eI Nuclear deformation
j in Brussels Skyrme EDF models
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Nucleosynthesis Neutron stars
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Nucleosynthesis Neutron stars
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89| Nuclear astrophysics simulations require tons of nuclear data e
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—> G0AL : all nuclear input based on one single model

40

N )
20 | r [ NS outer crust: u
L masses
Big Bang | [ S
A(a,b)B i

o-process: ~1000 nuclei
n-, p-, O, V-capture, photodis.

50 100 150 200
CNO+p/at N




Skyrme energy density functional (EDF) theory

Coupling constants to be fitted to dats

Bsymnelsl ~ [ &1 [Ch@p] @] +[cperpmpt] + -
| |

Local densities and currents of the wavefunction

min Etot — ESkyrme + Ekin + ECoul + Epair + Eérlrz + EC(_-(QIB + Erot + EW

J2)

Included in mean-field Corrections treated

semi-variationally
Set of trial wavefunctions:
Mean-field states = Slater determinant + symmetry breaRing
— solving the Hartree-Fock(-Bogoliubov) problem




Skyrme energy density functional (EDF) theory

min Etot — ESkyrme + Ekin + ECoul + Epair + E((;Erz + E<2) + Erot + EW

P cm

Included in mean-field Corrections treated

semi-variationally
Set of trial wavefunctions:
Mean-field states = Slater determinant + symmetry breaking

—s solving the Hartree-Fock(-Bogoliubov) problem

Wavefunction with individual nucleons - Unclear how to improve functional form

Feasible for 1000s of nuclei (incl. odds) - Lack of systematic uncertainty quantification

Many observables accessible




Brussels-Skyrme-on-a-Grid: BSKG

30 representation agnostic wrt shape

shape DOF characterized by multipole moment

Symmetry breaRing enlarges variational space

— captures collective correlations at modest (PU cost
— BUT loss of quantum numbers
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Brussels-Skyrme-on-a-Grid: BSKG

Triaxial Octupole Triaxial + octupole
B20, B2z or B2,y B20, B30 B20, P22 and [sg

30 representation agnostic wrt shape

shape DOF characterized by multipole moment

Symmetry breaRing enlarges variational space

— captures collective correlations at modest (PU cost
— BUT loss of quantum numbers




BSkG1: G. Scamps et al.,, EPJA 57,333 (2021).

Brussels-SRyrme-on-a-Grid: BSkG

BSkG1

e fitted to 2457 masses
o fitted to 884 charge radii

e includes triaxial deformation

Rms o BSkG1 BSkG2 BSkG3 BSkG4 BSkG5H
Masses [MeV] 0.741
S, [MeV] 0.466
Radii [fm] 0.024

Prim. barriers [MeV] |0.88
Sec. barriers [MeV]| |0.87

Fission isomers [MeV||1.0
Max. NS mass [Mg| |1.8




BSkG1: G. Scamps et al.,, EPJA 57,333 (2021).
BSkG2: W. Ryssens et al., EPJA 58, 246 (2022).

BrusseIS-Shyrm e-on-a-Grid: BSkG W. Ryssens et al., EPJA 59, 96 (2023)

BSkG1 BSkG2

o fitted to 2457 masses o complete time-reversal breaRing

o fitted to 884 charge radii

e fit to 45 reference fission barriers

e includes triaxial deformation + 28 fission isomers

Rms o BSkG1 BSkG2 BSkG3 BSkG4 BSkG5H
Masses [MeV] 0.741 0.678
S, [MeV] 0.466  0.500
Radii [fm] 0.024 0.027

Prim. barriers [MeV] {0.88  0.44
Sec. barriers [MeV| |0.87  0.47
Fission isomers [MeV||1.0 0.49
Max. NS mass [Mg| |1.8 1.8




Brussels-SRyrme-on-a-Grid: BSkG

BSkG1

e fitted to 2457 masses

BSkG1: G. Scamps etal.,, EPJA 57,333 (2021).

BSkG2: W. Ryssens et al., EPJA 58, 246 (2022).
W. Ryssens et al., EPJA 59, 96 (2023).

BSkG3: G. Grams et al,, EPJA 59, 270 (2023).

BSkG2

o complete time-reversal breaking

e fit to 45 reference fission barriers

o fitted to 884 charge radii

e includes triaxial deformation

+ 28 fission isomers

Rms o

BSkG1 BSkG2 BSkG3 BSkG4 BSkGbH

Masses [MeV]

Sn [MeV]

Radii [fm]

Prim. barriers [MeV]
Sec. barriers [MeV]

Fission isomers [MeV]
Max. NS mass [Mg]

0.741 0.678 0.631
0.466 0.500 0.442
0.024 0.027 0.024
0.88 044 0.33
0.87 047 0.51
1.0 049 0.34
1.8 1.8 2.8

10

BSRG3
o extended Skyrme EDF form (t,, t5)

e break parity (octupole deformations etc.)




Brussels-SRyrme-on-a-Grid: BSkG

BSkG1

e fitted to 2457 masses

BSkG1: G. Scamps etal.,, EPJA 57,333 (2021).
BSkG2: W. Ryssens et al., EPJA 58, 246 (2022).
W. Ryssens et al., EPJA 59, 96 (2023).
BSkG3: G. Grams et al,, EPJA 59, 270 (2023).
BSkG4: G. Grams et al,, EPJA 61, 35 (2024).

BSkG2

o complete time-reversal breaking

e fit to 45 reference fission barriers

o fitted to 884 charge radii

e includes triaxial deformation

+ 28 fission isomers

Rms o

BSkG1 BSkG2 BSkG3 BSkG4 BSkGbH

Masses [MeV]

Sn [MeV]

Radii [fm]

Prim. barriers [MeV]
Sec. barriers [MeV]

Fission isomers [MeV]
Max. NS mass [Mg]

0.741 0.678 0.631 0.633
0.466 0.500 0.442 0.402
0.024 0.027 0.024 0.025
0.88 044 033 0.36
0.87 047 051 0.53
1.0 049 034 0.33
1.8 1.8 2.8 2.3

BSkG4

e pairing reproduces advanced INM calculations

BSRG3
o extended Skyrme EDF form (t,, t5)

e ideal for TD simulations in NS crust

e break parity (octupole deformations etc.)




BSkG1: G. Scamps etal.,, EPJA 57,333 (2021).
. BSkG2: W. Ryssens et al., EPJA 58, 246 (2022).
- - -7 - d‘ W. Ryssens et al., EPJA 59, 96 (2023).
B[USSEIS Shyrme On a G” * BShG BSkG3: G. Grams et al,, EPJA 59, 270 (2023).
BSkG4: G. Grams et al,, EPJA 61, 35 (2024).
BSkG5: G. Grams et al. arXiv:2601:05968 (2026).

BSkG1 BSkG2

o fitted to 2457 masses o complete time-reversal breaRing

o fitted to 884 charge radii

e fit to 45 reference fission barriers

e includes triaxial deformation + 28 fission isomers

DISCLAIMER Rms o BSkG1 BSkG2 BSkG3 BSkG4 BSKG5
NRLO: up to 2k derivatives of density ~ Nasses [MeV] 0.741 0.678 0.631 0.633 0.649
BSKG5 S, [MeV] 0.466 0.500 0.442 0.402 0.409
Radii [fm] 0.024 0.027 0.024 0.025 0.027

e  N21L0 Skyrme functional Prim. barriers [MeV| (0.88 0.44 0.33 0.36 0.43
Sec. barriers [MeV] |0.87 0.47 051 053  0.49
Fission isomers [MeV||1.0 049 034 033 0.59
Max. NS mass [Mg| |1.8 1.8 2.8 2.3 2.2

BSkG3

o  Fewer free parameters

e pairing reproduces advanced INM calculations

o extended Skyrme EDF form (t,, t5)

e ideal for TD simulations in NS crust e break parity (octupole deformations etc.)




More on shape and charge distributions

“ordinary” quadrupole deformation

o
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BSkG1: G. Scamps et al., EPJA 57,333 (2021).
BSkG2: G. Grams et al,, EPJA 59, 270 (2023).




More on shape and charge distributions

“ordinary” quadrupole deformation

)
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Triaxial deformation
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BSkG1: G. Scamps et al., EPJA 57,333 (2021).
BSkG2: G. Grams et al,, EPJA 59, 270 (2023).




BSkG1: G. Scamps et al., EPJA 57,333 (2021).
BSkG2: G. Grams et al,, EPJA 59, 270 (2023).

More on shape and charge distributions

“ordinary” quadrupole deformation Triaxial deformation
©
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Rotational correction in “*Mg with BSkG1

With rotational correction Without rotational correction

60° 60°

) B
\ |
‘“ 't

00 0.2 04 0.6 0.8
1)
0 1

E (MeV)

G. Scamps et al., EPJA 57, 333 (2021).

Many nuclei triaxially deformed due to semi-variational inclusion of rotational correction
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More on shape and charge distributions

“ordinary” quadrupole deformation Triaxial deformation

o G0

Ru (Z=44)

08 ——T——"—— "
07 L Exp. 100
BSkG1
gg - 1 _ sof
w 0.4 [ 1 5 eof
0.3 | By f __ § -----
0.2} 3 1 & *F
0.1} LA
O 0 . . ] 1 . . | 201
0 50 100 150 200 250 o . .
Mass number A 0 50 100

150 200

Neutron number

17

2.5

E [MeV]

Proton number Z

110t
100
901

80
70

60f| =

50

BSkG1: G. Scamps et al., EPJA 57,333 (2021).
BSkG2: G. Grams et al,, EPJA 59, 270 (2023).

octupole deformation
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Fingerprints of triaxiality in Ruthenium energies

Mass number A
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M. Hukkanen et al. PRC 108, 064315 (2023)




Fingerprints of triaxiality in Ruthenium charge radii

Rigorous uncertainty quantification is impossible within EDF inits current form

—s spread between BSkG[1,2,3,4] as proxy for uncertainty

B. Maass, et al. arXiv:2503.07841

47} Existing Data 2 =:§_=_=sf: ) _' New Ruthenium Data I L ==14.60
< palt® , _J=
3 46k 46P§1!!_.’ """"""""" g T e —
407 gt 1 gespdiaes — &= 0
Ao r‘.l!'.— i:‘! o i T — =
g:O 4.5 uRU gt . S -E' l_ — 44.55
& i B L pippfooses” &
U j__— I‘;I— \\ 1]
C;G —14— _a- s - \ g
Q9 ol 2Mo _: I Exp. Data
5 o1 _&f \ B f== Axial
e 4.3 == \ v a
-t \ #&== Triaxial 450
T | L 1 1 [“ I 1 I | I
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Neutron Number N
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Fingerprints of triaxiality in Ruthenium charge radii

Total binding energy

60°

N) o H= t (@] | [0.¢]
E (MeV)

ok

rms charge radius

B. Maass, et al. arXiv:2503.07841
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Fission barriers

E (MeV)

oo N ~ O 00
. T T i T ¥ T T T r

14

W. Ryssens et al., EPJA 59, 96 (2023).
E. Flynn et al., PRC 105 (2022).
A. Sdnchez-Fernandez et al., arXiv:2508.16240

12}
10t

— Axial (2D)
— Triaxial (3D)
—— RIPL-3 values
EI iEiso y
0 05 10 5 20
Bao

Al inner-barriers are triaxial

All outer-barriers are triaxial + octupole deformed




W. Ryssens et al., EPJA 59, 96 (2023).
E. Flynn et al., PRC 105 (2022).
A. Sdnchez-Fernandez et al., arXiv:2508.16240

Fission paths
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o Poor-man’s 3D collective space: B,, , B., ., B,

o Least action path (consistent inertias) obtained using PyNEB

« For 3000 fissioning nuclei
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W. Ryssens et al., EPJA 59, 96 (2023).
E. Flynn et al., PRC 105 (2022).
A. Sdnchez-Fernandez et al., arXiv:2508.16240

Spontaneous fission half lives
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o [Exp.data: 124 ground-state + 34 isomer half lives
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W. Ryssens et al., EPJA 59, 96 (2023).
E. Flynn et al., PRC 105 (2022).
A. Sdnchez-Fernandez et al., arXiv:2508.16240

Spontaneous fission half lives
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o [Exp.data: 124 ground-state + 34 isomer half lives

o BSRG3 comparable to best mic-mac models

— without additional parameter adjustment
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Applications which will not be discussed

E/Aneutm (MeV)

Neutron star
Equation of State (EoS)

o LS2 = BSkG5 /’
APR  — = BSkKG3 7 )
s FP — = BSkG2
WFF  seeee SN2LO1

0.2 0.4 0.6 0.8 1.0
density (fm~3)

G. Grams et al., arXiv2601.05968

o
Y

11614—2230

J0614-3329

[ = BSkGS5

BSkG4
SN2LO1

(a)

10 11 12 13 14 15
Radius (Km)

N. Shchechilin et al

Nuclear Pasta

., in preparation

rho_tot, fnr3
0.0915

[0.0861

—0.0807

[0.0754
0.0700
Max: 0.0915
Min: 0.0591

Mass fraction X

r-process simulations

| sym-n fa6

——BSkG3
—— BSKG4

G. Grams et al., arXiv2601.05968
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Applications which will not be discussed

Mass fraction X

r-process simulations

| sym-n fa6

Po T
f || Solar-r —— BSKG3
—— BSkG4

(

\_

r-process simulations require a lot of data

Nuclear masses
Nuclear level densities
Fission paths and fragment yields

Electromagnetic and weaR strength functions
for ALL nuclei

G. Grams et al., arXiv2601.05968
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Applications which will not be discussed

Mass fraction X

r-process simulations

| sym-n fa6

Po T
? || Solar-r —— BSKG3
—— BSkG4

-

\_

r-process simulations require a lot of data

v/ Nuclear masses
v" Nuclear level densities
v/ Fission paths and fragment yields

% Electromagnetic and weak strength functions
for ALL nuclei

G. Grams et al., arXiv2601.05968




K. Washiyama et al.,, PRC 96, 041304 (R)

Photon strength functions in BSRG

Current effort: implement FAM-QRPA to obtain strength functions

24Mg

15 F T T T T T T T T .
. : ,& — &= Brussels :
T - f\‘ — &= Kouhei
o b } _

i I

< [ 1 : Isoscalar quadrupole
= 1
=, y
O§ 4

w[MeV]

Many thanks to Kouhei Washiyama for helping to benchmark the FAM code
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Photon strength functions in BSRG

Current effort: implement FAM-QRPA to obtain strength functions

3
=
o
()
|

208Pb
6000 F ISGMR

0 5 10 15 20 25
w [MeV]

Very first FAM calculation with an N2LO Skyrme functional
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Emulating FAM via reduced order model

Solve FAM for few snapshot frequencies w; Z

— Interpolate X and Y amplitude for any w 5

— Efficient interpolation of strength function
+ Extrapolations in complex frequency plane
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Work of master’s student Emma Vancayseele

Approximation 15 snapshots | ¥ 25 snapshots
®  Reference data
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.
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BSkG4: G. Grams et al., EPJA 61, 35 (2024).
Pb208 data: H. Euteneuer et al,, Nuc. Phys A 298, 3 (1978).

Quality of charge densities

spread between BSRG|2,3,4] as proxy for uncertainty
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Measuring charge radii with muonic X-rays

(1) Experiment: Produce muonic atom and measure cascade of X-rays caused by muon falling into the nucleus

(2)  QED calculation: link the muonic X-ray energies to the charge radius of the nucleus

Bar ~ [ 1€ pep(r)dr = Vi (r?)1/?

578,211
578.1 171
578.0 1
o 577.9
X
W 577.8
STT 1
577.6 17

&57.2.5

k= 2.0937
o = 0.056

3.37 3.38 3.39 3.40
RMS radius (fm)

“Sensitive to shape”

432 433 434 435 436 437
Barrett radius (fm)

“Insensitive to shape”

K. A. Beyer et al., arXiv:2506.08804
Courtesy of Michael Heines
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Measuring charge radii with muonic X-rays

(1) Experiment: Produce muonic atom and measure cascade of X-rays caused by muon falling into the nucleus

Barrett
(2)  QED calculation: link the muonic X-ray energies to the egrarge radius of the nucleus

(3) V2 shape correction: determined from p,, () obtained from electron scattering or through nuclear theory

Rpar ~ [1%e ™ po(r)dr = Va(r?)1/2

578.2 1q
578.1 1q

578.0

2 577.9

=

W 57781
5777
577.61
577.5

3SC|

k = 2.0937
a = 0.056

3.37 3.38 3.39 3.40

RMS radius (fm)

“Sensitive to shape”

432 433 434 435 436 4.37
Barrett radius (fm)

“Insensitive to shape”

K. A. Beyer et al., arXiv:2506.08804
Courtesy of Michael Heines
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Application to muonic X-ray

(1) Experiment: Produce muonic atom and measure cascade of X-rays caused by muon falling into the nucleus
L . | Barrett
(2)  QED calculation: link the muonic X-ray energies to the egrarge radius of the nucleus

(3) V2 shape correction: determined from p,, () obtained from electron scattering or through nuclear theory

Rpar ~ [1Fe % pp(r)dr = Va(r?)1/?

0.1 }
E 0.0 1 ’ | ‘ 1

K. A. Beyer et al, arXiv:2506.08804
Courtesy of Michael Heines

(%)

Vv2(exp) . ‘/2(BSkG4)

=2

31P 325 325 345 365 390K 40Ca 40Ca 48Ca 35CI  37Cl  40Ar

Empirical V_accuracy : 0.05 %
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[ ]
Conclusion

BSKG provides large-scale, microscopic model of nuclear structure
- Large-scale : thousands of nuclei and many observable
- Microscopic : simple wave functions yet complex symmetry breaking (triaxial, octupole, time-reversal)
- with accurate bulk predictions of masses, radii, fission properties and more
- Soon: strength functions via FAM

Outlook: synergy with ab initio?

(an BSkG models be improved by constraining on carefully chosen ab initio pseudo-data of exotic nuclei?

fnis uis
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