

Facility for Rare Isotope Beams
at Michigan State University

Ab initio calculations at the superheavy frontier

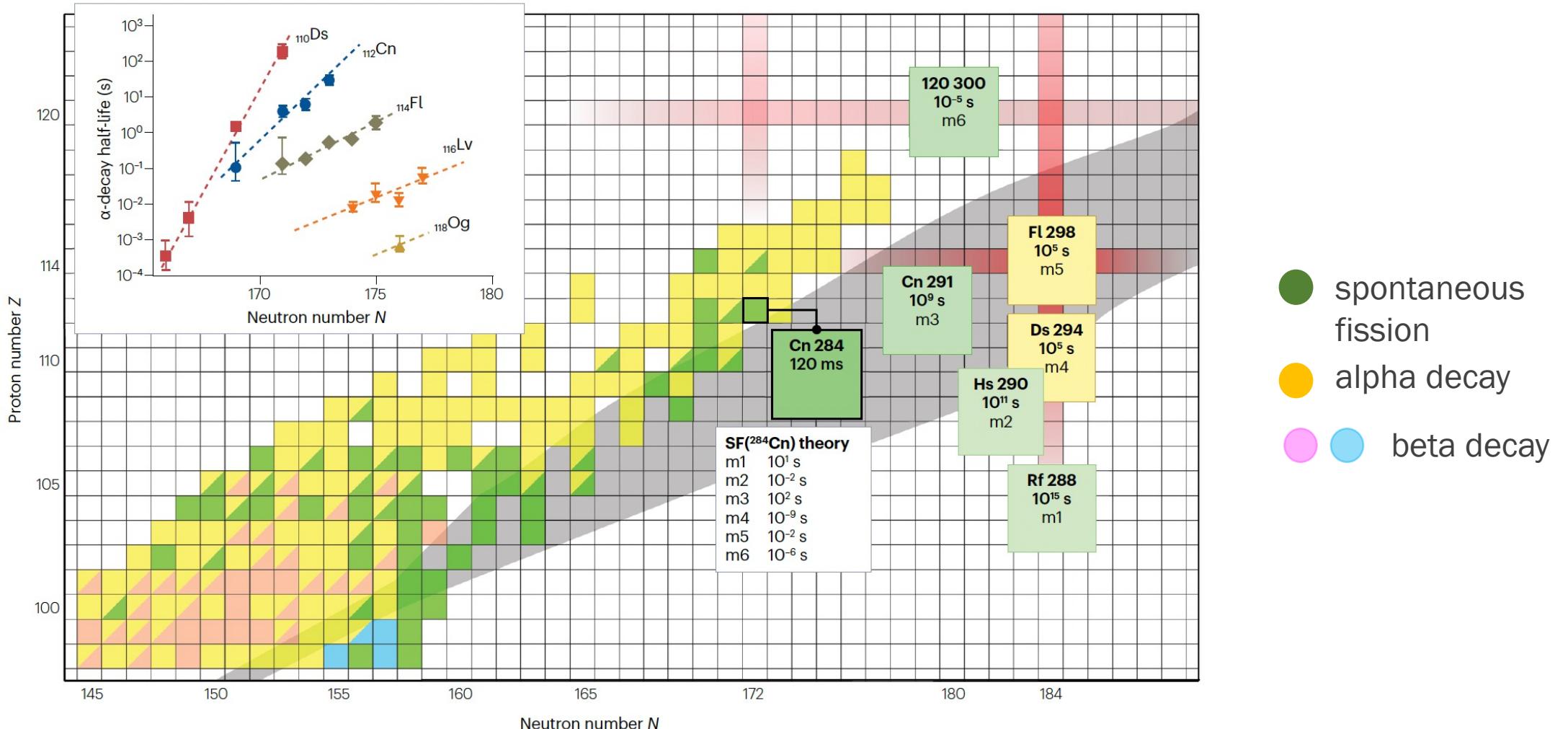
FRANCESCA BONAITI, FRIB&ORNL

HIRSCHEGG 2026 – CHALLENGES IN EFFECTIVE FIELD THEORY DESCRIPTIONS OF NUCLEI

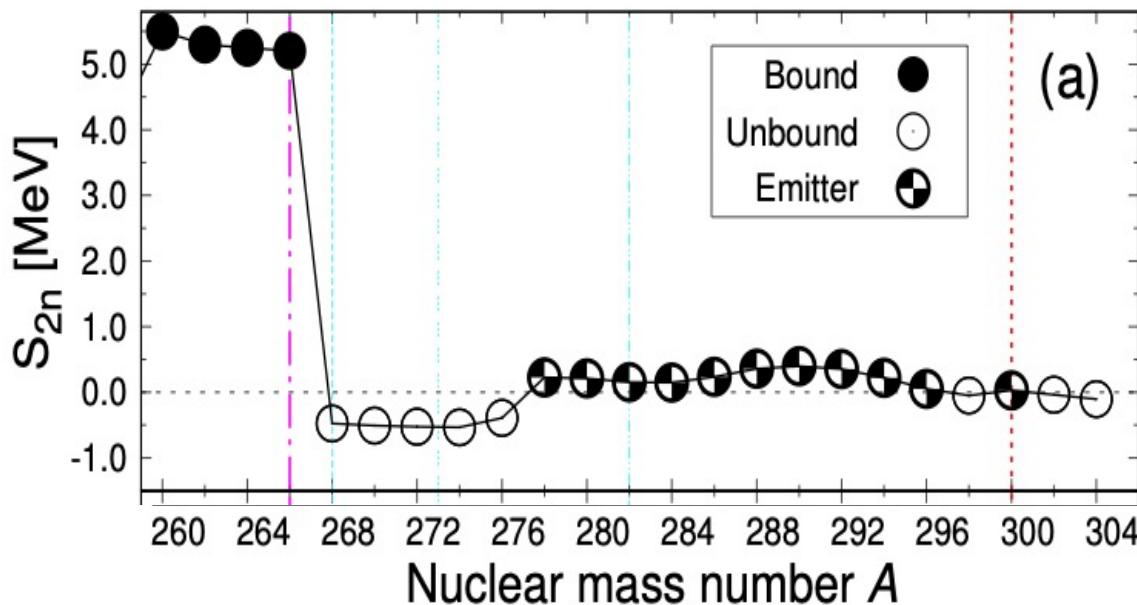
HIRSCHEGG, AUSTRIA

JANUARY 20, 2026

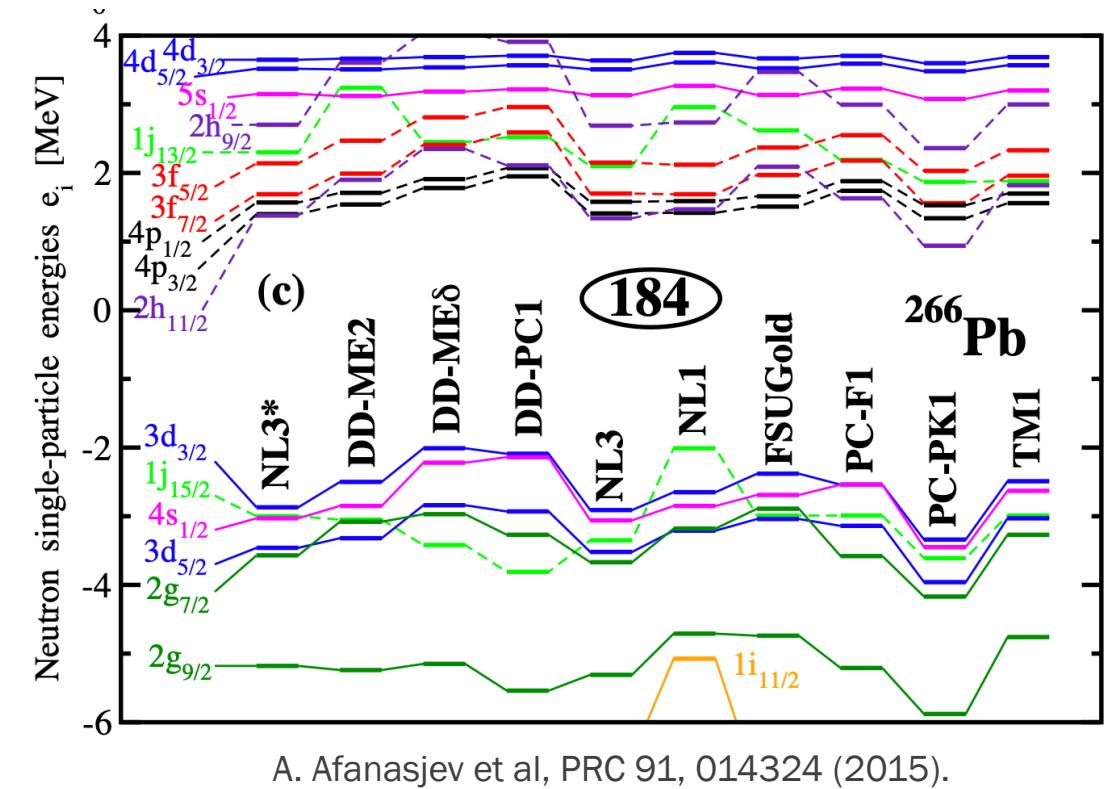
Searches for the “island of stability”



A possible candidate: ^{266}Pb



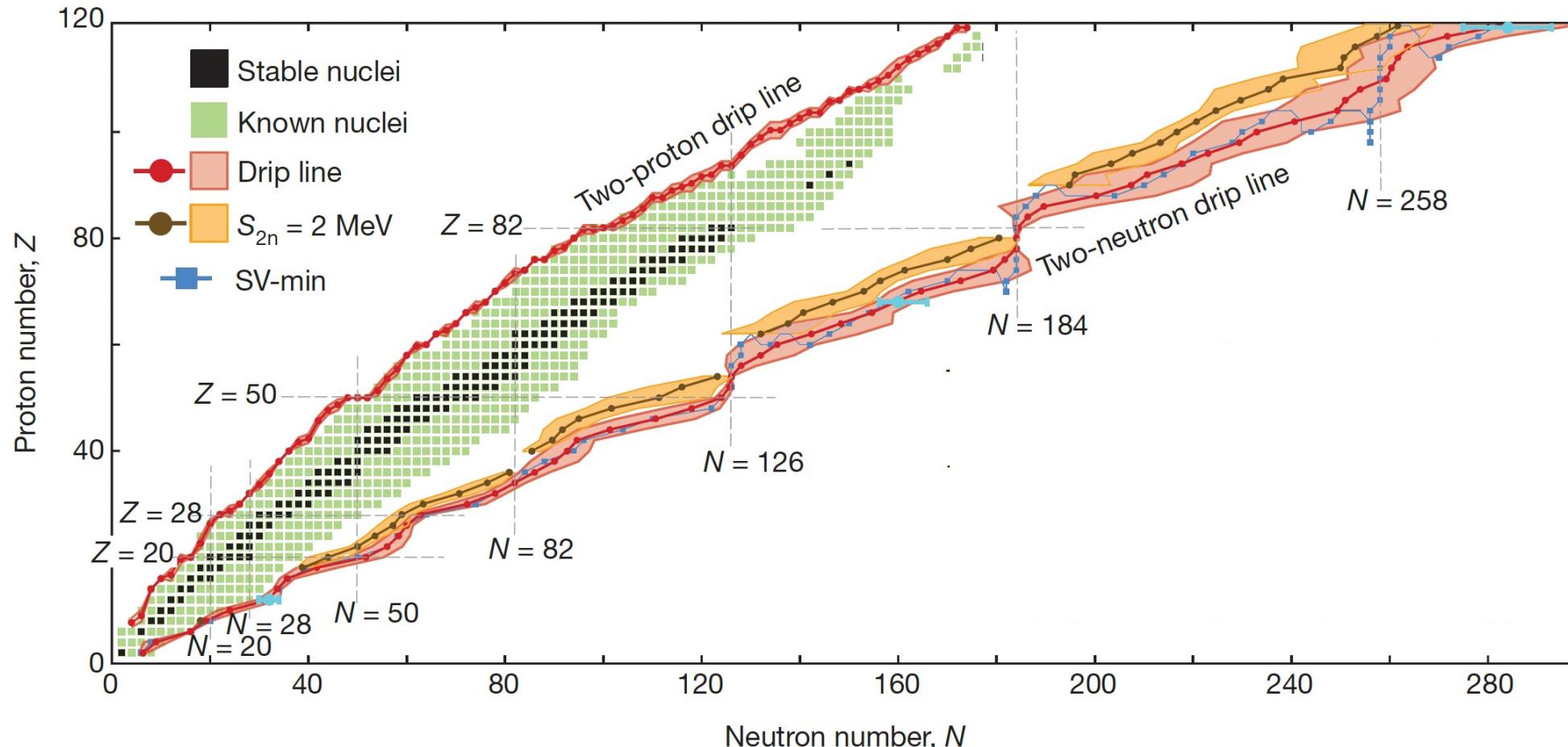
S. Kim et al, PRC 105, 034340 (2022).



A. Afanasjev et al, PRC 91, 014324 (2015).

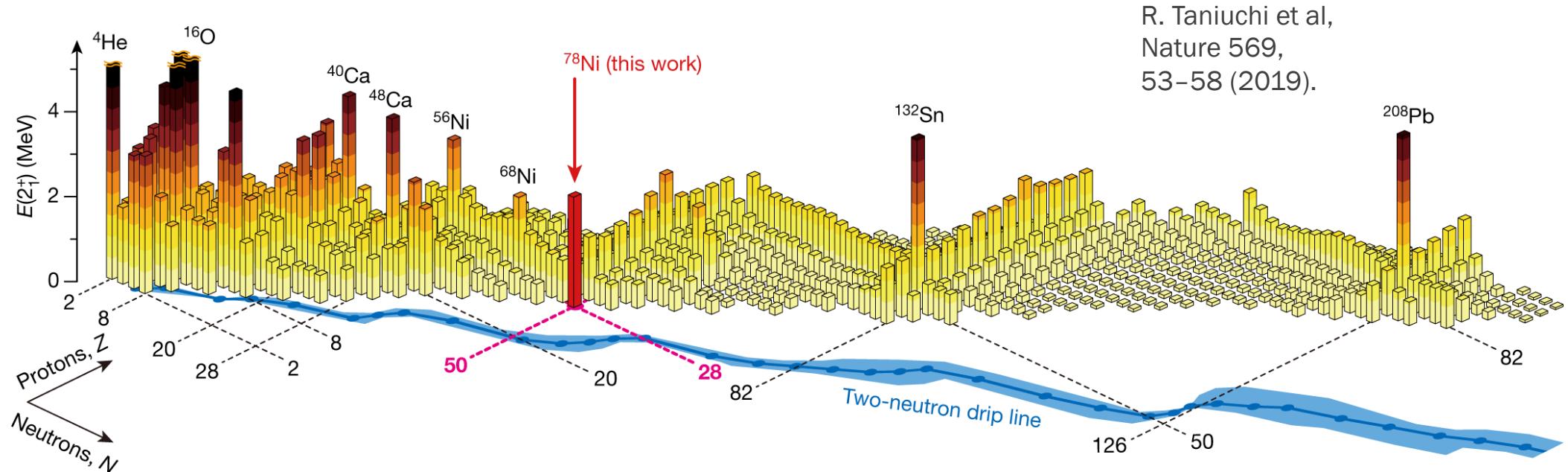
Separation energies and single-particle energies results from mean-field calculations indicate possible doubly-magic nature of ^{266}Pb .

^{266}Pb could be the last bound lead isotope



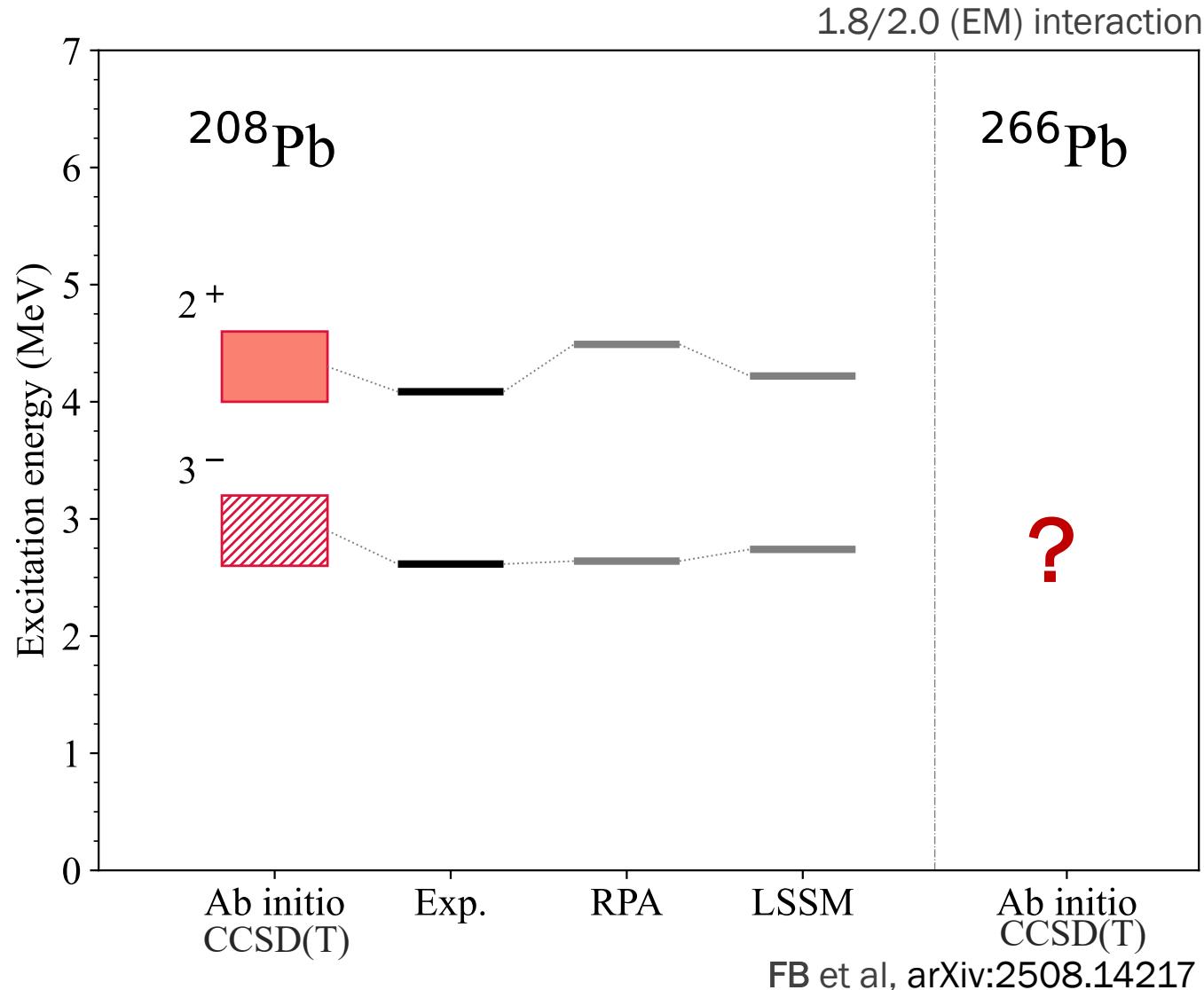
What can we say on
 ^{266}Pb from a first principles
perspective?

“Doubly magic” signatures: the first 2^+ state

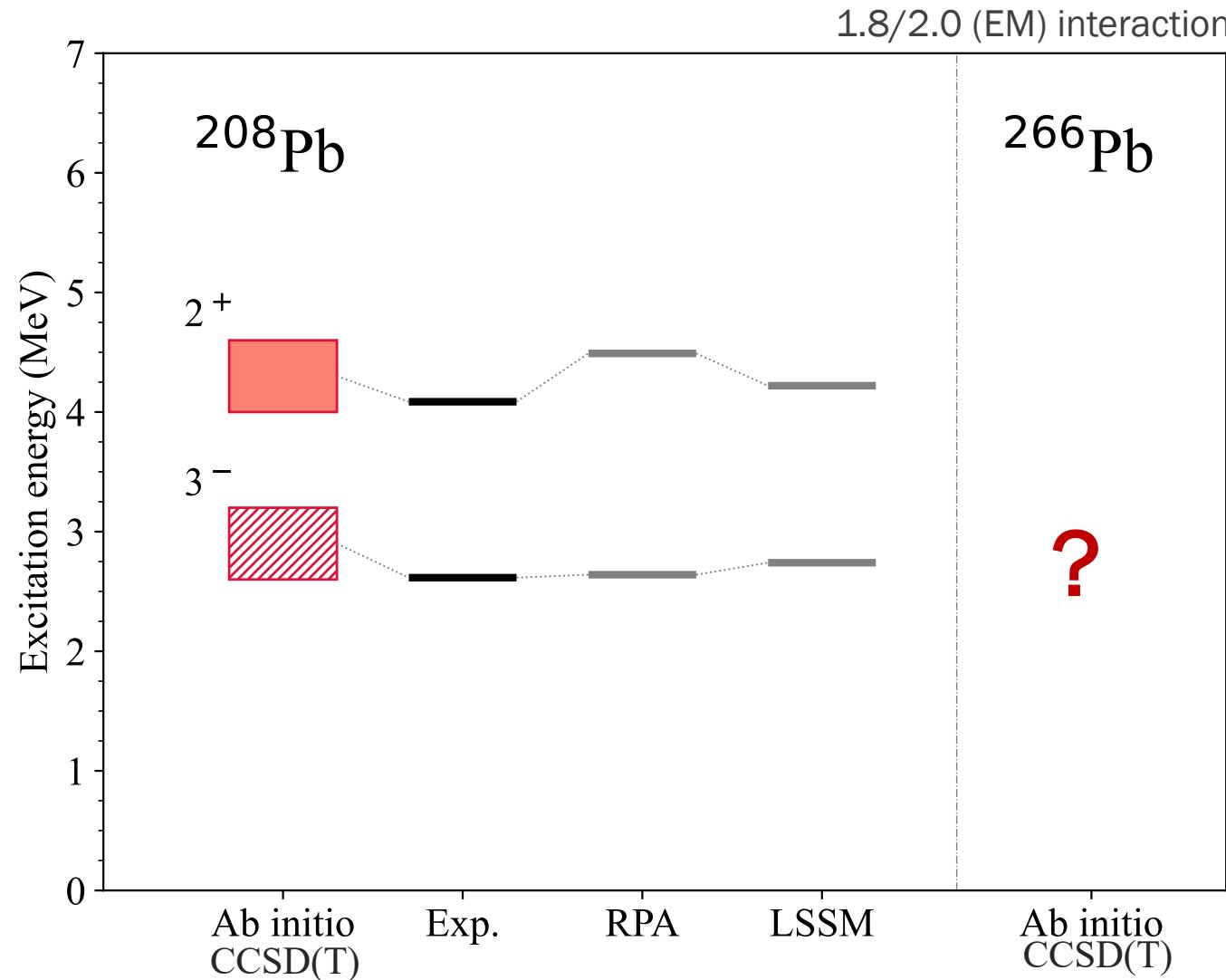
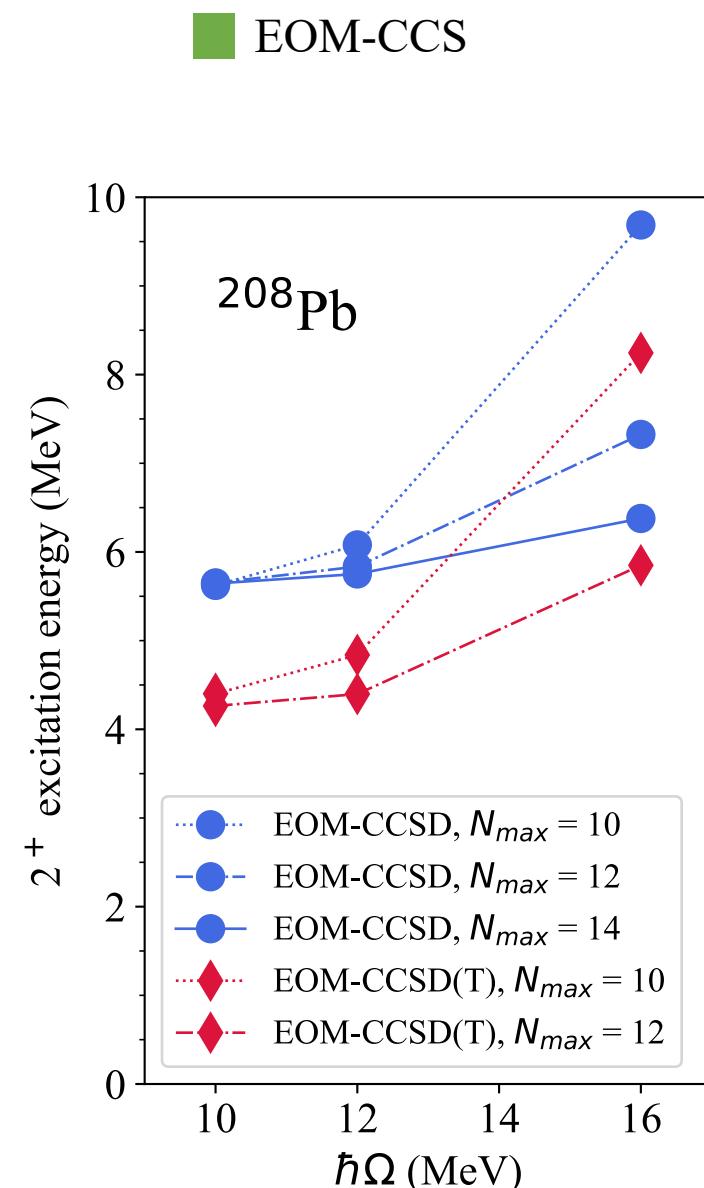


Goal: get to the excited spectrum of ^{266}Pb from first principles.
We use the **1.8/2.0 (EM)** interaction and **coupled-cluster theory**.

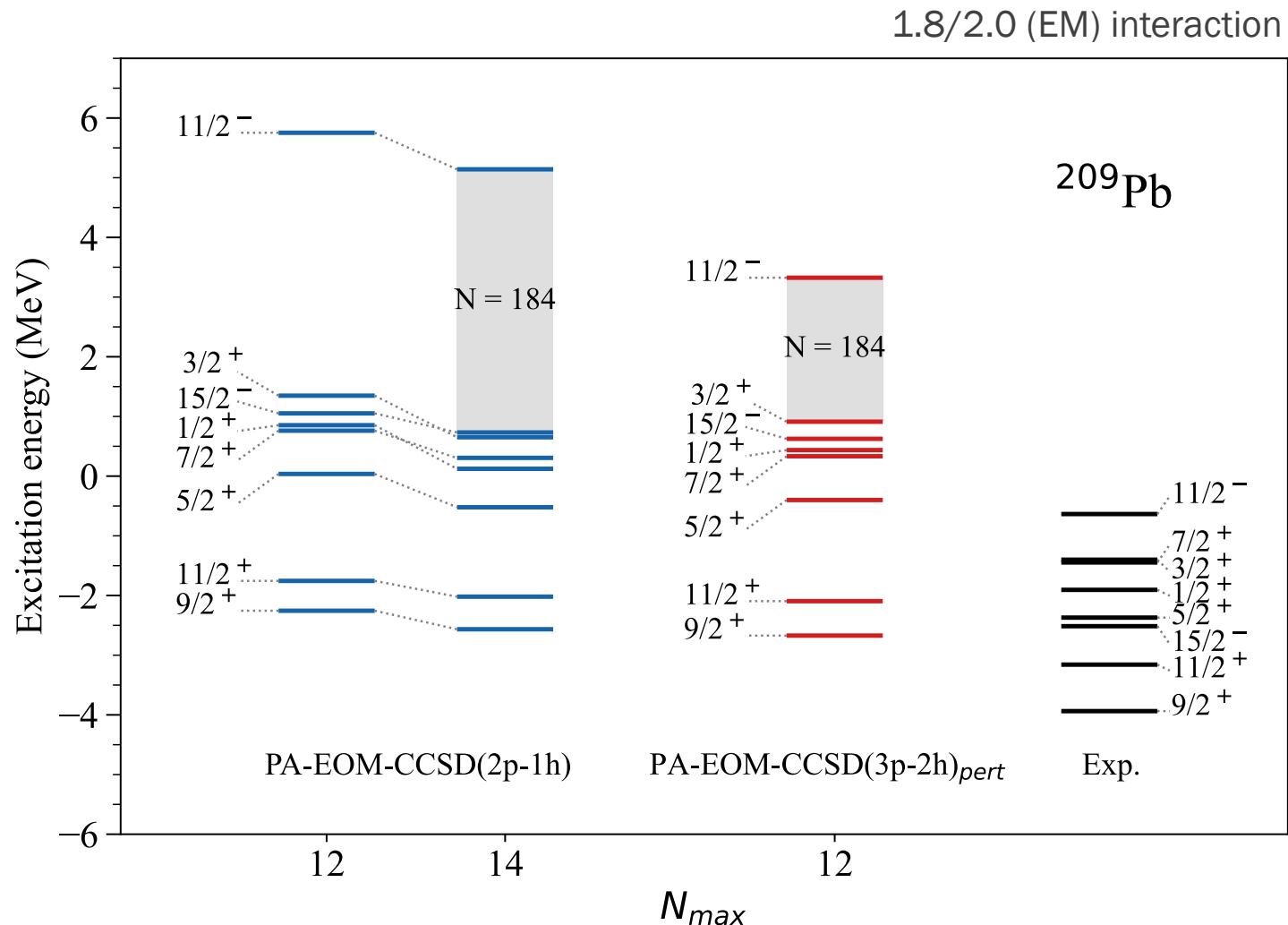
Excited states in ^{208}Pb



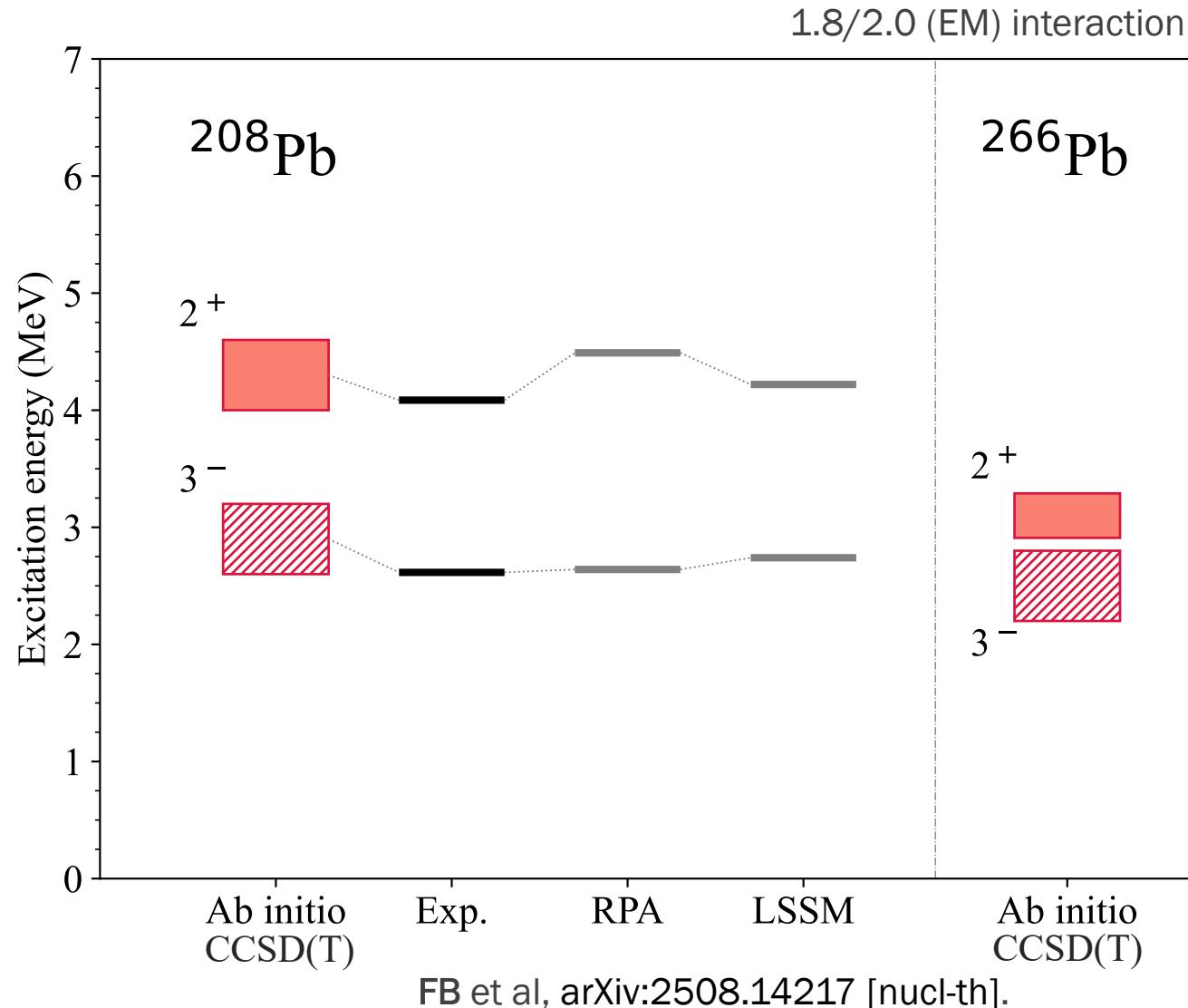
Excited states in ^{208}Pb



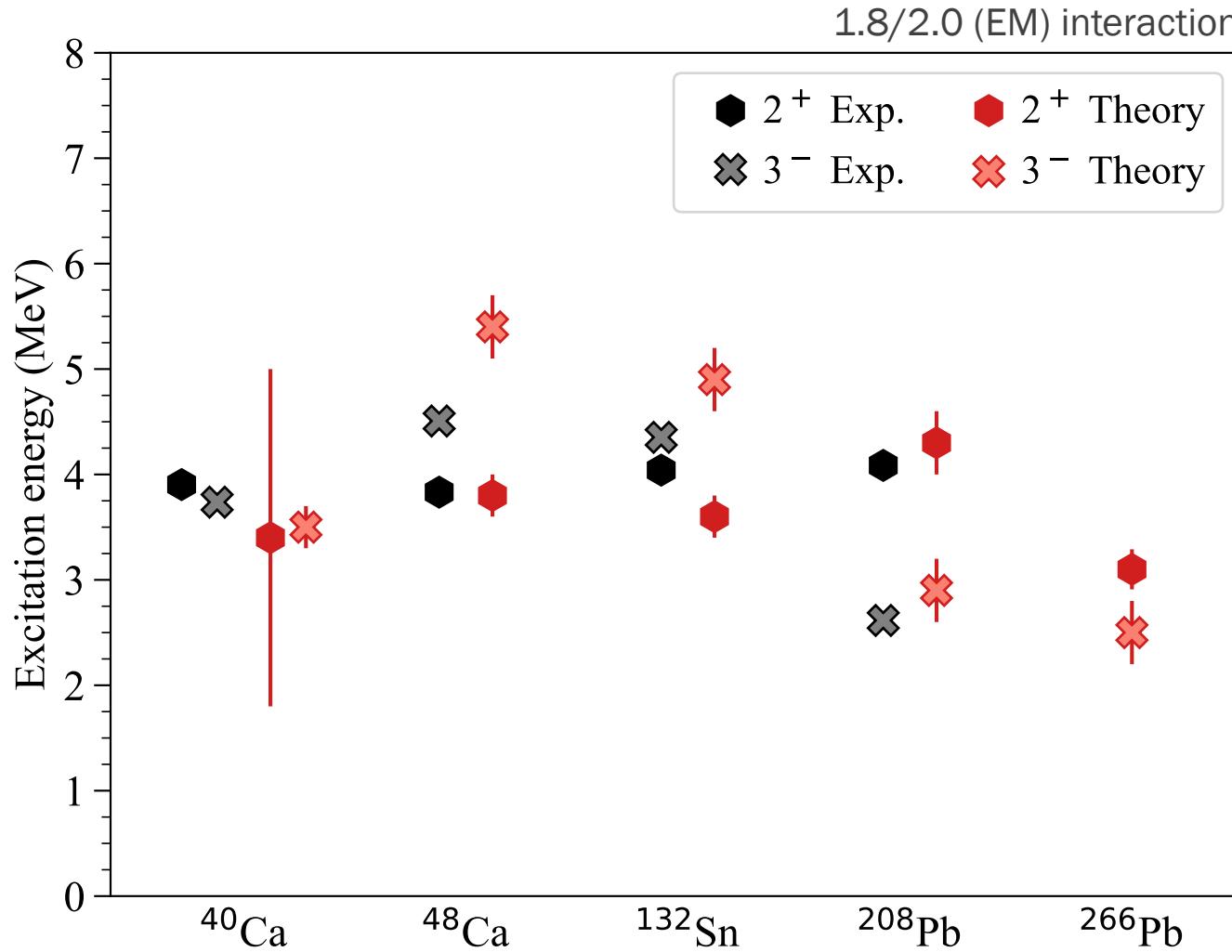
Excited states of ^{209}Pb



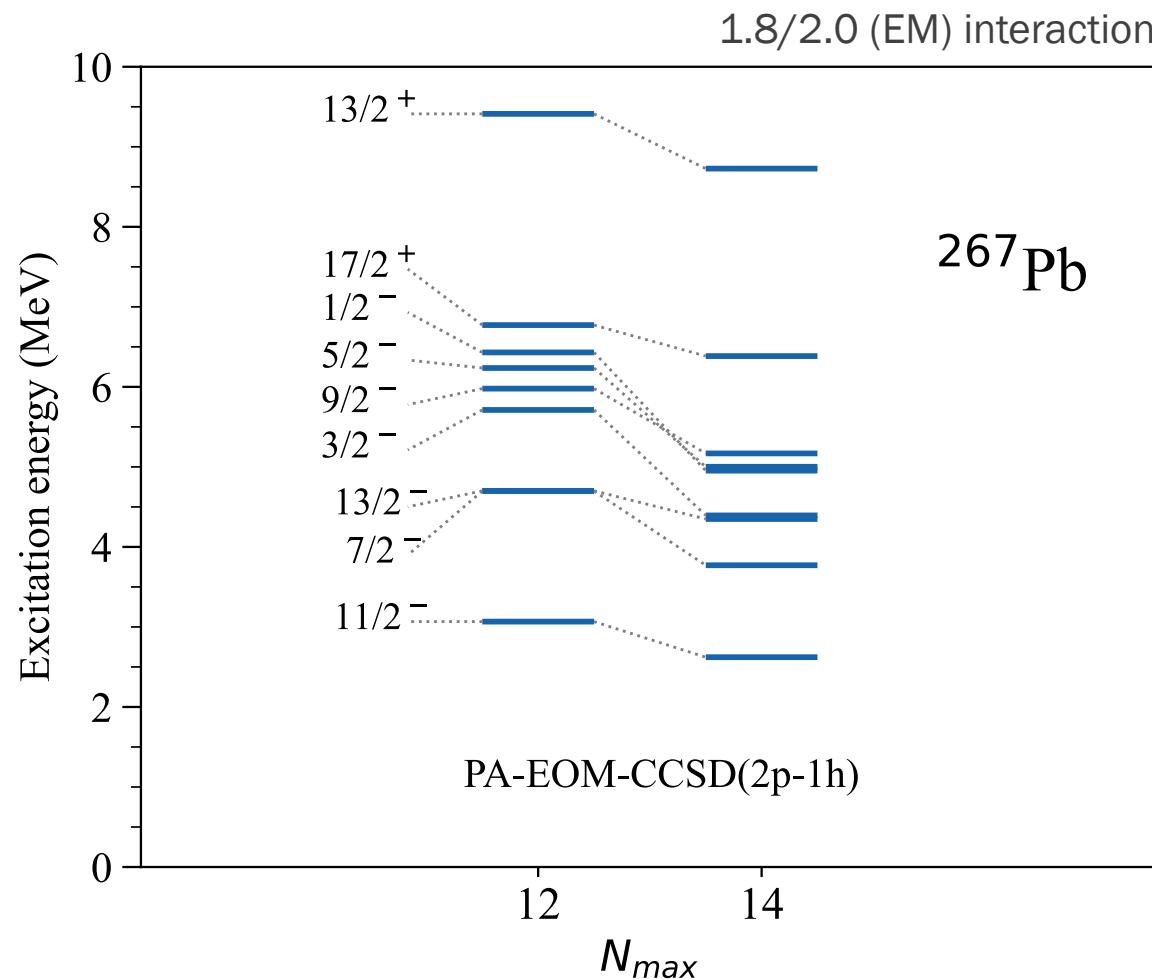
Structure of ^{208}Pb and ^{266}Pb



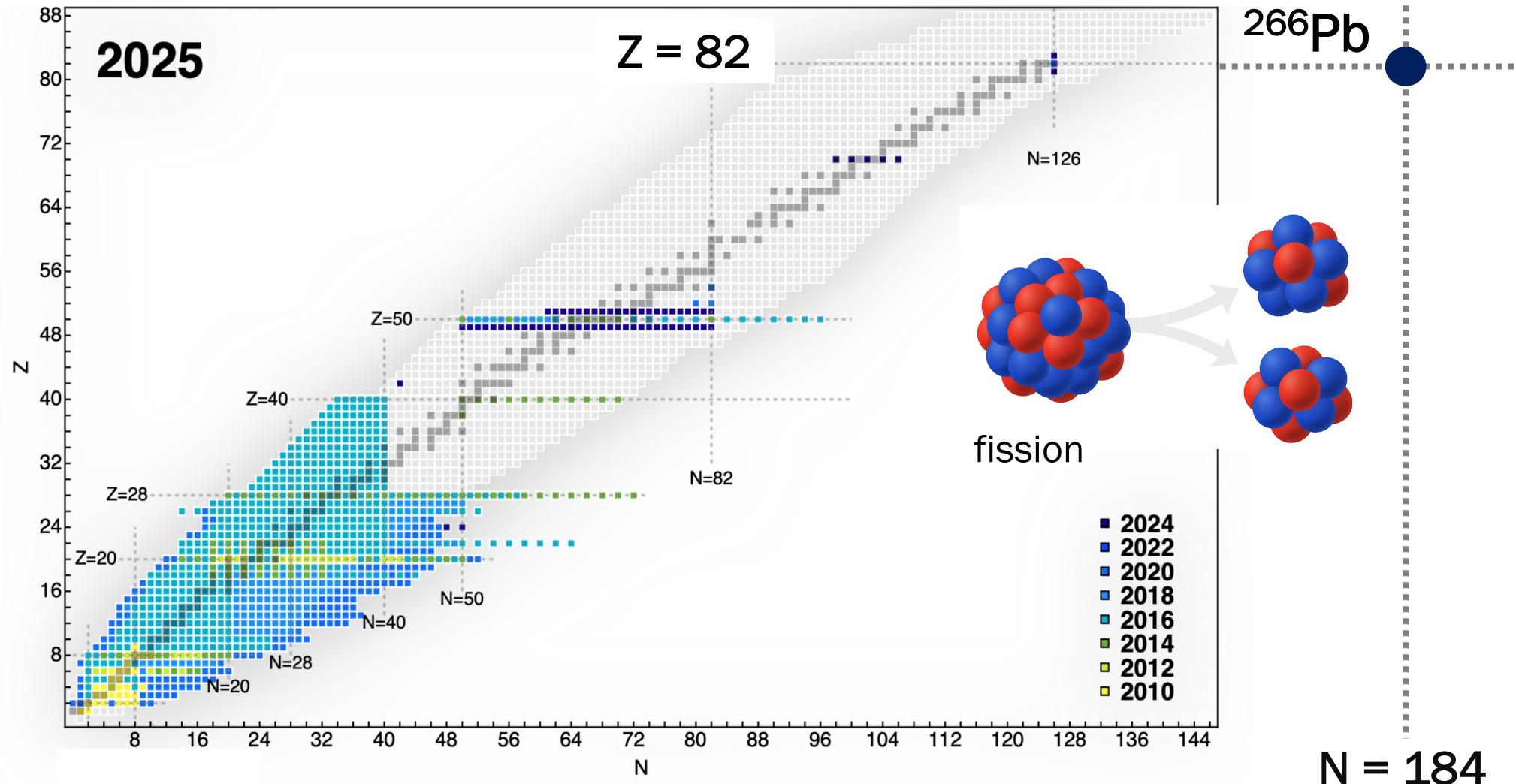
From light to heavy doubly magic nuclei



Is ^{266}Pb the last bound lead isotope?



We pushed the ab initio boundaries, but there is some other interesting physics northeast...

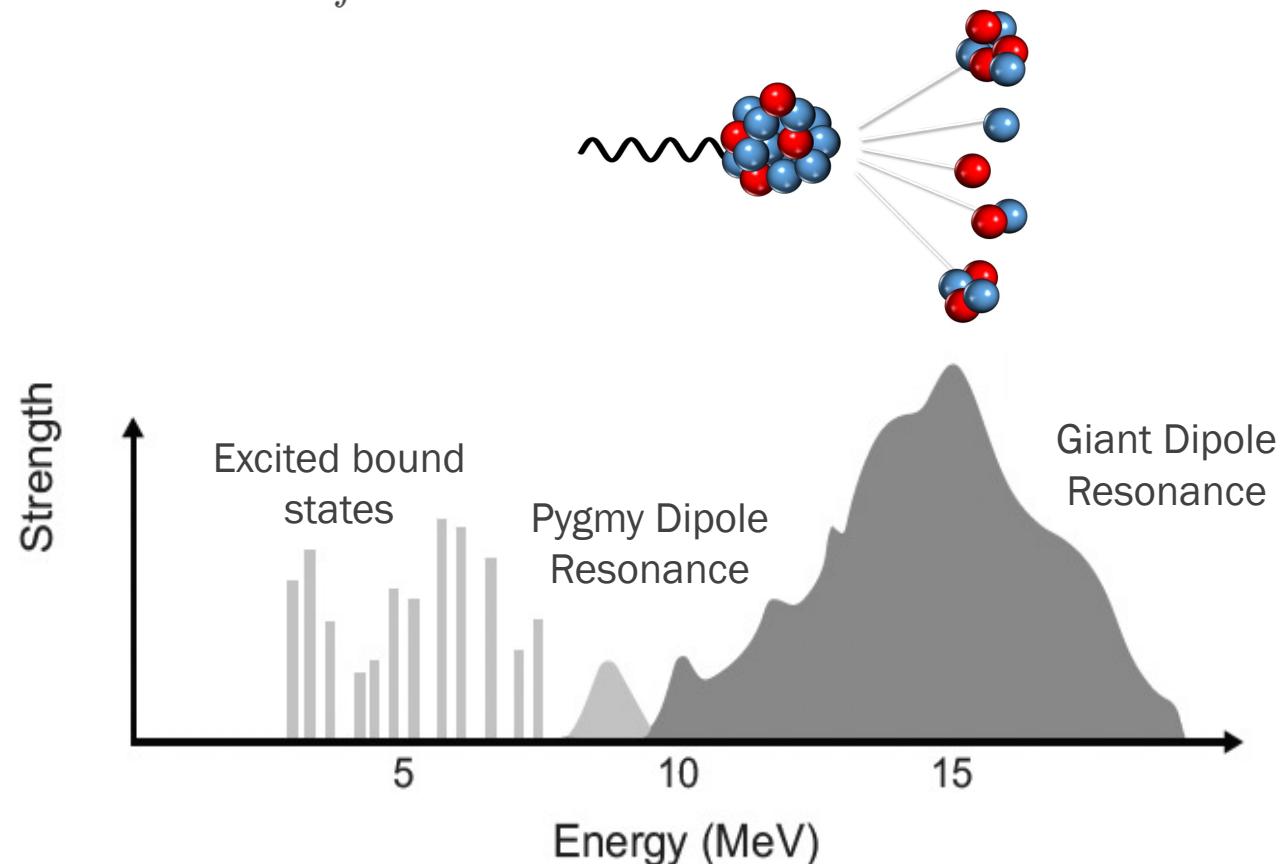


How to solve the time-dependent
Schrödinger equation from
a first-principles perspective?

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle$$

Nuclear response functions

$$R(\omega) = \sum_f |\langle \Psi_f | \Theta | \Psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$



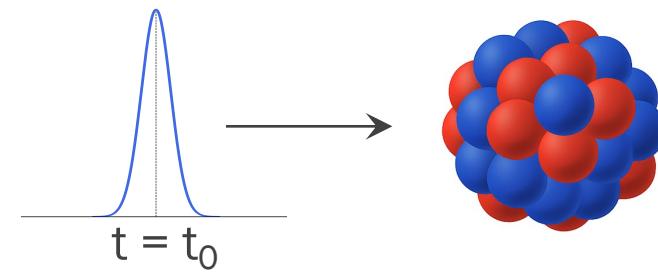
Responses in a time-dependent approach

Goal: solving

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle$$

with

$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$



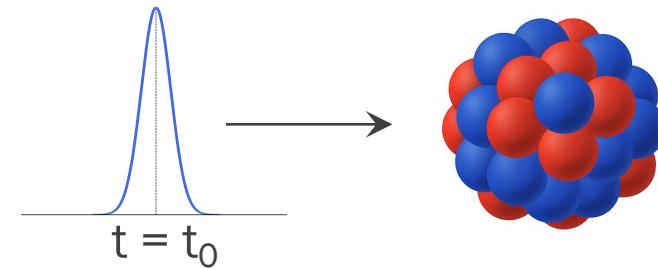
Responses in a time-dependent approach

Goal: solving

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle$$

with

$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$



For small ϵ , first-order time-dependent perturbation theory yields:

$$D(t) = \langle \Psi(t) | \hat{D} | \Psi(t) \rangle$$

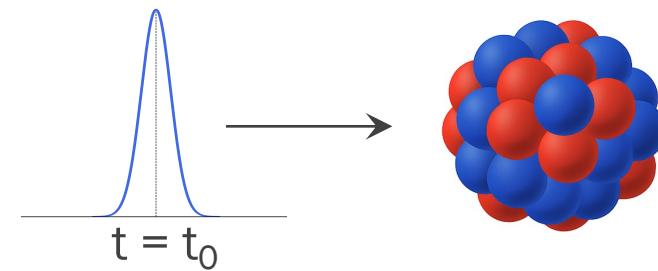
Responses in a time-dependent approach

Goal: solving

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle$$

with

$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$



For small ϵ , first-order time-dependent perturbation theory yields:

$$D(t) = \langle \Psi(t) | \hat{D} | \Psi(t) \rangle \longrightarrow \tilde{D}(\omega)$$

Fourier transform

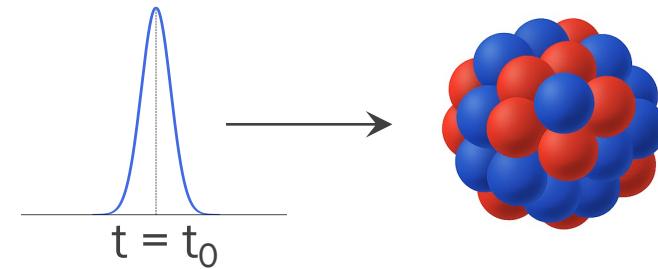
Responses in a time-dependent approach

Goal: solving

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle$$

with

$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$



For small ϵ , first-order time-dependent perturbation theory yields:

$$D(t) = \langle \Psi(t) | \hat{D} | \Psi(t) \rangle \longrightarrow \tilde{D}(\omega) \longrightarrow R(\omega) = \text{Im} \left(\frac{\tilde{D}(\omega)}{\epsilon \tilde{f}(\omega)} \right)$$

Fourier transform

Time-dependent coupled-cluster theory

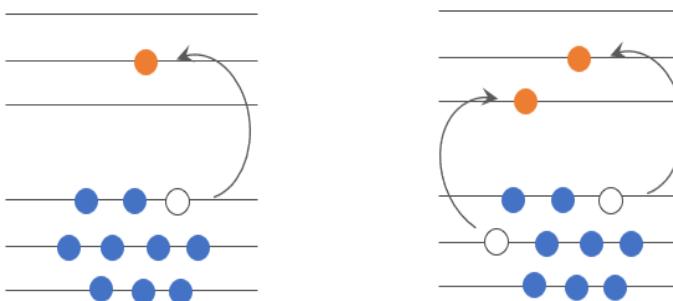
- Starting point: **Hartree-Fock** reference state $|\Phi_0\rangle$
- Add correlations via:

$$|\Psi(t)\rangle = e^{T(t)} |\Phi_0\rangle$$

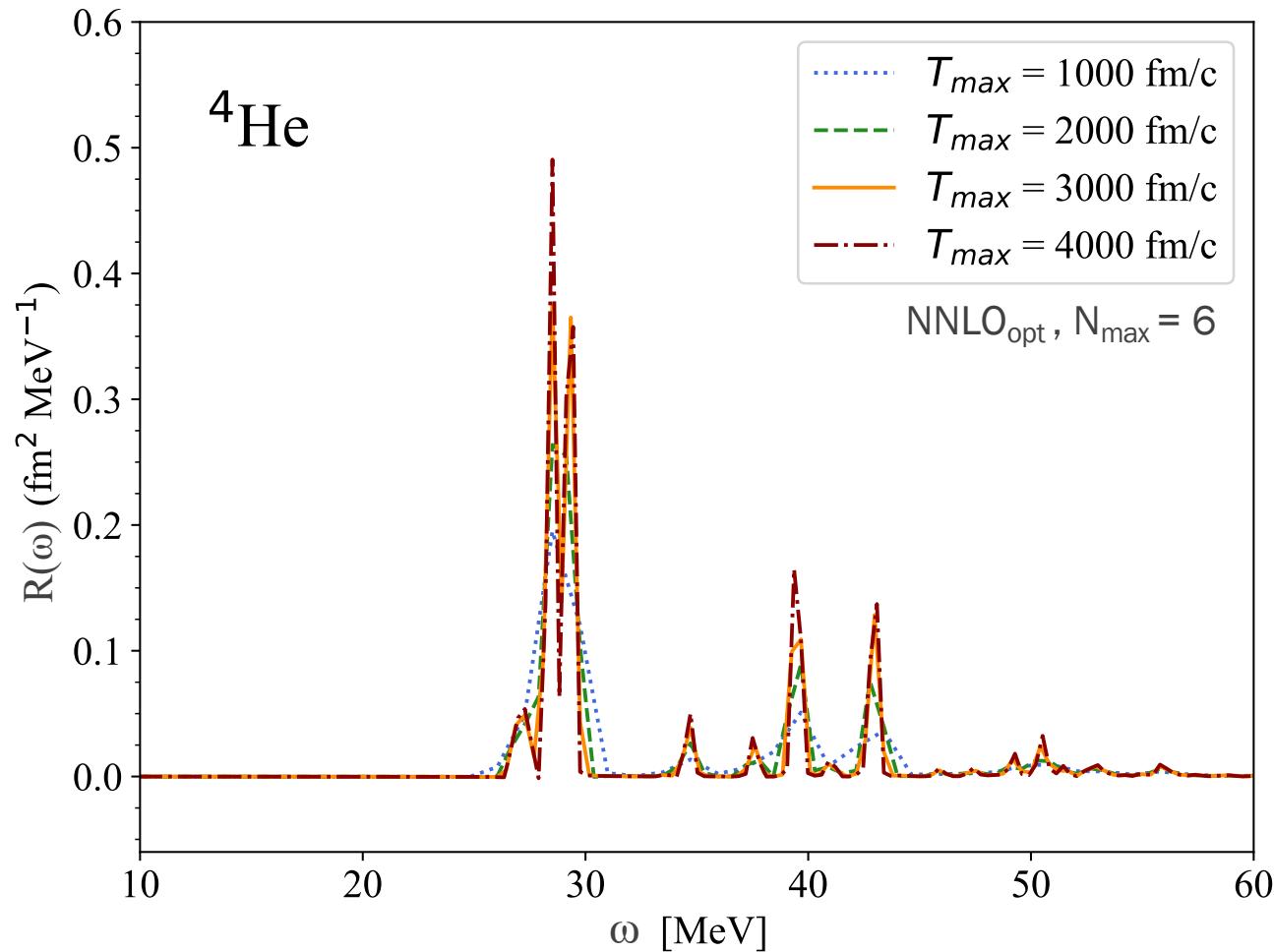
with

$$T(t) = t_0(t) + \sum_{ia} t_i^a(t) a_a^\dagger a_i + \sum_{ijab} t_{ij}^{ab}(t) a_a^\dagger a_b^\dagger a_j a_i + \dots$$

singles and
doubles
(CCSD)



Simulation time and resolution



Resolution

$$\Delta\omega = \frac{2\pi\hbar c}{t_{\text{max}}}$$

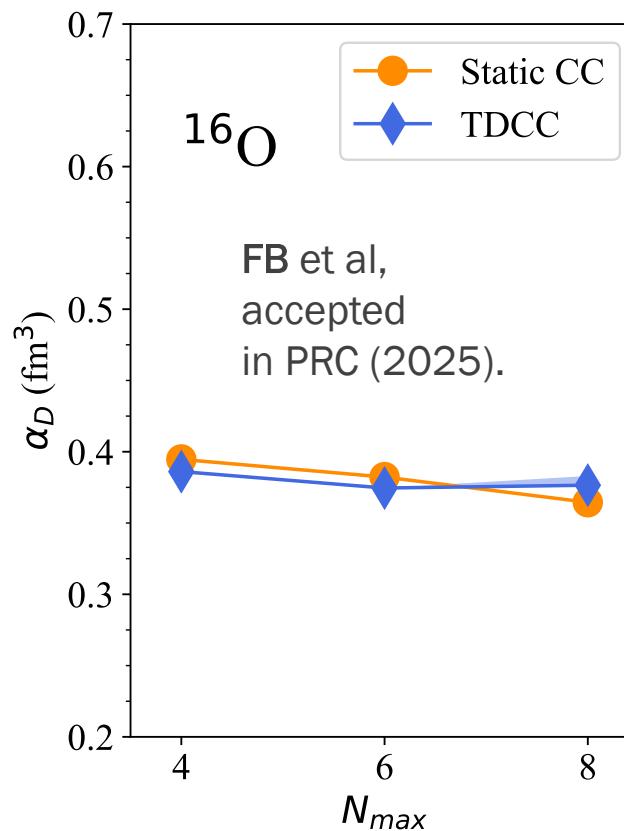
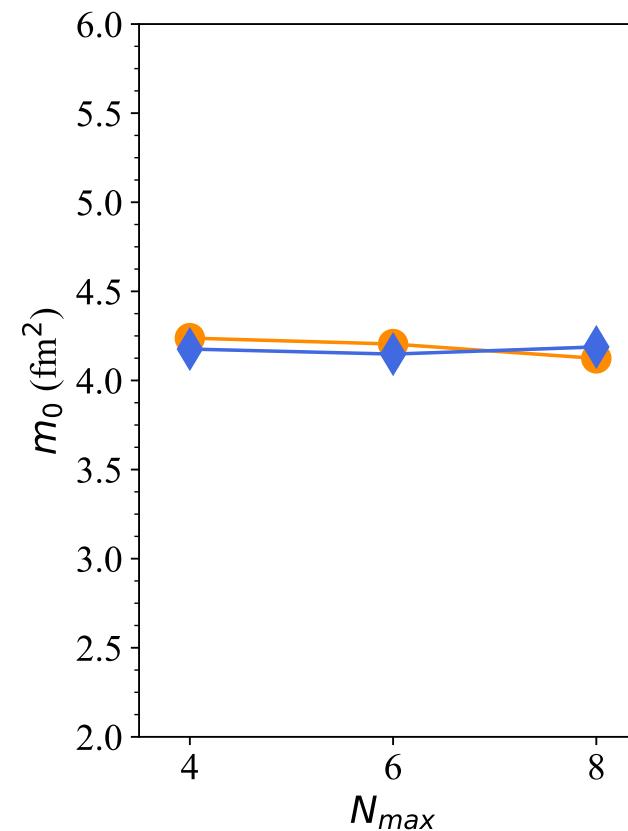
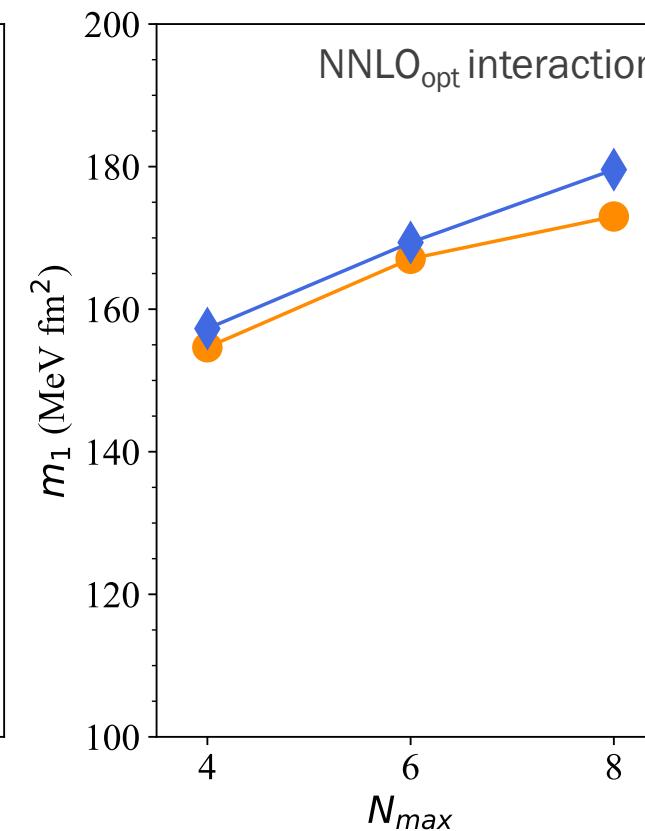
Maximum
simulation time

Static CC vs time-dependent CC: ^{16}O

$$\alpha_D = 2\alpha \int d\omega \omega^{-1} R(\omega)$$

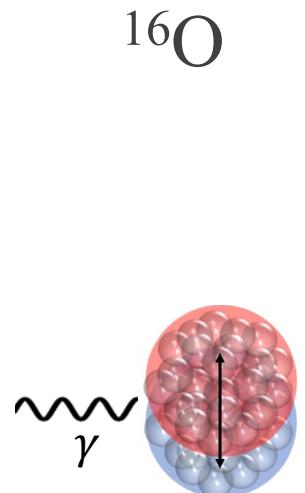
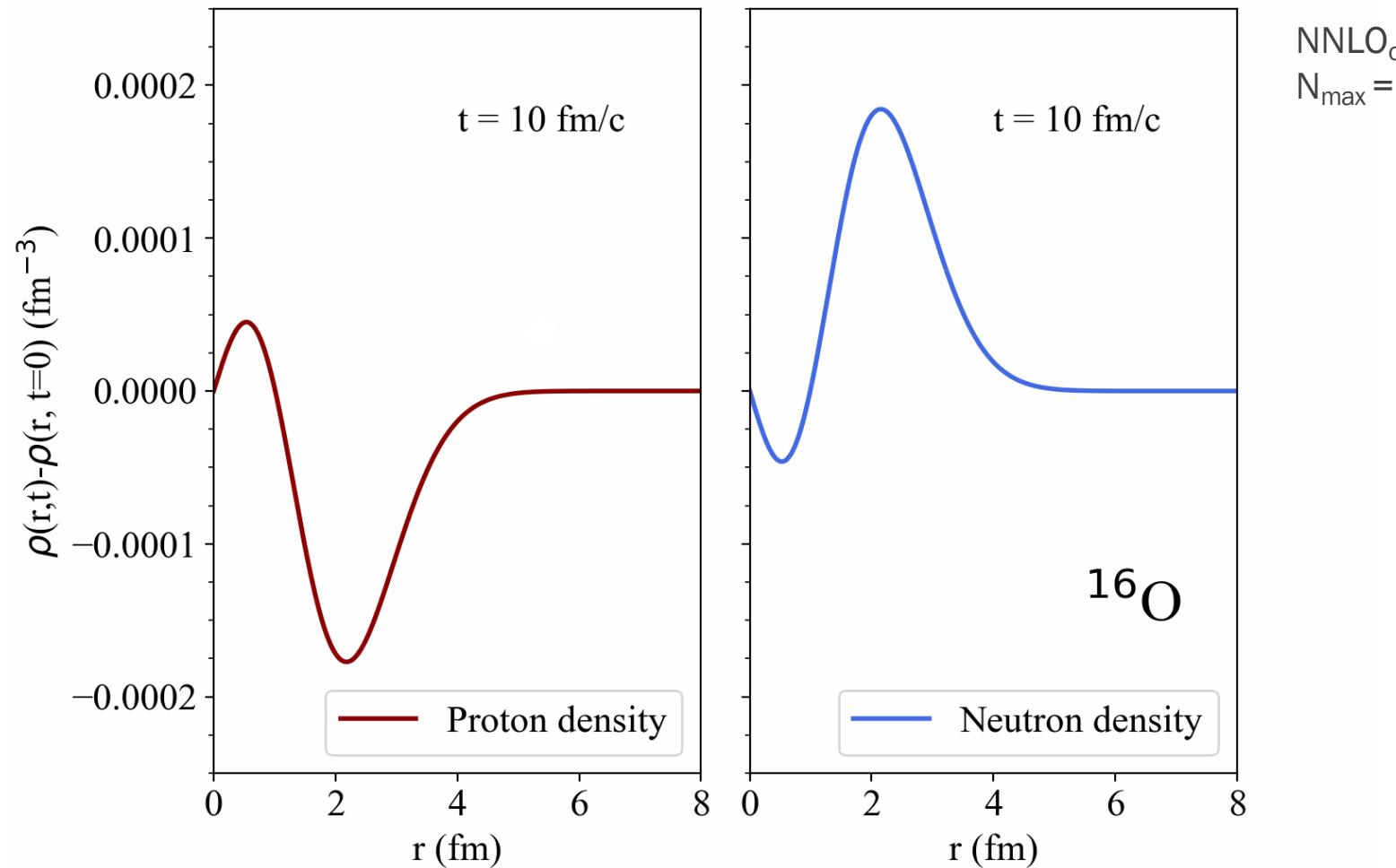
$$m_0 = \int d\omega R(\omega)$$

$$m_1 = \int d\omega \omega R(\omega)$$



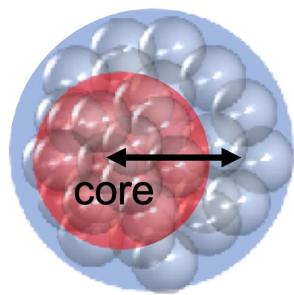
Very small deviations between the two completely independent approaches!

Collective oscillations in real time

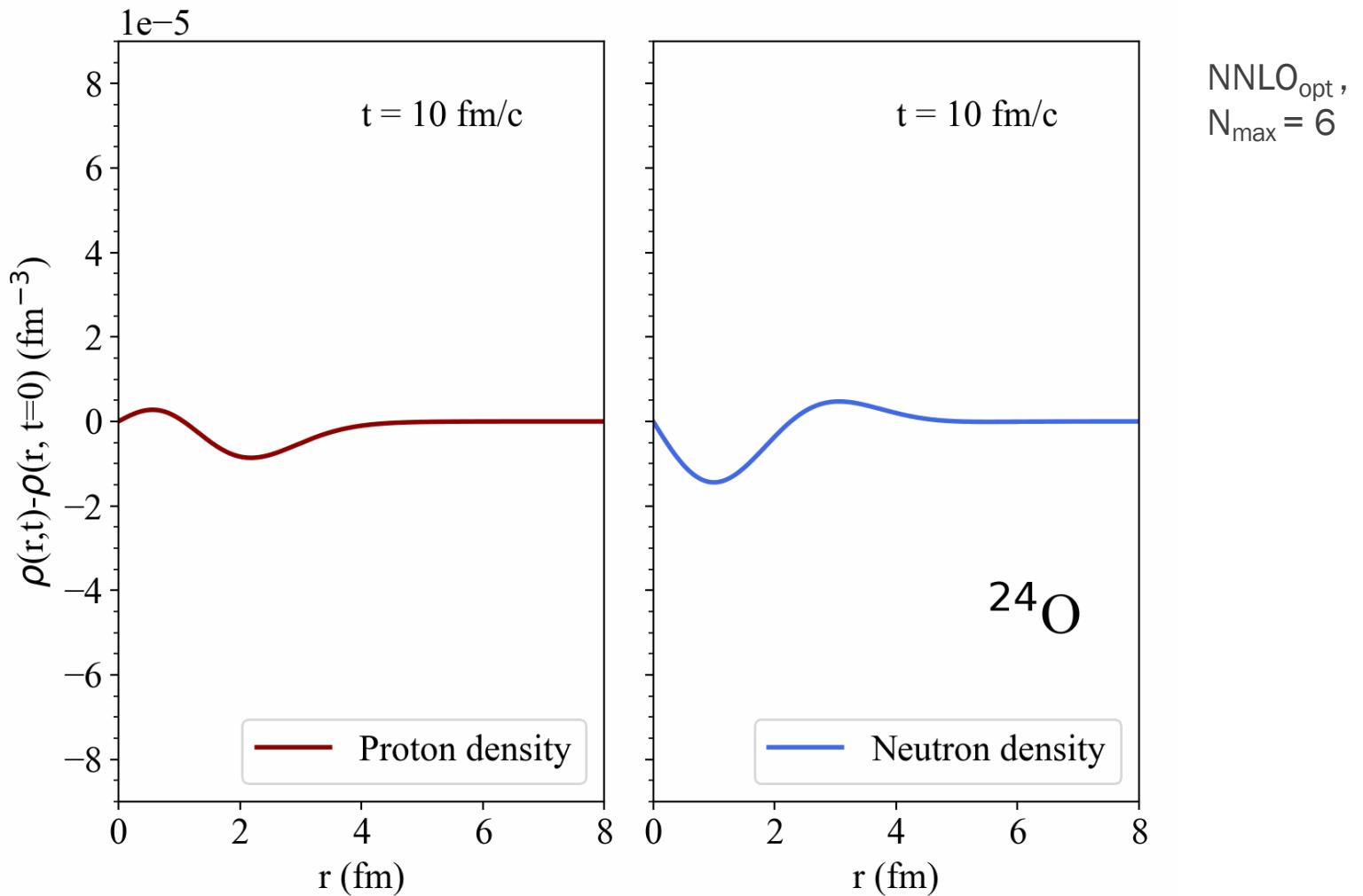


Collective oscillations in real time

^{24}O



isolating
lowest-lying dipole-excited
state at low-energy



What happens when we increase ε ?

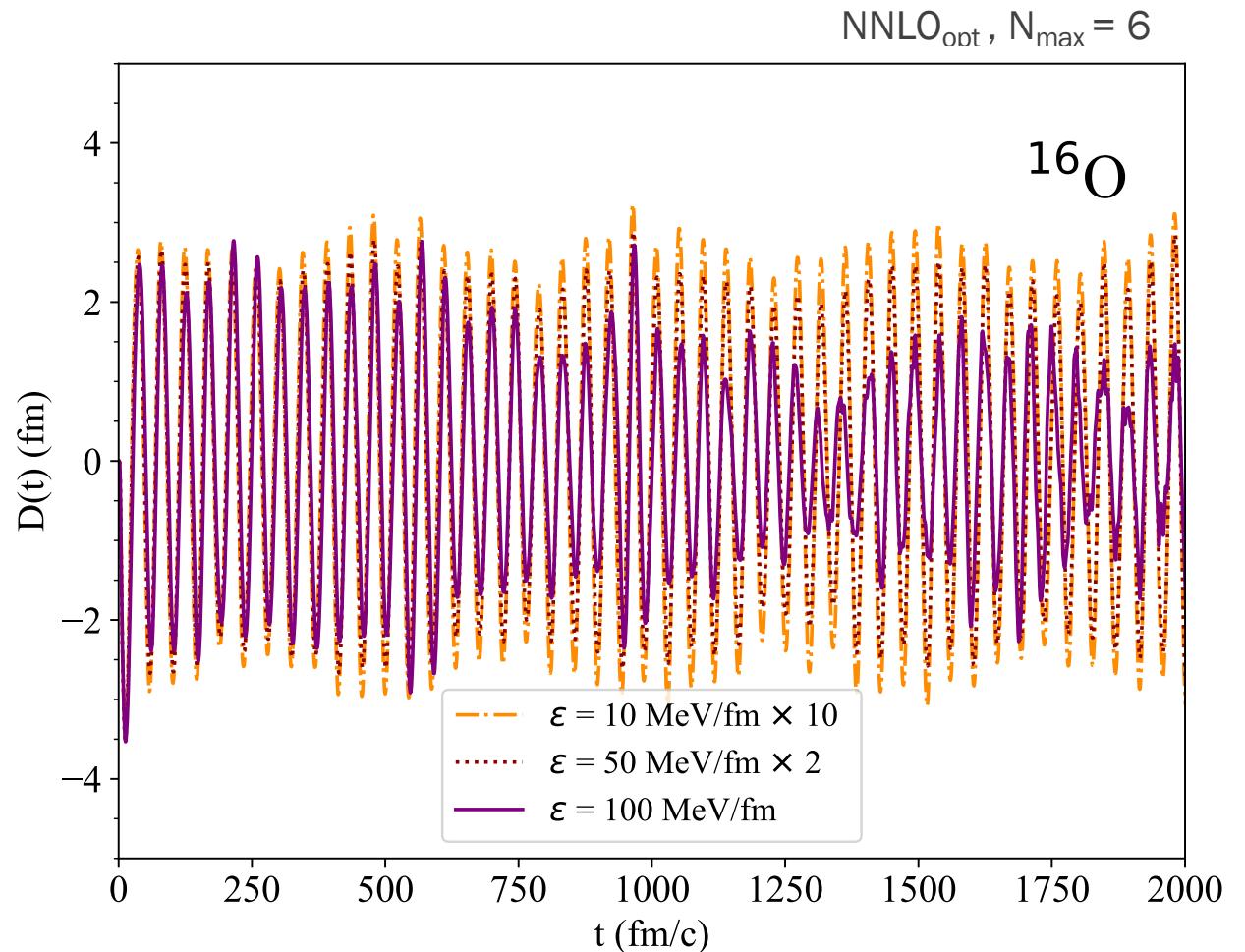
$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$

- Up to now, $\varepsilon = 0.1$ MeV/fm, where we are still in the **linear regime**.
- Non-linearities emerge when the **perturbation** becomes **comparable** to **typical scale of H_0** .
- For ^{16}O , $B(\text{E}1)^{1/2} \sim 0.01$ e fm [TUNL database], so we need $\varepsilon = 100$ MeV/fm to get a perturbation \sim MeV.

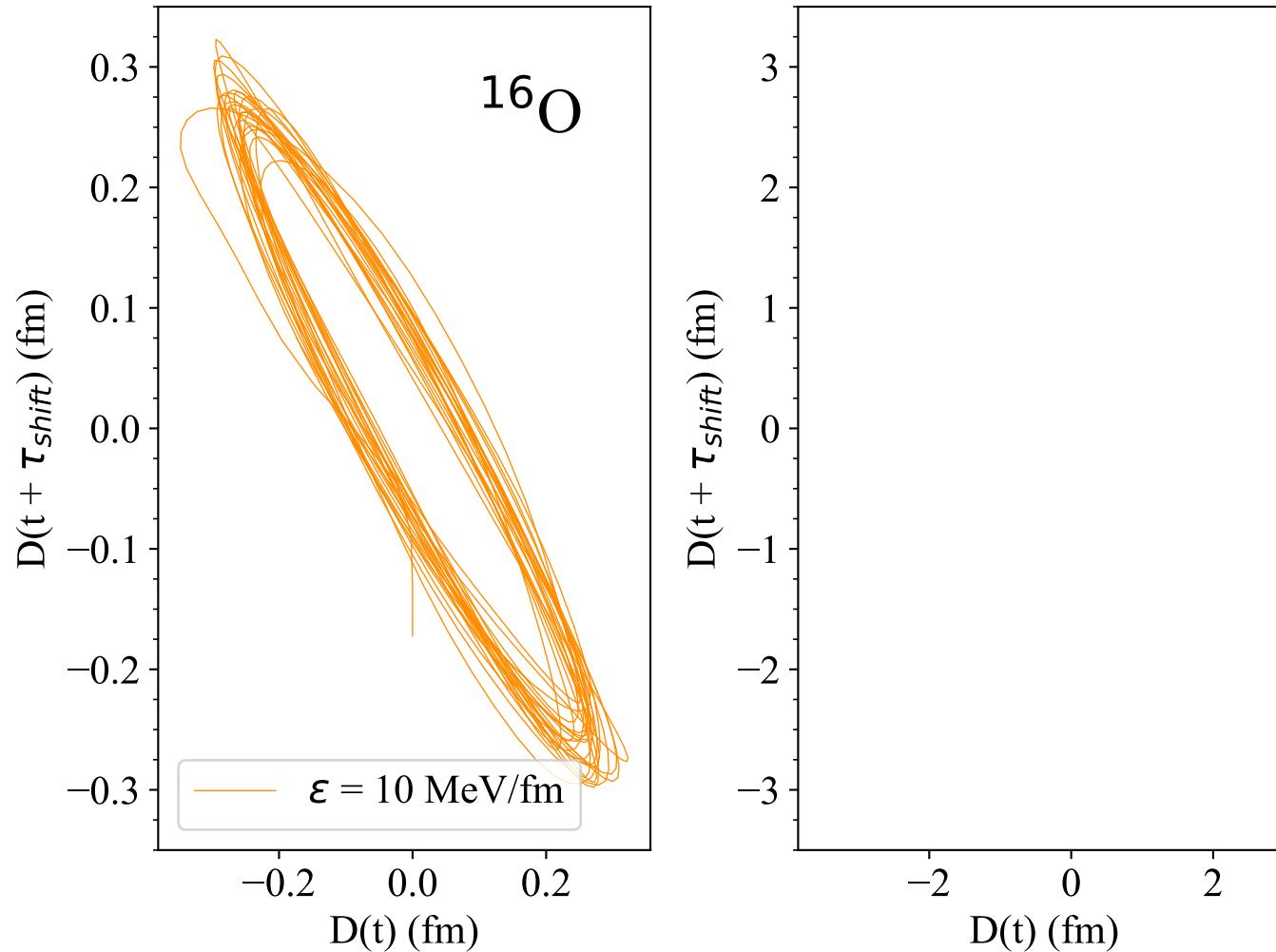
What happens when we increase ε ?

$$\hat{H}(t) = \hat{H}_0 + \epsilon f(t) \hat{D}$$

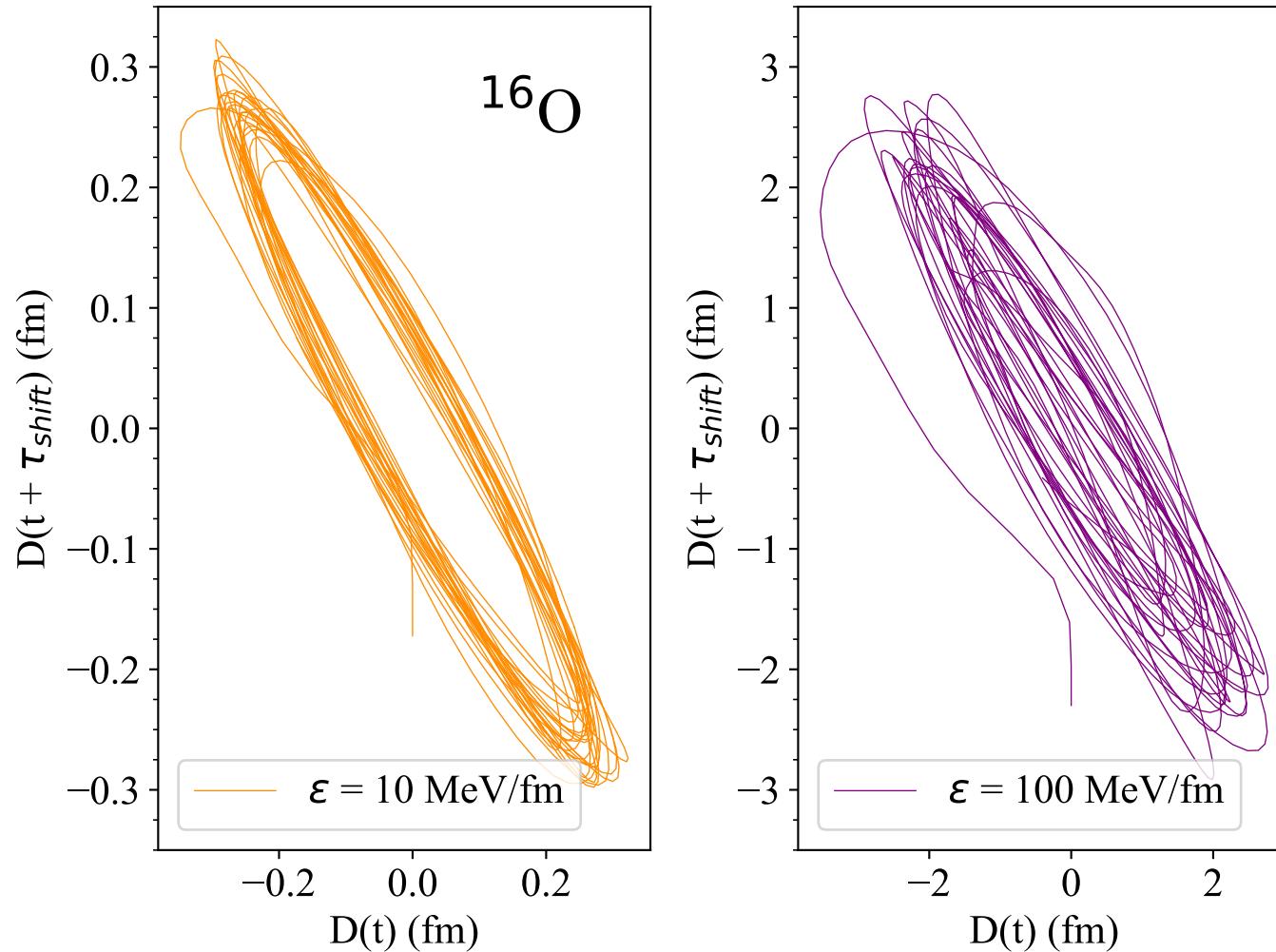
- Up to now, $\varepsilon = 0.1$ MeV/fm, where we are still in the **linear regime**.
- Non-linearities emerge when the **perturbation** becomes **comparable** to **typical scale of H_0** .
- For ^{16}O , $B(\text{E}1)^{1/2} \sim 0.01$ e fm [TUNL database], so we need $\varepsilon = 100$ MeV/fm to get a perturbation \sim MeV.



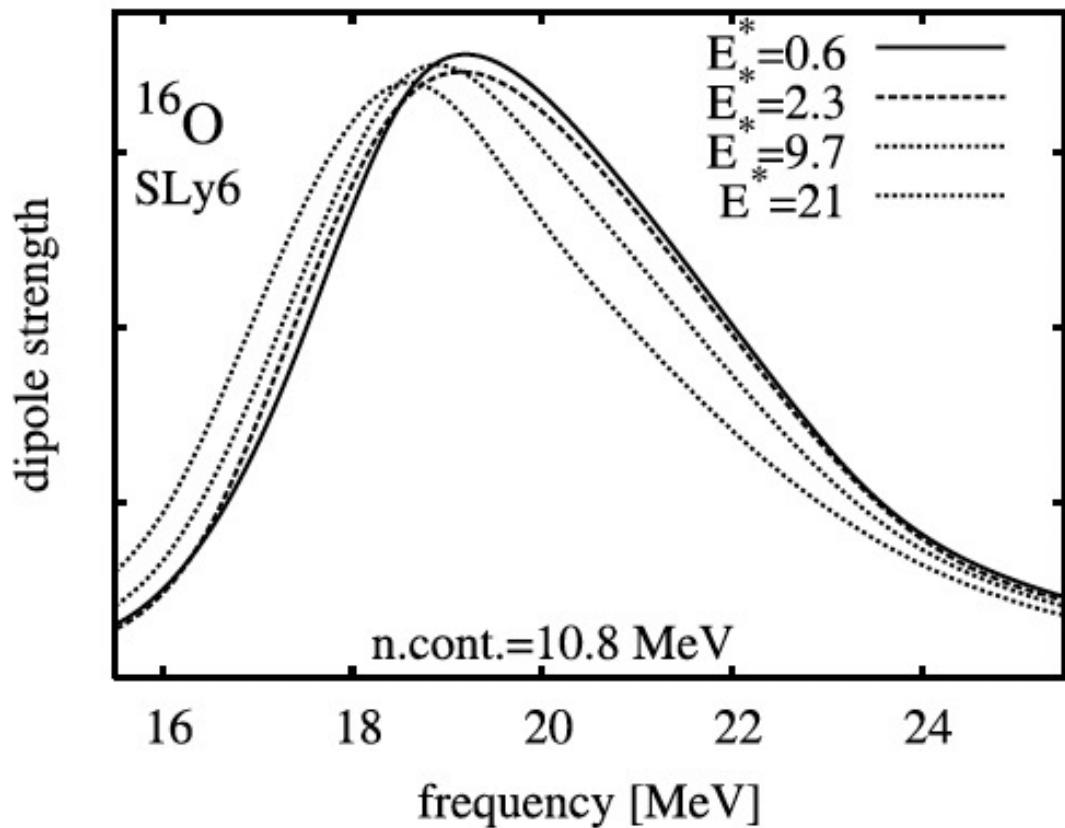
From order...



From order to chaos

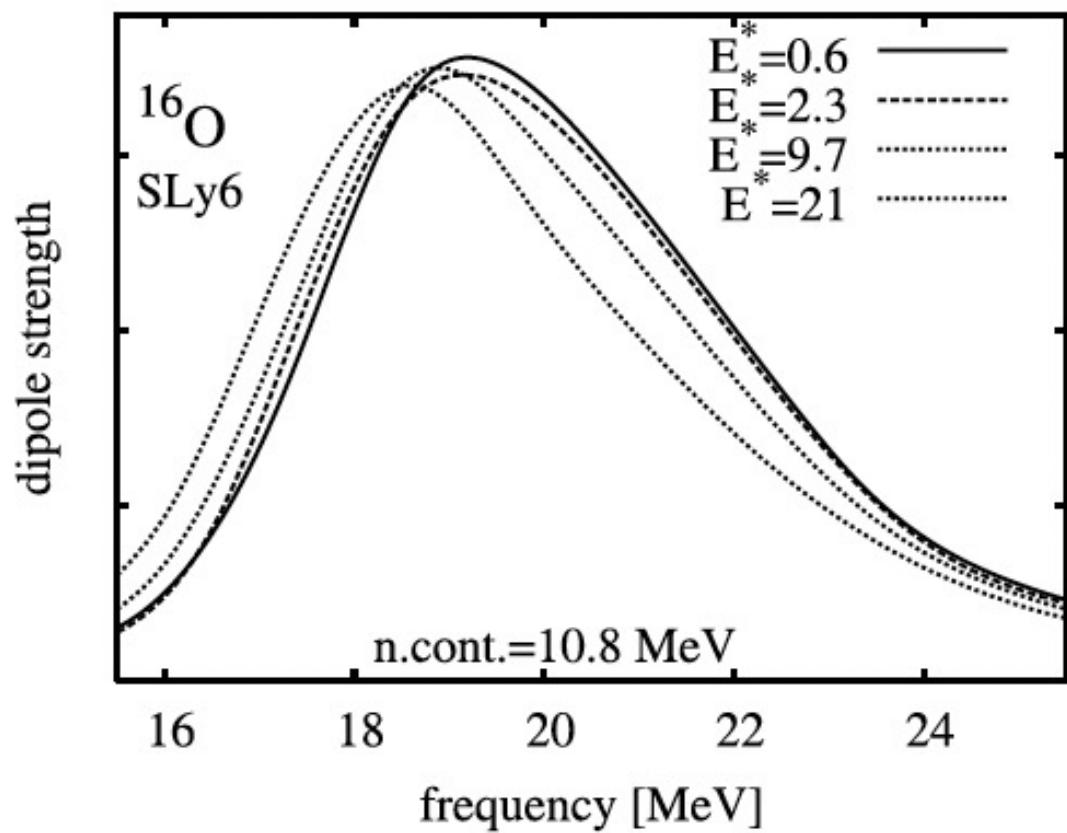


What happens when we increase ϵ ?

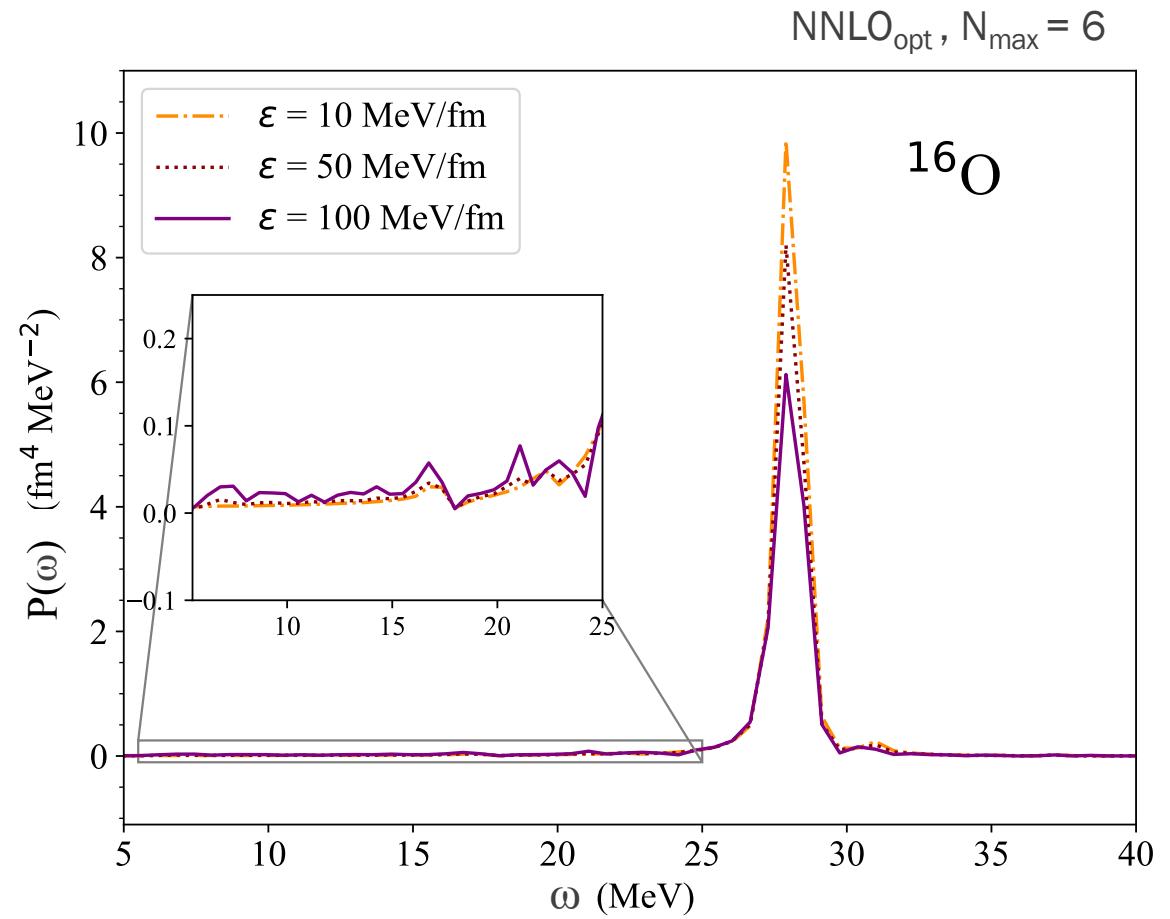


P.-G. Reinhard et al, Eur. Phys. J. A 32, 19–23 (2007).

What happens when we increase ε ?



P.-G. Reinhard et al, Eur. Phys. J. A 32, 19–23 (2007).



FB et al, arXiv:2510.19940 [nucl-th].

Conclusions

- We showed the **doubly-magic nature of ^{266}Pb** from **first principles**.
- We are able to visualize **collective oscillations** as **pygmy and giant dipole resonances** and explore the **strong-field limit** by incorporating **time dependence** in our many-body framework.
- We aim to couple this with calculations on the **lattice** (see Matthias Heinz's talk), a natural framework where to achieve a microscopic description of **nuclear dynamics**.

Stay tuned!

Thanks to my collaborators:

@ORNL/UTK: Gute Hagen, Matthias Heinz, Gustav R. Jansen,
Ben Johnson-Toth, Thomas Papenbrock, Maxwell Rothman

@FRIB/MSU: Kyle Godbey

@Chalmers: Joanna E. Sobczyk

@JGU Mainz: Sonia Bacca, Tim Egert, Weiguang Jiang, Francesco Marino

@LLNL: Cody Balos, Carol Woodward

@TU Darmstadt: Andrea Porro, Alex Tichai, Achim Schwenk

and to you for your attention!

Work supported by:

U.S. DEPARTMENT OF
ENERGY

Theory
Alliance

NUCLEI
Nuclear Computational Low-Energy Initiative