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Searches for the “1sland of stability”
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A possible candidate: *°°Pb
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Separation energies and single-particle energies results from mean-field calculations
indicate possible doubly-magic nature of 266pp,



266Pb could be the last bound lead 1sotope
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What can we say on
266Pb tfrom a first principles

perspective?



“Doubly magic” signatures: the first 2% state

o R. Taniuchi et al,
A “He O e Nature 569,
40Ga Ni (this work) 53-58 (2019)
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Goal: get to the excited spectrum of 2°°Pb from first principles.
We use the 1.8/2.0 (EM) interaction and coupled-cluster theory.



Excited states 1n 2°%Pb

1.8/2.0 (EM) interaction
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Excited states 1n 2°%Pb B EOM.CCS

1.8/2.0 (EM) interaction
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Excitation energy (MeV)

Excited states of 2°°Pb

1.8/2.0 (EM) interaction
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Structure of 2°°Pb and 2%°Pb
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From light to heavy doubly magic nuclei

1.8/2.0 (EM) interaction
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[s 2°°Pb the last bound lead 1sotope?

1.8/2.0 (EM) interaction
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We

pushed the ab initio boundaries, but there

1s some other interesting physics northeast...
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How to solve the time-dependent
Schrodinger equation from
a first-principles perspective?

., d A
th— [¥(t)) = H(t) [¥(?))



Nuclear response functions
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Responses 1n a time-dependent approach

Goal: solving
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Responses 1n a time-dependent approach

Goal: solving /
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Time-dependent coupled-cluster theory

[ Starting point: Hartree-Fock reference state \CIDO>

] Add correlations via:
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Simulation time and resolution
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Static CC vs time-dependent CC: '°O
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Very small deviations between the two completely independent approaches!

19



Collective oscillations 1n real time
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Collective oscillations 1n real time
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isolating
lowest-lying dipole-excited
state at low-energy
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What happens when we increase €?

A

H(t) = Ho +ef(t)D

O Up to now, € = 0.1 MeV/fm, where we are
still in the linear regime.

O Non-linearities emerge when the
perturbation becomes comparable to
typical scale of H,.

A For 160, B(E1)/2~ 0.01 e fm [TUNL
database], so we need ¢ = 100 MeV/fm
to get a perturbation ~ MeV.
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From order...

D(t + Tspirt) (fm)
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From order to chaos

D(t + Tspirt) (fm)
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What happens when we increase €?
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What happens when we increase €?
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Conclusions

O We showed the doubly-magic nature of 266Pb from first principles.

L We are able to visualize collective oscillations as pygmy and giant dipole resonances and
explore the strong-field limit by incorporating time dependence in our many-body framework.

(d We aim to couple this with calculations on the lattice (see Matthias Heinz’s talk), a natural
framework where to achieve a microscopic description of nuclear dynamics.

Stay tuned!
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