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Muonic atoms as a precision probe

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration
® Improving energy resolution with MMC

°© Quantum sensor detector to reach low-Z nuclei

o Data taken at PSI with Li, Be, B targets
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QUARTET collaboration
® Improving energy resolution with MMC

°© Quantum sensor detector to reach low-Z nuclei

o Data taken at PSI with Li, Be, B targets
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[Unger et al. J. Low Temp. Phys. (2024)] _ _ _
[QUARTET, Collaboration Meeting on Muonic X-ray (2025)]
QUARTET collaboration Theoretical challenge: ~ 0.1 eV uncertainty on 1S

® Improving energy resolution with MMC

°© Quantum sensor detector to reach low-Z nuclei

o Data taken at PSI with Li, Be, B targets
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QUARTET collaboration
® Improving energy resolution with MMC

°© Quantum sensor detector to reach low-Z nuclei

o Data taken at PSI with Li, Be, B targets

Muonic atoms as a precision probe
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Theoretical challenge: ~ 0.1 eV uncertainty on 1S

Nuclear physics: u-atom ref radius = lIsotopic chain



Muonic atoms as a precision probe

: 71 @ p-Laser
QUARTET :GL' 9B © EL. Scat.
2Py, . 102 ' 0~ o™B ® u-X (HPGe) |
zls)l/z h r Q1B @ IJ-X (CryStal)
C ¢ u-X (MMC)
IS 180
1465N :170
130 160 20,22\ g
| ® @ :BF @ o Na
10 7’:{ 12 -
@“He v @ ¢ l 3
® e e | | IR 24,26Mg
vy, ‘H X * * * * vy
A ¢
‘D | | |
2 4 6 8 10 12
VA
[Unger et al. J. Low Temp. Phys. (2024)] _ _ _
[QUARTET, Collaboration Meeting on Muonic X-ray (2025)]
QUARTET collaboration Theoretical challenge: ~ 0.1 eV uncertainty on 1S

® Improving energy resolution with MMC

Nuclear physics: u-atom ref radius = lIsotopic chain

© Quantum sensor detector to reach low-Z nuclei _ _ _
Beyond Nuclear: §,- estimation for |V ;| extraction

° Data taken at PSI with L19 Be, B targets [V. Katyal et al. PRA (2025)] [C.-Y. Seng, M. Gorchtein, PLB (2023)]
[B. Ohayon, Atomic Data and Nuclear Data Tables (2025)]
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The two-photon exchange nuclear correction

Radius extraction master formula
() =5ED+%rC+5N 7

NS correction: Ong = Oppg + O3pp + ---

Two-photon polarizability contributions
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[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]




The two-photon exchange nuclear correction

Hadronic tensor [Friar, Annals of Physics (1976)]

Radius extraction master formula
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The two-photon exchange nuclear correction

Hadronic tensor [Friar, Annals of Physics (1976)]

Radius extraction master formula
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Two-photon polarizability contributions

(V| 0)|N—q) (N —q|J,(0)]¥)
| Eo — En — qo + i€

/ \ Nuclear polarizability [Hemandez et al. PRC (2019)]
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The two-photon exchange nuclear correction

_ . Hadronic tensor [Friar, Annals of Physics (1976)]
Radius extraction master formula
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Two-photon polarizability contributions

/ \ Nuclear polarizability [Hemandez et al. PRC (2019)]
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_ . Hadronic tensor [Friar, Annals of Physics (1976)]
Radius extraction master formula
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Two-photon polarizability contributions

/ \ Nuclear polarizability [Hemandez et al. PRC (2019)]
\\AAM ition: = 54 N
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® Multipole decomposition: 51‘)401 =Act+Arpt+Ary

(4nZa) ,. [ d% ot A
— | $,5(0)["Im (27,)4D (@D (=q) 1,(q.k) T,(q, —q) | ® Response functions:
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Nuclear physics modelling

Model used for nuclear currents

@ Electromagnetic current modelling

O General one-body current for point-like particles
© Nucleon charge form factor F(g?) = (1 + 612//\2)_2

O Non-relativistic reduction:

™ j = charge convection + magnetic moment rotational
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Model used for nuclear currents

@ Electromagnetic current modelling

O General one-body current for point-like particles
© Nucleon charge form factor F(g?) = (1 + 612//\2)_2

O Non-relativistic reduction:

™ j = charge convection + magnetic moment rotational

@ Multipole decomposition of nuclear currents
[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

o My (@) = | dx MY (gx)Jo(0) 7y,

= (4 |1 — |
o Ty (@) = |dx gVXM]J(qx) JX) 7,

o T%L;TMT(q) = Jd3xM%J(qx) .f(x)TMT

= Jruncation at /=3



Nuclear physics modelling

Model used for nuclear currents Model used for nuclear many-body state
@ Electromagnetic current modelling @ ADb initio nuclear interaction [Entem et al. (2017)] [Soma et al. (2020)]
© General one-body current for point-like particles © Two yEFT interactions considered
—2
© Nucleon charge form factor F(g?) = (1 +q2/A2) © N4LO-E7 and N3LO
© Non-relativistic reduction: = Estimate interaction uncertainty

™ j = charge convection + magnetic moment rotational

@ Multipole decomposition of nuclear currents
[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

(@) = | dPx M (g)Jo(x) py,

O MJM

= (4 |1 — |
o Ty (@) = |dx gVXM]J(qx) JX) 7,

o T%L;TMT(q) = Jd3xM%J(qx) .f(x)TMT

= Jruncation at /=3



Nuclear physics modelling

Model used for nuclear currents Model used for nuclear many-body state
@ Electromagnetic current modelling @ ADb initio nuclear interaction [Entem et al. (2017)] [Soma et al. (2020)]
© General one-body current for point-like particles © Two yEFT interactions considered
—2
© Nucleon charge form factor F(g?) = (1 +q2/A2) © N4LO-E7 and N3LO
© Non-relativistic reduction: = Estimate interaction uncertainty

™ j = charge convection + magnetic moment rotational

® Model space

@ Multipole decomposition of nuclear currents © Harmonic oscillator Slater determinant
[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

(@) = | dx Mg @)y,

© Vary many-body basis: (2, N, .,)
o My

= Estimate model space truncation uncertainty

= (4 |1 — |
o Ty (@) = |dx gVXM]J(qx) JX) 7,

o T%L;TMT(q) = Jd3xM%J(qx) .f(x)TMT

= Jruncation at /=3



Nuclear physics modelling

Model used for nuclear currents Model used for nuclear many-body state
@ Electromagnetic current modelling @ ADb initio nuclear interaction [Entem et al. (2017)] [Soma et al. (2020)]
© General one-body current for point-like particles © Two yEFT interactions considered
—2
© Nucleon charge form factor F(g?) = (1 +q2/A2) © N4LO-E7 and N3LO
© Non-relativistic reduction: = Estimate interaction uncertainty

™ j = charge convection + magnetic moment rotational

® Model space

@ Multipole decomposition of nuclear currents © Harmonic oscillator Slater determinant
[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

(@) = | dx Mg @)y,

© Vary many-body basis: (2, N, .,)
o My

= Estimate model space truncation uncertainty

= (4 |1 — |
o Ty (@) = |dx gVXM]J(qx) JX) 7,

@® Many-body approximation
© No-Core Shell Model

o T%J;TMT(q) = Jd%M%’(qx) .J(x)TMT
O More details in next section

= Truncation at /=3 = Negligible many-body approximation uncertainty
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many-body HO states
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ADb initio No-Core Shell Model

L . _ Anti-symmetrized products of
Lanczos tridiagonalization algorithm [Lanczos (1950)]
many-body HO states

® Initialization: normalized pivot |¢;)

® Recursion: a;, f; and |¢,) NN +1\ b /‘}
> Py | ¢i+1> = H| Cbi) — ailqbi) _:Bi ¢i—1> \ . I }?Q /

7 a; = <¢Z|H|¢z> and ﬁi+1 st <¢i+1 ¢i+1> =1
® Output:
o Lanczos basis and coefficients { | ¢,), a;, f;} _> H in Lanczos basis




ADb initio No-Core Shell Model

L . _ Anti-symmetrized products of
Lanczos tridiagonalization algorithm [Lanczos (1950)]
many-body HO states

® Initialization: normalized pivot |¢;)

® Recursion: a;, B and |¢,) N=N__ -|-1\ (r; /

9

Bt bir) = HI) = a1 6) = i1 i) O\
7 a; = <¢1|H|¢1> and ﬁi+1 St <¢i+1 ¢i+1> —a |

® Output:
o Lanczos basis and coefficients { | ¢,), a;, f;} —> H in Lanczos basis

= Nipaxh€2

Application to nuclear structure

@ Efficient calculation of low-lying spectra

O Selection rules = Fast matrix-vector multiplication

© In practice: N; ~ 100 — 200 is sufficient

® Application to °~'Li
© N, =200 for N,.,=1to9

o Ground-state of ¢~ "Li | W) = Starting point for 51‘)401




ADb initio No-Core Shell Model

L . , Anti-symmetrized products of
Lanczos tridiagonalization algorithm [Lanczos (1950)]
many-body HO states

® Initialization: normalized pivot |¢;)

® Recursion: a;, B and |¢,) N=N__ -|-1\ b /

Pl i) = HIb) = ) = Bil ) o\ me )
> oy =(¢;|H| ;) and Sy st (P |Pip1) = 1 Pt er \ A = Npaxh§2
P &, 1\ | ,
® Output: N ,
o Lanczos basis and coefficients { |¢,),a;, 5;} == [ in Lanczos basis
Application to nuclear structure Lanczos-strength algorithm for 51‘)401

@ Efficient calculation of low-lying spectra © Convergence problem

© Selection rules = Fast matrix-vector multiplication ° Often the strength of 5,(w) is fragmented

. o
© In practice: Ny ~ 100 — 200 is sufficient And only low-lying states converged

® Lanczos strength algorithm
® Application to °~'Li © Pivot based on 1% Lanczos output: |¢;) = O|¥)
© N, =200 for N,.,=1to9

o Ground-state of ¢~ "Li | W) = Starting point for 511)401

o Recovers exactly |(dw o" Sy(w) for n < 2N; — 1

= One additional NCSM run per operator
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A first test case for NALO-E7 and V., = /

Numerical calculations

® G = 700 MeV and Ag = 10 MeV
® 10 different operators for J_,. =3

= 700 NCSM calculations at N .. =7
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A first test case for NALO-E7 and V., = /

Numerical calculations

® Gmax = 700 MeV and Ag = 10 MeV

@ 10 different operators for =3

Jmax

= 700 NCSM calculations at N, =7
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A first test case for NALO-E7 and V., = /

0.00; —
Numerical calculations

—0.02}

Ny ® Gpax = 700 MeV and Ag = 10 MeV
> 0.06 @ 10 different operators for J_.. =3
7 008 = 700 NCSM calculations at N, =7

_o.10l B -0

' =1
O J=2 :

—0.12f = Observations
0.000175F ® Contribution repartitions
0000150 ° Well-known dipole dominance

. QU
o Charge contributions are dominant
0.000125}
i 0.000100k O, Negllglble contributions
5 0.000075} o TM is negligible for any J

U.LU0USLF o TE is relevant only for J =1
0.000025r | = Only half the operators are relevant
0.000000




Checking convergence in J_ ..

0090} Results
@ Here shown for N_.. =7 and N4LO-E7
—0.04
@ All other cases are similar
—0.06 | = Fast exponential convergence
—0.10
—0.12
—0.14
— -
0 1 2 3
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Checking convergence in J_ ..
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| Results
—0.02
@ Here shown for N_.. =7 and N4LO-E7
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@ All other cases are similar
—0.06 | = Fast exponential convergence
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Dependence on (€2,

N,.,) and the interaction
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Dependence on (£2, NV
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Preliminary numerical results

) and the interaction

® Model-space dependence

o Optimal frequency around 20 MeV
° Run calculations for € = 18, 20, 22 MeV

° Truncations for N, =1 —9

= (L, N,

max

) dependence ean. )= 10 meV

max
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N,.,) and the interaction

Preliminary numerical results

® Model-space dependence

o Optimal frequency around 20 MeV
° Run calculations for € = 18, 20, 22 MeV

° Truncations for N, =1 —9

= (Q,N_..) dependence ean. )= 10 meV

max max

® |nteraction dependence
°© N3LO = 2N-N3LO(500) + 3N-Inl
°© N4LO-E7 = 2N-N4LO(500) + 3N-Inl-E7

= interaction dependence: €, ~ 5 meV
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N,.,) and the interaction

Preliminary numerical results

® Model-space dependence

o Optimal frequency around 20 MeV
° Run calculations for € = 18, 20, 22 MeV

° Truncations for N, =1 —9

= (N .\) dependence €N,y = 10 meV

® |nteraction dependence
°© N3LO = 2N-N3LO(500) + 3N-Inl
°© N4LO-E7 = 2N-N4LO(500) + 3N-Inl-E7

= interaction dependence: €, ~ 5 meV

® Current dependence

= On-going estimation of higher-order currents
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N,.,) and the interaction

Preliminary numerical results

® Model-space dependence
o Optimal frequency around 20 MeV
° Run calculations for € = 18, 20, 22 MeV

° Truncations for N, =1 —9

= (Q,N_..) dependence ean. )= 10 meV

max max

® |nteraction dependence
°© N3LO = 2N-N3LO(500) + 3N-Inl
°© N4LO-E7 = 2N-N4LO(500) + 3N-Inl-E7

= interaction dependence: €, ~ 5 meV

® Current dependence

= On-going estimation of higher-order currents
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N,.,) and the interaction

Preliminary numerical results

® Model-space dependence
o Optimal frequency around 20 MeV
° Run calculations for € = 18, 20, 22 MeV

° Truncations for N, =1 —9

= (Q,N_..) dependence ean. )= 10 meV

max max

® |nteraction dependence
°© N3LO = 2N-N3LO(500) + 3N-Inl
°© N4LO-E7 = 2N-N4LO(500) + 3N-Inl-E7

= interaction dependence: €... ~ 5 meV
P 1nt

® Current dependence

= On-going estimation of higher-order currents

0.05 eV precision seems reachable for nuclear structure corrections!



Model-space dependence for °Li
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Model-space dependence for °Li

Preliminary numerical results

® Model-space dependence

° Run calculations for € = 18, 20, 22 MeV

° Truncations for V., =1 -9

° Encouraging convergence from first N_ .. = 9 results

= On-going calculations

= Critical role of latest supercomputer generation
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Preliminary numerical results

® Model-space dependence

° Run calculations for € = 18, 20, 22 MeV

° Truncations for V., =1 -9

° Encouraging convergence from first N_ .. = 9 results

= On-going calculations

= Critical role of latest supercomputer generation

® Uncertainty estimation

° Model-space uncertainty: to be confirmed

° |nteraction uncertainty: seems to be small again
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Model-space dependence for °Li

Preliminary numerical results

® Model-space dependence

° Run calculations for € = 18, 20, 22 MeV

° Truncations for V., =1 -9

° Encouraging convergence from first N_ .. = 9 results

= On-going calculations

= Critical role of latest supercomputer generation

® Uncertainty estimation
° Model-space uncertainty: to be confirmed

° |nteraction uncertainty: seems to be small again
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Benchmarking with pheno estimations
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Benchmarking with pheno estimations
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® Muonic atoms: a precision probe for nuclear physics

© Radii extraction: reference point + isotope-shift

° Precise reference point: muonic atoms

= QUARTET: 10x exp. improvement for Z < 10

® Nuclear polarization: reaching precision ab initio

° Critical nuclear theory input for: E¢ — (rf)

° Theory Goal: 0.1 eV precision on 1S Orpp

® Promising on going results for *~’Li:

° Weak dependence between yEFT interactions

= NCSM: seems possible to reach ¢, ~ 0.05 eV

Outlook

® Completing on-going ab initio calculation

° Complete (M;, M) dependence analysis
° Add current uncertainty quantification

o Extension to °Be, "B = new isotopic chains

® Future modelling improvements

° Nuclear physics: higher-order currents
° Atomic physics: three-photon exchange

° Hadronic physics: more realistic model

® Towards better controlling theoretical uncertainty

o Shifting from pheno towards EFT approach
° EFT based on potential-NRQED for Z > 1

[Peset et al., EPJA (2015)]
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