

UNIVERSITY
OF WARSAW

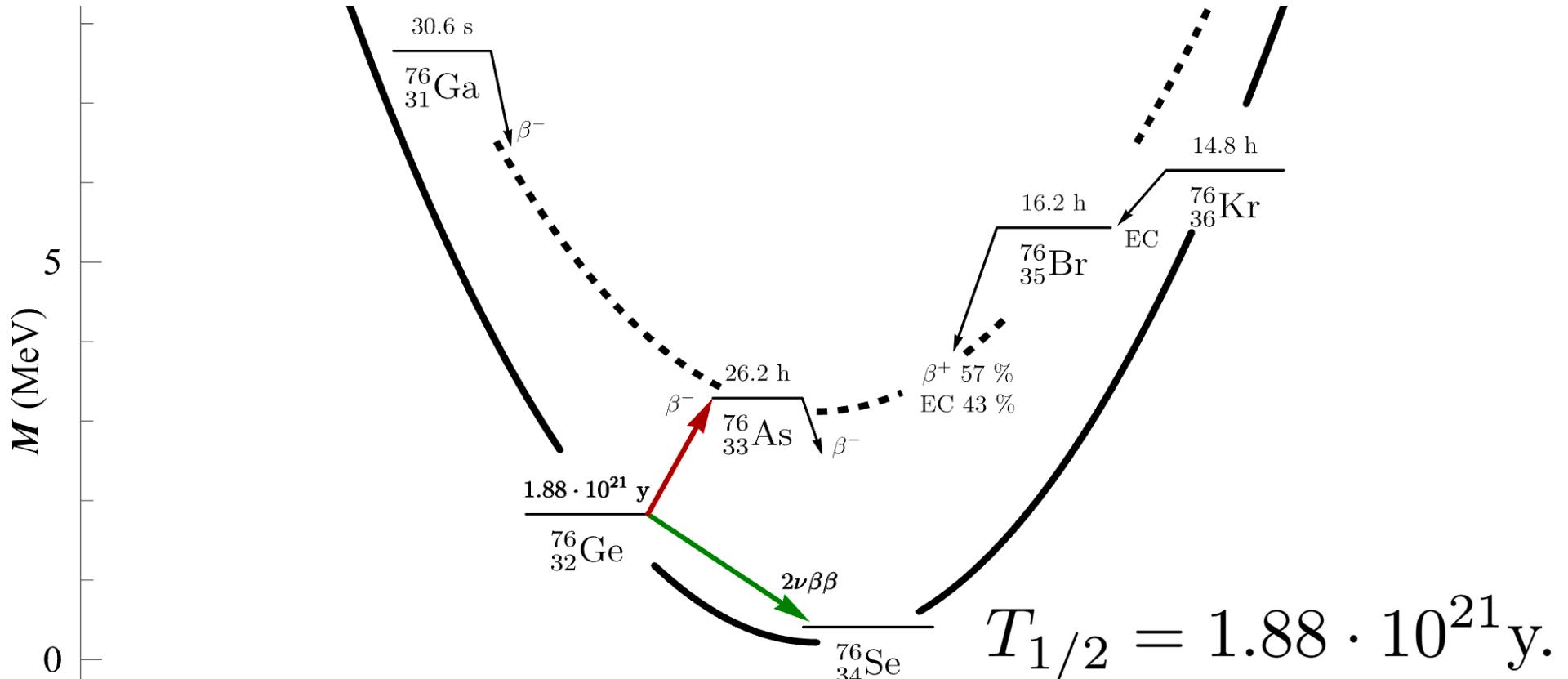
**Double beta decay
within the nuclear density functional theory**

J. Miśkiewicz¹, M. Konieczka¹, W. Satuła¹

¹ *University of Warsaw, Faculty of Physics, Department of Complex Systems Modelling*

Challenges in effective field theory descriptions of nuclei, Hirschegg 2026

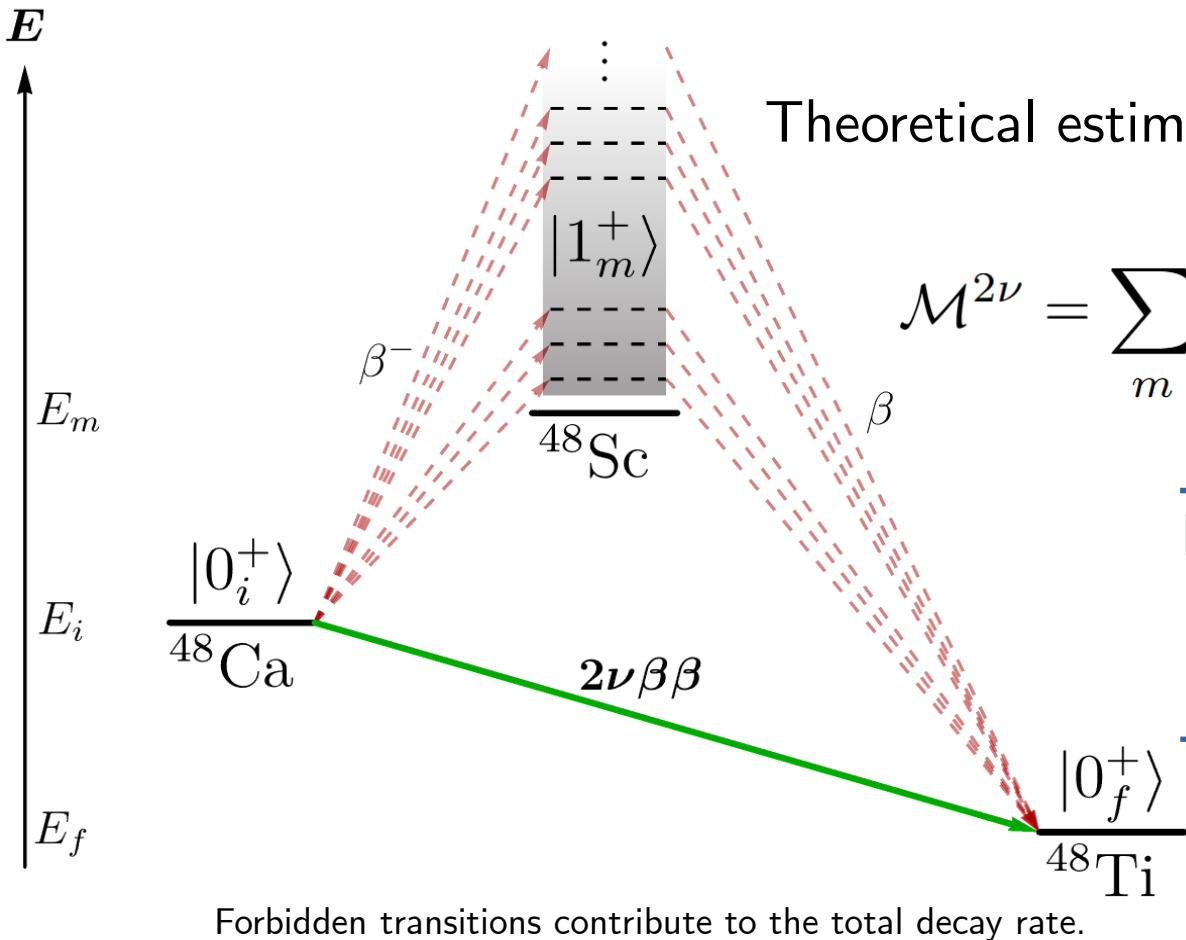
Double beta decay



Mass parabolas of the even-even and odd-odd isobars of $A=76$.

Data from F. Kondev et al., Chinese Phys. C **45**, 030001 (2021).

Fermi golden rule of the 2nd order

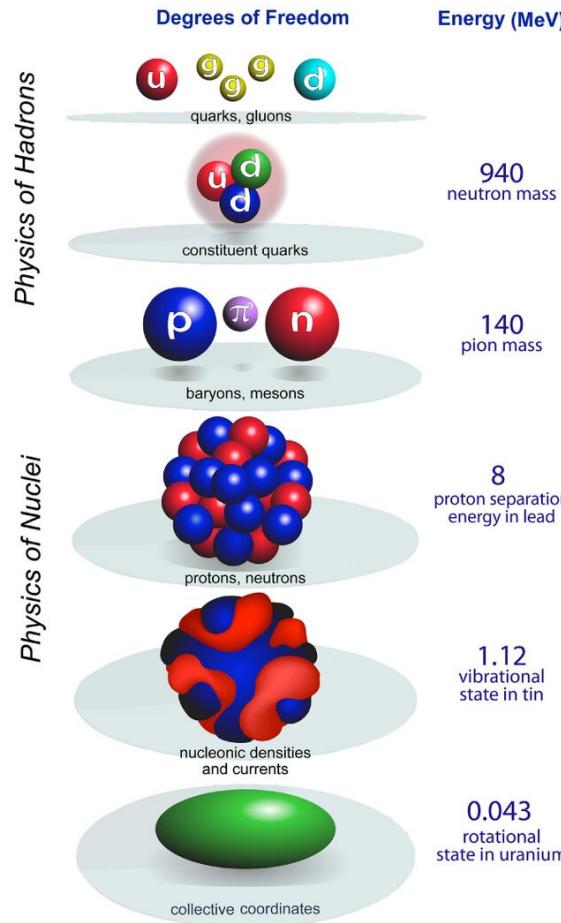


Theoretical estimation via **virtual** transitions:

$$\mathcal{M}^{2\nu} = \sum_m \frac{\langle 0_f^+ | \hat{H}_\beta | 1_m^+ \rangle \langle 1_m^+ | \hat{H}_\beta | 0_i^+ \rangle}{\Delta E_m + \frac{1}{2}Q_{\beta\beta} + \Delta M}$$

Key difficulty: constructing
 $|0_i^+\rangle, |1_m^+\rangle, |0_f^+\rangle$
(strong interaction)

Dealing with strong interaction



Hartree-Fock \rightarrow Kohn-Sham framework

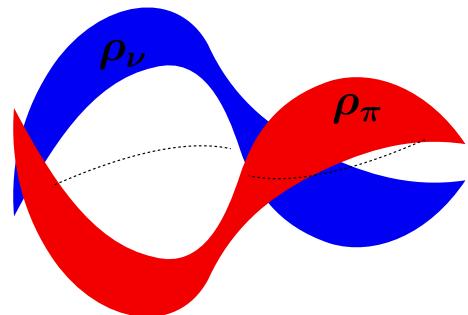
← We are here

Hierarchy of the nuclear degrees of freedom.

Picture taken from E. Litvinova and C. Robin (INPC2016).

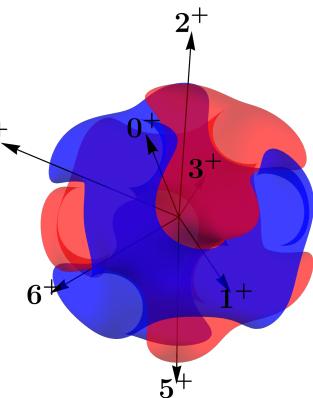
DFT-NCCI in a nutshell

Skyrme SV
density functional



$$\frac{\delta}{\delta \rho}$$

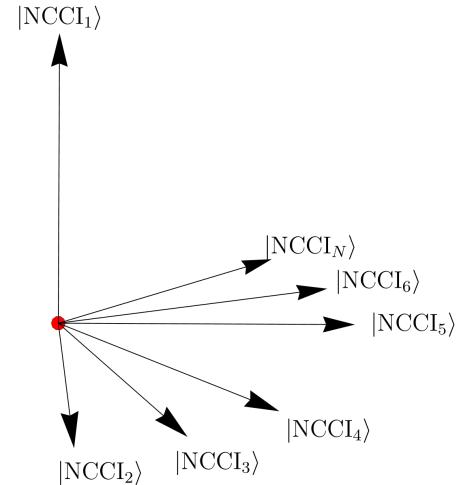
Slater determinant
(mean-field)



π -projection
conf. mixing
Hill-Wheeler

no good quantum numbers
 ~~γ, β transitions~~

NCCI basis



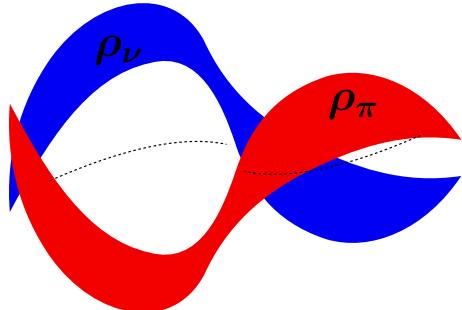
good quantum numbers
 γ, β transitions

Skyrme SV functional

$$\begin{aligned} V_{\text{Skyrme}}(\mathbf{x}_1, \mathbf{x}_2) = & t_0(1 + x_0 \hat{P}_\sigma) \delta(\vec{r}_1 - \vec{r}_2) + \frac{1}{2} t_1(1 + x_1 \hat{P}_\sigma) \left[\overleftarrow{k}^2 \delta(\vec{r}_1 - \vec{r}_2) + \delta(\vec{r}_1 - \vec{r}_2) \overrightarrow{k}^2 \right] \\ & + t_2(1 + x_2 \hat{P}_\sigma) \overleftarrow{k} \delta(\vec{r}_1 - \vec{r}_2) \overrightarrow{k} + \frac{1}{6} t_3(1 + x_3 \hat{P}_\sigma) \rho^\alpha \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) \delta(\vec{r}_1 - \vec{r}_2) \\ & + iW_0(\vec{\sigma}_1 + \vec{\sigma}_2) (\overleftarrow{k} \times \delta(\vec{r}_1 - \vec{r}_2) \overrightarrow{k}), \end{aligned}$$

~~$\rho^\alpha \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) \delta(\vec{r}_1 - \vec{r}_2)$~~ **SV**

$$\overrightarrow{k} = \frac{1}{2i}(\vec{\nabla}_1 - \vec{\nabla}_2), \quad \overleftarrow{k} = -\frac{1}{2i}(\vec{\nabla}_1 - \vec{\nabla}_2)$$



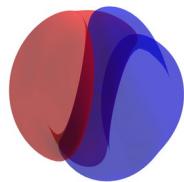
The only density-independent parametrization →
no singularities during I/T -projection

Modelling $2\nu\beta\beta$ of ^{48}Ca

1) Mean – field configuration classes of each nucleus:

^{48}Ca (mother)

1. Seniority-zero nn -pairs

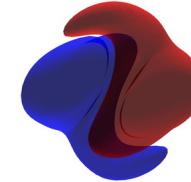


24

configurations

^{48}Sc (virtual)

1. Seniority-two in $f_{7/2}$
2. Single n -excitations across $N=28$
3. Single p -excitations across $Z=28$

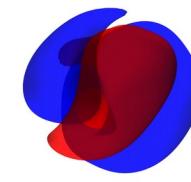


54

configurations

^{48}Ti (daughter)

1. Seniority-zero nn - and pp -pairs in $f_{7/2}$
2. np -pairing in $f_{7/2}$
3. Seniority-zero nn -pairs across $N=28$ shell
4. Seniority-zero pp -pairs across $Z=28$ shell

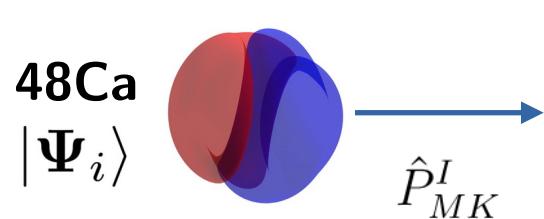


49

configurations

Modelling $2\nu\beta\beta$ of ^{48}Ca

2) I^π - projection:

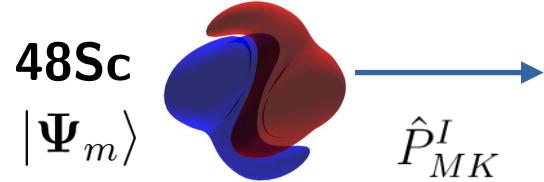


$$|\Psi_{i1}; 0^+\rangle$$

$$|\Psi_{i\alpha}; 0^+\rangle$$

$$|\Psi_{i\gamma}; 0^+\rangle$$

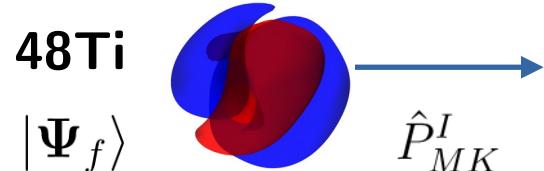
3) Partial Gamow-Teller elements:



$$|\Psi_{m1}; 1^+\rangle$$

$$|\Psi_{m\beta}; 1^+\rangle$$

$$|\Psi_{m\gamma}; 1^+\rangle$$



$$|\Psi_{f1}; 0^+\rangle$$

$$|\Psi_{f\beta}; 0^+\rangle$$

$$|\Psi_{f\gamma}; 0^+\rangle$$

$$\mathcal{M}_{fm} = \langle \Psi_{m\alpha}; 0^+ | \hat{H}_{\text{GT}} | \Psi_{m\beta}; 1^+ \rangle$$

$$\mathcal{M}_{mi} = \langle \Psi_{m\beta}; 1^+ | \hat{H}_{\text{GT}} | \Psi_{i\alpha}; 0^+ \rangle$$

Watch out for orthogonality!

In the projection framework GT-matrix element is expressed via single-particle transition densities ρ :

$$\langle \Psi_i; I_i^\pi | \hat{\mathcal{O}}_{\text{GT}} | \Psi_j; I_i^\pi \rangle \sim \int \langle \Psi_i | \hat{\tau}_{1\mu} \hat{\sigma}_{1\nu} | \tilde{\Psi}_j(\Omega) \rangle \cdot D_{K\text{-num.}}^{I*}(\Omega) d\Omega$$

↓

Generalized Wick's Theorem

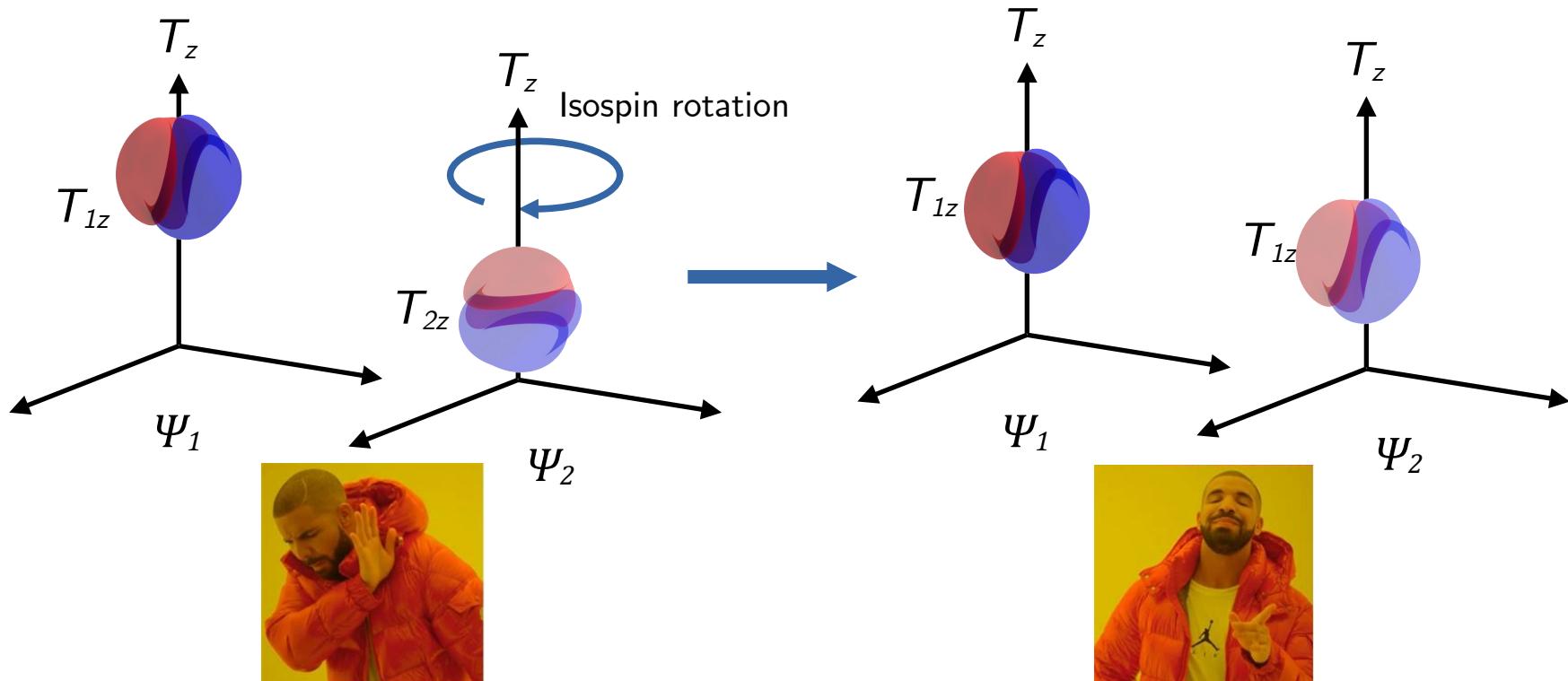
$$\sim \langle \Psi_i(T'_z) | \tilde{\Psi}_j(T_z) \rangle \sum_{aa';\sigma\sigma'} \langle a | \hat{\tau}_{1\mu} | a' \rangle \langle \sigma | \hat{\sigma}_{1\nu} | \sigma' \rangle \tilde{\rho}(\vec{r}, a', \sigma'; \vec{r}, a, \sigma)$$

orthogonal!

But we've got a workaround for that ...

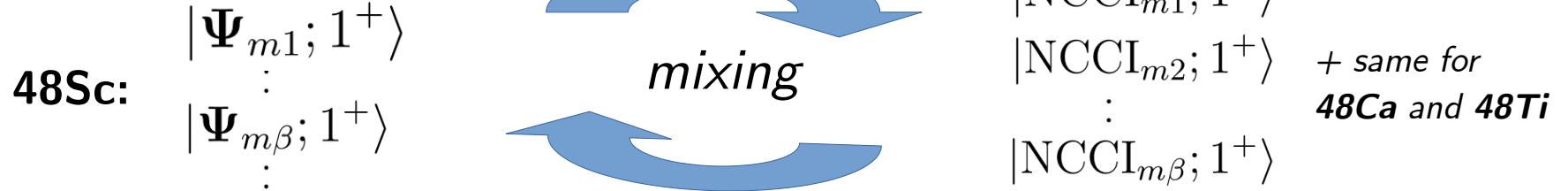
Watch out for orthogonality!

Workaround: rotate in isospace, so both Ψ_1 and Ψ_2 have the same T_z :



Modelling $2\nu\beta\beta$ of ^{48}Ca

4) Configuration mixing of the projected states:



5) Calculation of the cumulative $2\nu\beta\beta$ matrix element :

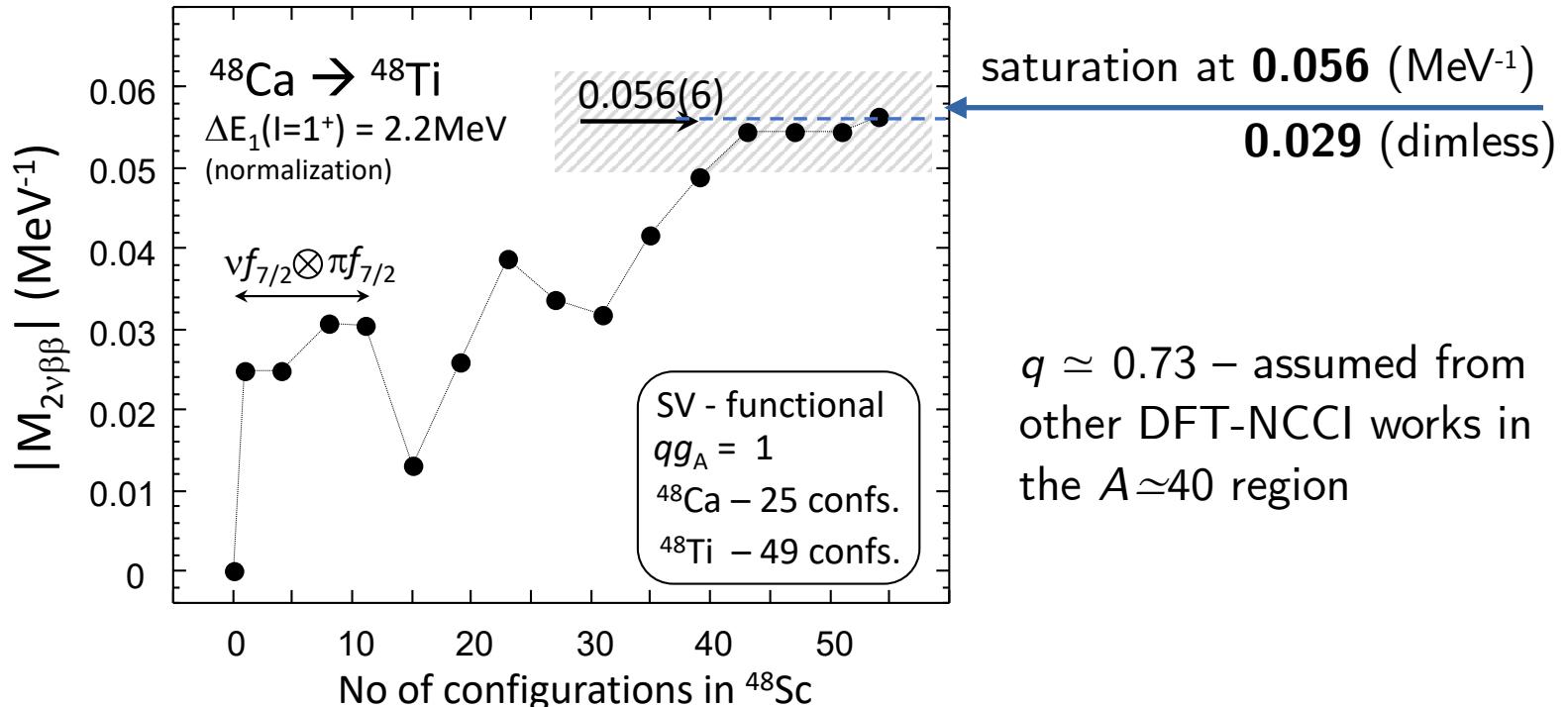
$$\mathcal{M}_{2\nu\beta\beta} = \sum_m \frac{\langle \text{NCCI}_f | \hat{H}_{\text{GT}} | \text{NCCI}_m \rangle \langle \text{NCCI}_m | \hat{H}_{\text{GT}} | \text{NCCI}_i \rangle}{\underbrace{\Delta E_j + \frac{1}{2}Q_{\beta\beta} + \Delta M}_{\text{spectrum shifted to experiment}}}$$

The whole procedure has been performed **numerically** within DFT-based **HFODD** code (open access).

NME($^{48}\text{Ca} \rightarrow ^{48}\text{Ti}$) : virtual dependence

Resulting cumulative $|\mathcal{M}_{2\nu\beta\beta}|$:

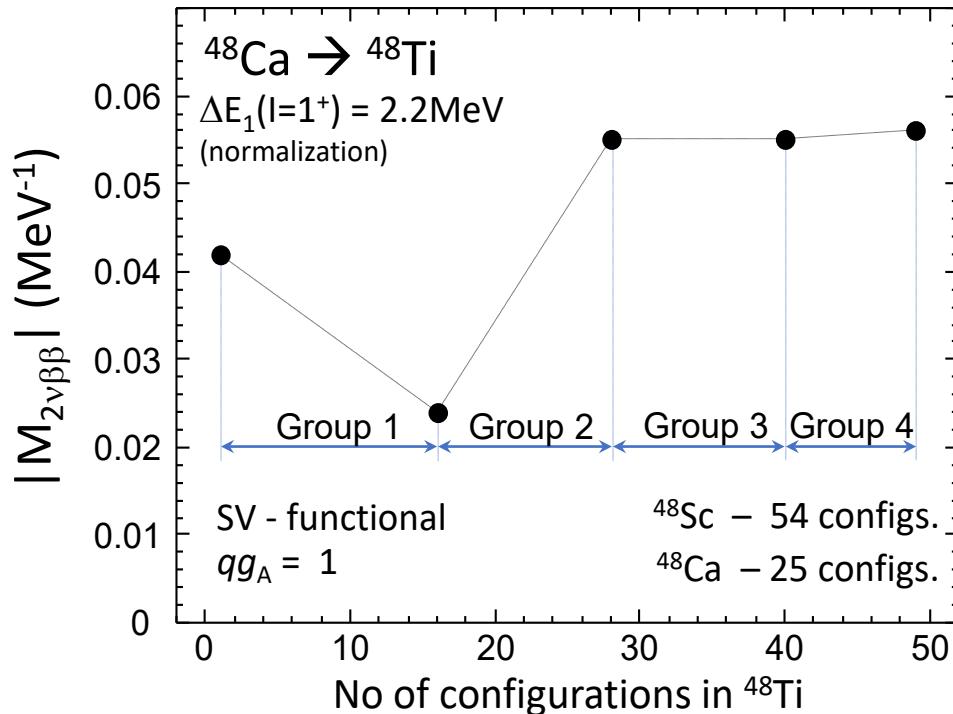
$\Delta E_1(I=\pi=1^+)=2.2\text{MeV}$ (normalization)



NME($^{48}\text{Ca} \rightarrow ^{48}\text{Ti}$) : daughter dependence

Resulting cumulative $|\mathcal{M}_{2\nu\beta\beta}|$:

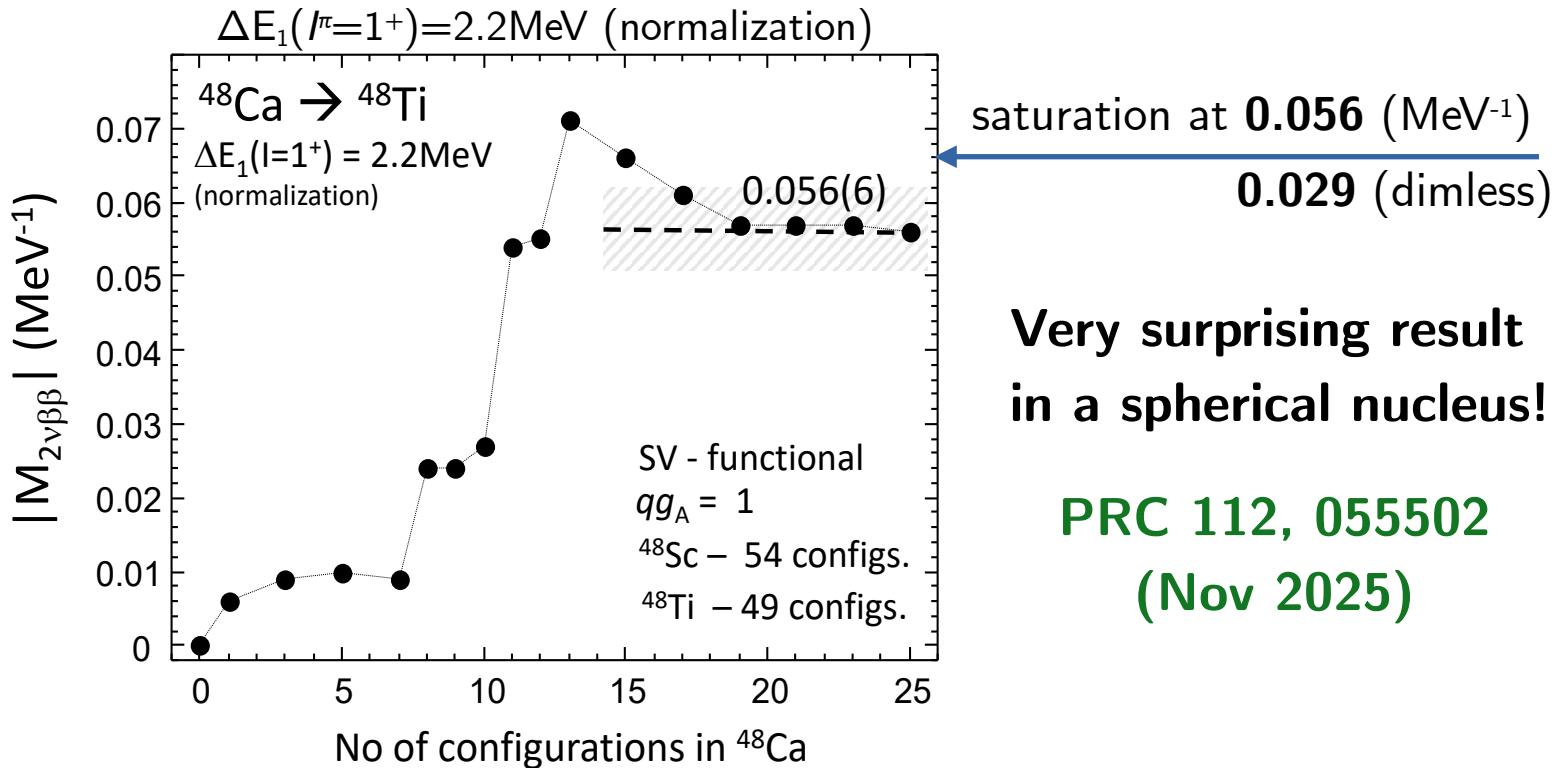
$\Delta E_1(I^\pi=1^+)=2.2\text{MeV}$ (normalization)



Mixing of **crumble** GTs:
88% of the
total matrix element!

NME($^{48}\text{Ca} \rightarrow ^{48}\text{Ti}$) : mother dependence

Resulting cumulative $|\mathcal{M}_{2\nu\beta\beta}|$:



Comparison with other models

Reference	Method	$ \mathcal{M}^{2\nu} $ (MeV $^{-1}$)
A. S. Barabash (2020)	Experiment	0.068 ± 0.006
Y. Iwata et al. (2015)	Shell model	0.0539
F. Šimkovic et al. (2018)	ChER	0.0832
J. Kostensalo and J. Suhonen (2019)	Shell model	0.100
S. Novario et al. (2021)	Coupled cluster	0.082
J. Terasaki and Y. Iwata (2021)	Shell model	0.0515
	QRPA	0.0745
P. Veselý et al. (2024)	STDA	0.1668
J. Miśkiewicz, M. Konieczka and W. Satuła (2025)	DFT-NCCI	0.056

Comparison of DFT-NCCI matrix element magnitude with other nuclear models. Values for other models converted from dimensionless units to [MeV $^{-1}$] assuming $qg_A=1$.

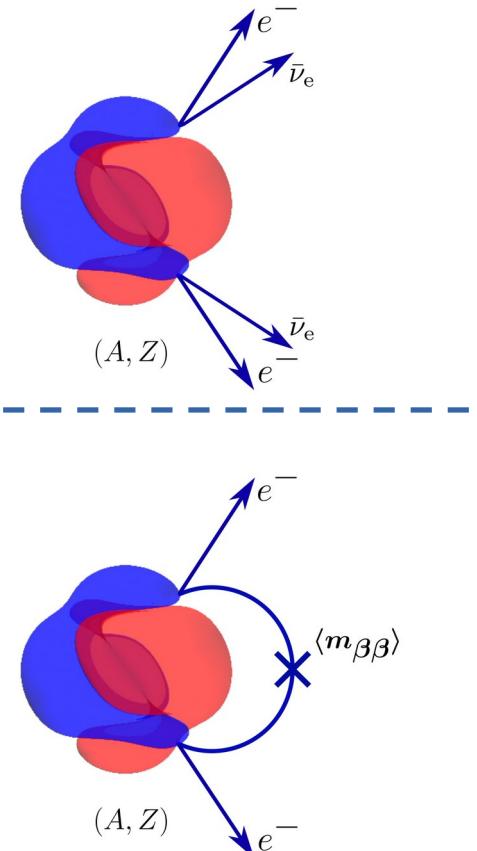
Summary: Status and future plans

$2\nu\beta\beta$
(~ completed)

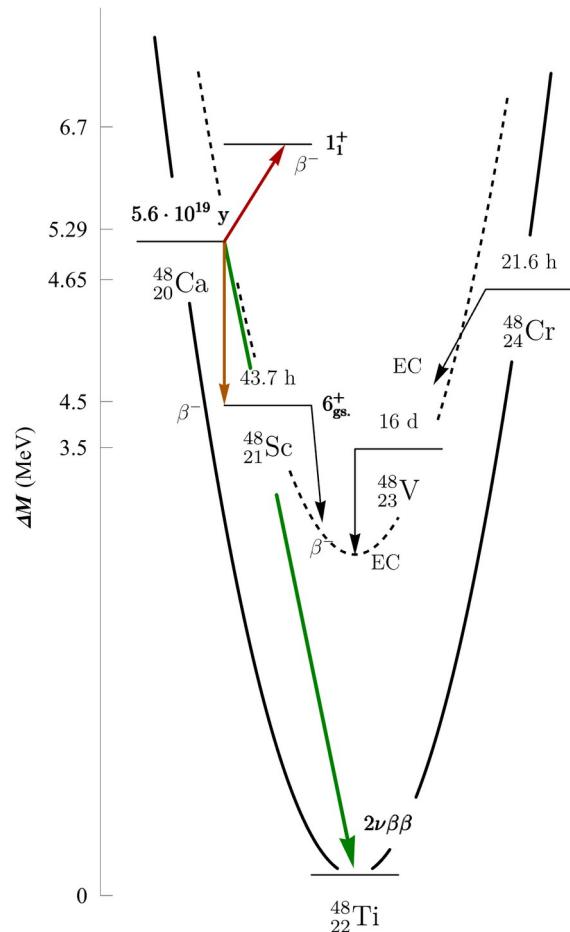
$0\nu\beta\beta$

- **48Ca** (spherical)
- **76Ge** (deformed)
- **136Xe** (heavy)

- Extension of HFODD code:
forbidden transitions (GWT)
- NMEs for 48Ca and 76Ge
(closure approximation)
- Half-life estimation with
modern constraints on $\langle m_{\beta\beta} \rangle$

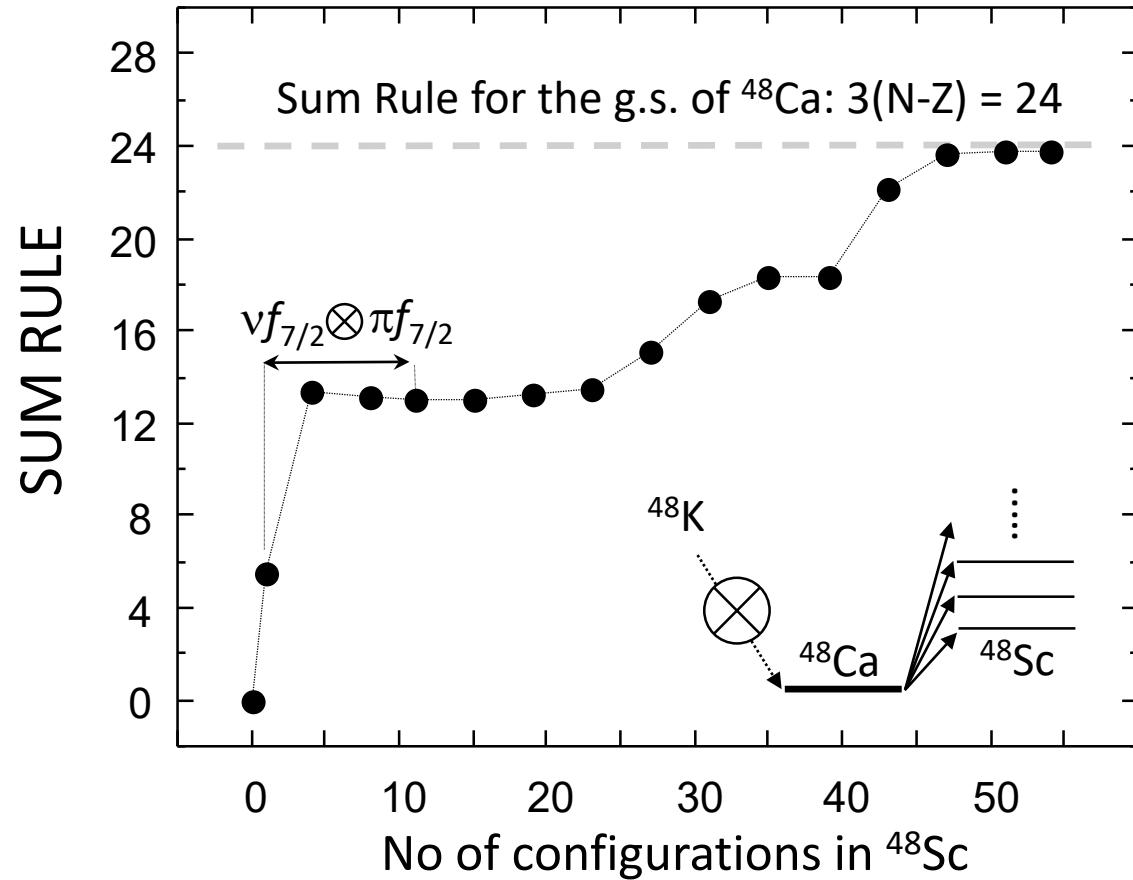


^{48}Ca is unique among the $2\nu\beta\beta$ nuclei



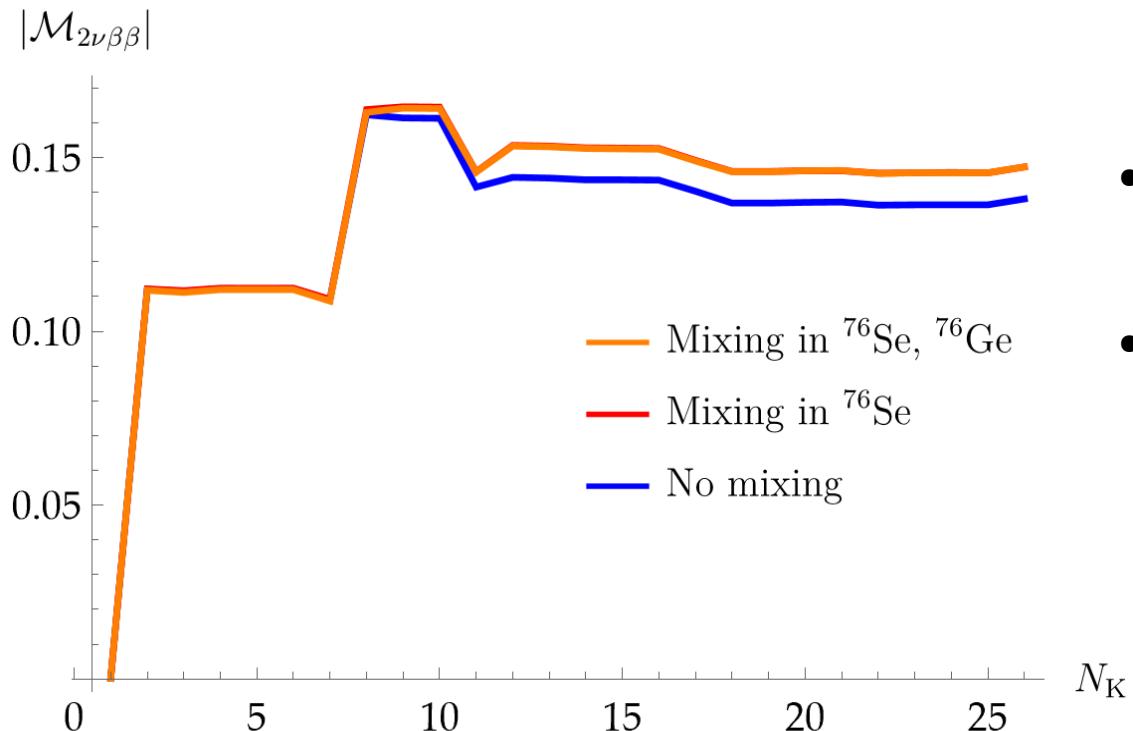
- Doubly magical
- The only spherical nucleus in the $2\nu\beta\beta$ set
- Single β^- to 4^+ , 5^+ , 6^+ possible (orange), but suppressed by $2\nu\beta\beta$ (green)

48Ca Ikeda sum rule



AUX3

Preliminary estimation for ^{76}Ge



- High triaxiality ($\gamma \sim 27-30^\circ$) in each nucleus
- Single-state dominance scenario

Summing contributions from ^{76}As configurations up to saturation. $\Delta E_1(I^\pi=1^+)=100\text{keV}$ (normalization).

AUX2