions
 → Formfactors and structure functions, L_a

Timelike Nucleon Formfactors Drell-Yan Process

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks **Spectroscopy with Antiprotons**:

Production of states of all quantum numbers Resonance scanning with high resolution

Hadron Structure Generalized Parton Distributions

• Formfactors and structure functions, L_{a}

Timelike Nucleon Formfactors Drell-Yan Process

Nuclear Physics

Hypernuclei: Production of double Λ-hypernuclei
γ-spectroscopy of hypernuclei, YY interaction

Hadrons in Nuclear Medium

June 11th 2013

PANDA Overview

June 11th 2013

PANDA Systems

PANDA Target

Luminosity Considerations

- Goal: $2x10^{32}$ cm⁻²s⁻¹ (HL mode)
- With 10¹¹ stored p and 50 mb: 4x10¹⁵ cm⁻² target density

Cluster Jet Target

- Continuous development
 - Nozzle improvement
 - Better alignment by tilt
 - e ~2x10¹⁵ cm⁻² reached
- TDR completed

Pellet Target

- >4x10¹⁵ cm⁻² feasible
- Prototype under way
- Pellet tracking prototype
- Second TDR part to come

Latest version of the cluster jet target

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Outer layers: double sided strips
 - Rectangles & trapezoids
 - 128 channel readout ASIC
- Mixed forward disks (pixel/strips)

Challenges

- Low mass supports
- Cooling in a small volume
- Radiation tolerance

The Straw Tube Tracker

Detector Layout

- 4600 straws in 21-27 layers, of which 8 layers skewed at ~3°
- Tube made of 27 μm thin Al-mylar, Ø=1cm
- R_{in}= 150 mm, R_{out}= 420 mm, I=1500 mm
- Self-supporting straw double layers at ~ 1 bar overpressure (Ar/CO₂)
- Readout with ASIC, TDC, FADC

Material Budget

- Max. 26 layers,
- 0.05 % X/X₀ per layer
- Total 1.3% X/X₀

Detector Studies

- Prototype construction & tests
- Aging tests: up to 1.2 C/cm²
- Cosmic tests for dE/dx
- Simulations of field and detector

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
 - Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- Approx. 35000 channels total
- Challenge to minimize material

June 11th 2013

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- Approx. 35000 channels total
- Challenge to minimize material

PANDA Overview

June 11th 2013

Forward Tracking

Tracking in Forward Spectrometer

- 3 stations with 2 chambers each
 - FT1&2 : between solenoid and dipole
 - FT3&4 : in the dipole gap
 - FT5&6 : largest chambers behind dipole
- Straw tubes arranged in double layers
 - 27 μm thin mylar tubes, 1 cm Ø
 - Stability by 1 bar overpressure
- 3 projections per chamber (0°, ±5°)

Modular layout of straws

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

PANDA DIRC Detectors

Detection of Internally Reflected Cherenkov light

Scintillator Tile Hodoscope

Detector for ToF and event timing

- Scintillator tiles 3x3x0.5 cm³
 - → BC404, BC408 or BC420
 - Space points with precision timing
 - ➔ Lowest possible material budget
- Photon readout with 2 SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
 - High intrinsic noise
 - Temperature dependence
- Goal for time resolution: 100 ps
- ASIC for SiPM readout

June 11th 2013

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- Delivery of crystals started

Large Area APDs Image: CMS Image: CMS 5x5 mm² 10x10 mm² and 7x14 mm²

- LAAPD readout, 2x1cm²
- σ(E)/E~1.5%/√E + const.

Forward Endcap

- 4000 PWO crystals
- High occupancy in center
- LAAPD or VPT

Backward Endcap for hermeticity, 560 PWO crystals Forward EMC shashlyk behind dipole

PANDA Overview

June 11th 2013

Muon Detector System

Muon system rationale:

- Low momentum particles
- High background of pions
- Multi-layer range system

Muon system layout:

- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Forward Range System:
 - 16+2 layers
 - Iron absorbers
- Detectors: Drift tubes with wire & cathode strip readout

PANDA Data Acquisition

Self triggered readout

- Components:
 - Time distribution system
 - Intelligent frontends 0
 - Powerful compute nodes
 - High speed network
- Data Flow: 0
 - Data reduction 0
 - Local feature extraction
 - Data burst building 0
 - Event selection
 - Data logging after online reconstruction

Programmable Physics **Machine**

1000 destinations

1000 data sources

Computer farms

PANDA Timeline and TDR Status

- Completion of technical design
 - TDRs of MVD end 2011, of STT and Target in spring 2012
 - Further TDRs during 2012
 - Evaluation of most TDRs in 2012
 - Preparation of Construction MoU in 2012
- 2013: Start of construction
 - TDRs of DIRC and SciTil
 - Production of detector components starts
- End 2014: Production of components complete for most systems
- 2015/16: Preassembly in Jülich
 - Solenoid magnet: mounting and field mapping
 - Mechanics of MVD and STT
 - Cosmic tests with STT
 - EMC
- 2017: Installation at FAIR
- 2018: First beam for commissioning and physics

Summary

Present Status of PANDA

- Several systems head for TDR submission
- Preparation for Construction MoU
- Physics and detector topics

Timeline of PANDA

- Most TDRs to complete by end 2012
- Start of construction in 2013
- Start of preassembly at Jülich in 2015/16
- Mounting at FAIR in 2017

PANDA & FAIR start in hadron physics from 2018

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

The PANDA Collaboration

More than 520 physicists from 66 institutions in 17 countries

Aligarh Muslim University U Basel **IHEP Beijing U** Bochum Magadh U, Bodh Gaya BARC Mumbai **IIT Bombay** U Bonn **IFIN-HH Bucharest** U & INFN Brescia U & INFN Catania NIT, Chandigarh AGH UST Cracow JU Cracow U Cracow **IFJ PAN Cracow GSI** Darmstadt

Karnatak U, Dharwad TU Dresden JINR Dubna U Edinburgh **U** Erlangen NWU Evanston U & INFN Ferrara LNF-INFN Frascati U & INFN Genova **U** Glasgow U Gießen Birla IT&S. Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati IIT Guwahati **IIT** Indore

Jülich CHP Saha INP, Kolkata **U** Katowice IMP Lanzhou **INFN** Legnaro U Lund U Mainz U Minsk **ITEP Moscow** MPEI Moscow TU München U Münster **BINP Novosibirsk IPN** Orsav U & INFN Pavia **IHEP** Protvino **PNPI** Gatchina

U of Silesia U Stockholm KTH Stockholm Suranree University South Gujarat U, Surat U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala U Valencia SMI Vienna SINS Warsaw TU Warsaw

