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• A DFT-based model for an accurate description of excited states: 
QRPA plus particle-vibration coupling

• Bayesian inference of nuclear matter parameters

• An attempt for ab initio based DFT

Starting from natural orbits, correlations up to 2p-2h (or 4 quasi-
particles) seem to be sufficient for an accurate description of the nuclear 
response

It would be interesting to study carefully the probability distributions for 
NM parameters within different frameworks

Highly desirable!
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Nuclear response using QRPA plus 
particle-vibration coupling (PVC)
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We start from a Hartree-Fock-Bogoliubov (HFB) set of states 
obtained with a Skyrme EDF.

First step: diagonalize H on a two quasi-particle basis (QRPA).

This produces a set of “vibrational quanta” or “phonons” associated 
with the operators 𝜞n and 𝜞n+.
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Connecting 
with CC

QRPA can be obtained by looking at variations of the total 
energy at second order in the coefficients c [M. Waroquier 
et al., Phys. Rep. 148, 249 (1987)]
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We wish to improve the structure of the excited states. We can go to 
the next order in the quasiparticle number in different ways.
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We can now treat these components explicitly, although it is quite 
demanding. In most of the application we have included these 
components implicitly though a self-energy.
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D. Gambacurta et al., J. Phys. G 38, 035103 (2011) 
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FIG. 3. Electric dipole photoabsorbtion cross sections in even-even 112�124Sn, 48Ca, and 208Pb isotopes, calculated either by QRPA using a
smoothing with Lorentzian functions having a width of 1 MeV [dash-dotted (black) line], or QRPA + QPVC [solid (blue) line]. The theoretical
results are calculated using the SAMi-T Skyme interaction, and compared with the evaluated experimental results for the same quantity [67–69]
shown by dark yellow crosses.

the predictive power of QRPA + QPVC for the description of
giant resonances.

Here one can note we use the Skyrme force SAMi-T, in-
stead of using the same set that we used previously for the IS-
GMR, namely SV-K226. Although the SV-K226 interaction
gives a very good description of the ISGMR, by including the
QPVC e↵ects, we find that it cannot give a good description
of IVGDR and ISGQR in the Ca, Sn, and Pb isotopes. As
it is known, the energies of giant resonances are sensitive to
specific nuclear matter properties: the ISGMR is sensitive to
the nuclear incompressibility K1 [3], the ISGQR is sensitive
to the isoscalar e↵ective mass m⇤/m [19], while the IVGDR
is sensitive to both the Thomas-Reiche-Kukn (TRK) sum rule
enhancement factor  and to the symmetry energy at subsatu-
ration density, S (0.1) [82]. We have not been able to find a sin-
gle parameter set that can describe equally well the ISGMR,
IVGDR and ISGQR. This is in agreement with the conclusion
of Ref. [50], that also shows that a single parameter set being
able to describe all these resonances, looking at heavy as well
as light nuclei, is hard to be found. The unified description of
ISGMR, IVGDR, and ISGQR by means of the same e↵ective
interaction has not been achieved so far, and it stands as an
important issue for the nuclear physics community. Still, it is

possible to find an interaction that describes well one of the
resonances, in a series of nuclei. We have indeed found that
SAMi-T describes well the IVGDR whereas SkM* does the
same job for the ISGQR. As we have just mentioned, this has
implications on some nuclear matter properties. These prop-
erties are listed, for SAMi-T and SkM*, but also for SV-K226
that we have previously used for the ISGMR, in Table II. As
it has been discussed, SV-K226 is good for ISGMR, which
means it has the good value for the incompressibility coe�-
cient. The value for nucleon e↵ective mass will be discussed
later.

In Fig. 4, we show the ISGQR strength functions in even-
even 112�124Sn, 48Ca, and 208Pb isotopes, calculated either by
QRPA using a smoothing with Lorentzian functions having a
width of 1 MeV [dash-dotted (black) line], or QRPA + QPVC
[solid (blue) line]. The SkM* interaction is used. The experi-
mental data for the strength functions are collected and shown
by di↵erent types of points [70–75]. At first sight, one imme-
diately recognizes that the di↵erent sets of experimental data
correspond to quite di↵erent amounts of strength. It is di�-
cult to discuss, then, the consistency between these sets and,
as a consequence, the consistency between experiment and
theory. Nevertheless, as in the previous case of the IVGDR,

Z.Z. Li et al., Phys. Rev. C110, 064317 (2024). SAMi-T.
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FIG. 2. (a) Photoabsorption cross sections of 58Ni derived
from the spectrum at a scattering angle of 0.40→ using the
virtual photon method (blue circles). The red curve shows
a QRPA calculation including qPVC [38] with the KDE033
interaction [39] normalized to the data. (b) Electric dipole
polarizability ωD derived from the photoabsorption cross sec-
tions. The blue and red bands band show the present data
and the contribution at excitation energies > 20 MeV based
on the theoretical estimate explained in the text with their
uncertainties, respectively.

photoabsorption cross sections by
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The experimental result for the energy region 6 → 20
MeV is plotted as blue curve in Fig. 2(b) and amounts
to ωD = 2.57(28) fm3. The uncertainty band considers
the systematic errors of the experimental cross sections
(cf. Ref. [33]) and the MDA (as described in Ref. [35]).
Statistical uncertainties are negligible.

Photoabsorption data from the (ϖ, xn) reaction are
available for excitation energies up to 33 MeV [42], but
in contrast to heavy nuclei the unknown (ϖ, p) channel
is expected to be significant. Thus, ωD contributions at
energies Ex > 20 MeV were estimated with a theory-
aided procedure using energy density functionals. Previ-
ous analyses of this type [17, 31] were based on the folding
of QRPA calculations with interactions reproducing the
IVGDR centroid with a Lorentzian fitted to the experi-
mental data. Here, we go beyond and include quasipar-
ticle vibration coupling (qPVC) which has recently been
shown to permit not only a reproduction of the width of
the ISGMR [38, 43], but also resolve the discrepancies
between 208Pb and lighter nuclei in theoretical attempts
to extract the compressibility from the energy centroid
of the ISGMR [44].

FIG. 3. Photoabsorption cross sections of 58Ni from the
present work compared with QRPA calculations including
qPVC [38], based on the KDE033 (solid red line) [39], SV-
bas (dashed orange line) [45], and SLy5 (short-dashed green
line) [46] interactions. The inset shows the high-energy flanks
normalized to each other at 20 MeV.

QRPA calculations including qPVC with the approach
described in Ref. [38] are shown in Fig. 3 for Skyrme
forces KDE033 [39], SV-bas [45], and SLy5 [46]. The
photoabsorption cross sections predicted with KDE033
(solid red line) provide a very good desription of the cen-
troid and width of the IVGDR, but the total strength
is somewhat underestimated. Calculations with SV-bas
(dashed orange line) give a similar width and reproduce
the maximum cross section, but the centroid energy is
about 1 MeV too low. Finally, the SLy5 result (short-
dashed green line) shows a much stronger fragmentation
and an even lower energy centroid. Since all calculations
require an adjustment to the data, the absolute values of
the di!erent models for the high-energy (> 20 MeV) con-
tribution to the polarizability becomes very dependent on
the assumptions made in the normalization procedure.

For a quantitative estimate of the high-energy contri-
bution to the polarizability, we choose a normalization
to the results obtained with the KDE033 interaction. As
illustrated in Fig. 2(a), it provides a very good descrip-
tion of the IVGDR after adjusting the absolute height.
The corresponding contribution to the polarizability for
excitation energies > 20 MeV is displayed in Fig. 2(b) as
red curve. The polarizability is integrated up to 50 MeV,
where saturation is reached.

The model dependence due to the choice of specific
interactions is estimated from the variation of the three
calculations after normalization to each other at 20 MeV.
As demonstrated in the inset of Fig. 3, then the theoreti-
cally predicted high-energy tails become similar in shape
and magnitude. The similar energy dependence might

Photoabsorbtion of 58Ni
Comparison with recent data from (p,p’) 
measured at RCNP, Osaka. Exp. data 
from I. Brandherm et al.

Theory reproduces very well the 
dipole polarizabilty and can be used 
to estimate the high-energy dipole 
tail. 
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The electric dipole strength distribution in
58 Ni between 6 and 20 MeV has been determined from proton

inelastic scattering experiments at very forward angles at RCNP, Osaka. The experimental data are rather well

reproduced by quasiparticle random-phase approximation calculations including vibration coupling, despite a

mild dependence on the adopted Skyrme interaction. They allow an estimate of the experimentally inaccessible

high-energy contribution above 20 MeV, leading to an electric dipole polarizability αD(58 Ni) = 3.48(31) fm
3 .

This serves as a test case for recent extensions of coupled-cluster calculations with chiral effective field theory

interactions to nuclei with two nucleons on top of a closed-shell system.

DOI: 10.1103/PhysRevC.111.024312

I. INTRODUCTION

The nuclear equation of state (EOS) governs basic prop-

erties of nuclei [1] and neutron stars [2,3] as well as the

dynamics of core-collapse supernovae [4] and neutron star

mergers [5]. A systematic description of the EOS from nuclear

densities to those in neutron stars is a central goal of current

physics. A wealth of new data is available at high densities

from observations on the properties of neutron stars and neu-

tron star mergers but the present experimental constraints on

the EOS around the saturation density n0 of nuclear matter are

still insufficient.

The EOS of symmetric nuclear matter is rather well con-

strained [1] in contrast to the properties of neutron-rich matter.

* Contact author: vnc@ikp.tu-darmstadt.de
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The latter depends on the symmetry energy, which can be

parametrized in an expansion around n0 by the symmetry

energy at saturation density J (n0) and its density dependence

L = 3n0∂J (n0)/∂n. Higher-order terms are expected to be

small. There are many experimental methods [6] providing

constraints on J and L based on a model-dependent correlation

between L and the neutron-skin thickness rskin in nuclei with

neutron excess [7–10]. For a recent summary, see Ref. [11].

The electric dipole polarizability, αD, has also been identified

as a key observable for constraining EOS parameters [9,12].

Proton inelastic scattering at incident energies of several hun-

dred MeV at extreme forward angles has been developed as

a new experimental tool exactly for the study of αD [13] and

results have been provided for a wide range of nuclei [14–18].

Two theoretical approaches have been used to describe

αD and derive constraints on the symmetry energy parame-

ters: energy density functional theory (DFT) [1,19,20] and

ab initio calculations [21–23] starting from chiral two- and

three-nucleon interactions [24,25]. A correlation of the form

αD · J ∝ L, suggested by the droplet model, has been well

studied in DFT [12,26]. In the ab initio context, comparing ex-

perimental determinations of αD with theoretical predictions

2469-9985/2025/111(2)/024312(8)

024312-1

Published by the American Physical Society

Hirschegg, Jan. 23rd, 2026 7



Hirschegg, Jan. 23rd, 2026 8

Using this model, we have been able, 
for the first time, to analyse in a 
systematic manner the consistency 
between ISGMR energies in different 
nuclei.

We have used many Skyrme EDFs.

With the inclusion of QPVC effects, a 
big improvement is achieved.

Within QPVC, the ISGMR energy in 
208Pb is consistent with 120Sn and 
points to K around 225-230 MeV.

Z.Z. Li, Y.F. Niu, GC, Phys. 
Rev. Lett. 131, 082501 (2023)
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QPVC and two-body currents              
for β-decay
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Gianluca Colò et al. QPVC ... for Nuclear �-decay

When the RPA “puzzle” of very large half-lives has become apparent, different solutions have been164
proposed. One possibility is to invoke an attractive T = 0 pairing force. This is active when the usual165
T = 1 pairing is non-vanishing, as we discuss in the next Section, and cannot play a role in the nuclei166
that we have discussed so far if they are magic, i.e. they have closed shells. We will come back to the167
role of pairing in the next section. Other authors have emphasized the role of the tensor force in �-decay168
(Minato and Bai (2013)). The tensor force affects strongly both single-particle states (in particular, their169
spin-orbit splittings) and collective spin-flip excitations, as is natural; it is natural that also has an effects on170
�-decay. However, we still do not have a reliable, universal parametrization for the tensor force. A narrow171
interval for the tensor force parameters has been suggested in (Bai et al. (2011)), and new results on the M1172
excitations seem to question this conclusion (Sun et al. (2024)).173

In summary, our results hint that PVC effects are genuine many-body effects that should be included in174
�-decay EDF-based calculations. One can aim at improving the EDFs themselves, either with better fitting175
procedure or also by including tensor terms; but this should be done in addition to, not as an alternative176
to, including many-body effects. This is also the conclusion of the recent work of (Liu et al. (2024)) that177
we shall also comment more in what follows. Last but not least, our conclusion is supported by the SRPA178
calculations of �-decay half-lives that have been reported in (Yang et al. (2023)).179

5 ISOSCALAR PAIRING

While the usual neutron-neutron or proton-proton, T = 1, pairing is rather well-known and gives rise to180
obervable phenomena that can be associated to the superfluid character of part of the nucleons in a nucleus,181
the proton-neutron pairing, and in particular its isoscalar T = 0 component, is still elusive [cf. (Sagawa182
et al. (2016)) for a recent review]. There is no evidence, to date, of a proton-neutron superfluid. However,183
the T = 0 pairing interaction has S = 1 character in the L = 0 channel, and can be active, or even strong,184

With the inclusion of PVC, the RPA peak at 1.5 MeV is
moved even slightly below the experimental ground-state
energy. This state then gives a very large contribution
to 1=T1=2 because of the increased phase-space factor,
although its strength is not changed much by PVC
[Fig. 2(e)], and the half-life is smaller than in experiment.
In the case of 34Si, in RPA one finds three peaks located
atE ¼ −0.86; 3.1, and 4.2MeV. The first one lies below the
experimental ground state and determines the value of
1=T1=2 [Fig. 2(i)]. This peak carries a very small value of
the strength, and therefore the experimental lifetime is
largely overestimated. With inclusion of the PVC, the
strength becomes fragmented [Fig. 2(g)]. One can identify
five peaks at E ¼ −2.2; 1.0; 1.7; 2.6, and 3.1 MeV, contrib-
uting respectively 15%,49%,24%,3%, and 9% of the total
value of 1=T1=2, which becomes much larger than that
in RPA, substantially improving the agreement with the
experimental lifetime. For the nucleus 78Ni, the small
strength at E ¼ 5.6 MeV gives almost all the contribution
to 1=T1=2 in the RPA model [Fig. 2(l)], which under-
estimates the experimental value. With PVC, the state at
E ¼ 5.6 MeV keeps its strength but is shifted to 4.0 MeV
[Fig. 2(j)] so that its contribution to 1=T1=2 becomes about
3.4 times larger [Fig. 2(l)]. The strength distribution above
this peak contributes 22% of the total 1=T1=2.
The resulting calculated lifetimes for these four nuclei

are compared with experiment in Fig. 3. The RPA results
generally markedly overestimate the half-lives for all
nuclei. An exception is represented by the interaction

Skx, in which case one obtains a good agreement with
data at the RPA level; this is associated with the fact that
the properties of 132Sn, 68Ni, and 34Si as well as the single-
particle levels of 132Sn and 34Si have been used to fit the
parameters of this force [43]. The effect of the PVC
decreases the values of T1=2 by large factors compared
to RPA, substantially improving the agreement with exper-
imental data, except for Skx and (partially) for SLy5. With
the inclusion of the PVC effect, the interactions SkM* and
SIII give the best agreement with data. More in detail, in the
case of SkM*, the lifetime is still large in 132Sn and small in
68Ni, in keeping with the errors in the position of the lowest
1þ state (cf. Fig. 2). Theory agrees, instead, very well with
data in the case of 34Si and 78Ni.
In conclusion, we have shown that, starting fromRPA, the

coupling between particles and vibrations causes a signifi-
cant downward shift in the GT strength function of these
four nuclei 132Sn, 68Ni, 34Si, and 78Ni (treated asmagic). The
β-decay half-life is more sensitive to the position of the 1þ

states rather than to the strength, which is not much changed
in going from RPA to RPAþ PVC. This is due to the strong
increase of the decay phase space factor as the energy
decreases. As a consequence, the lifetime is reduced in the
case of RPAþ PVC, and the agreement between theory and
experiment is in general substantially improved. In particu-
lar, the interaction SkM* that had been previously shown
to perform well in magic nuclei as far as the line shape of
the GT resonance is concerned [35] leads to overall good
agreement with β-decay data.
We can expect that including the effect of PVC will also

be helpful in the case of other weak interaction processes,
such as electron capture. PVC is expected to help with the
overestimation of the threshold energy [46]. The study of
open-shell nuclei by including pairing correlations is
envisaged. Then the model can be employed to predict
the half-lives of r-process bottleneck nuclei with N ¼ 82,
which play an important role for the duration of the r
process and, hence, can help to understand the origin of
heavy elements in the universe.
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FIG. 3 (color online). The β-decay half-lives of 132Sn, 68Ni,
34Si, and 78Ni, calculated by RPA and RPAþ PVC approaches,
respectively, in comparison with experimental values [45]. The
arrows denote half-lives longer than 106 s.
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Figure 3. �-decay half-lives in the case of 132Sn, 68Ni, 34Si, and 78Ni. The RPA and RPA+PVC results are
compared with the experimental half-lives, taken from http://www.nndc.bnl.gov. [Figure taken
from (Niu et al. (2015))].

Frontiers 7

Y. F. Niu et al., Phys. Rev. Lett. 114, 142501
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Energy conservation dictates that the decay is possible when the decay Q-value, Q� , is positive. In the56
case of the decay to the ground-state of the daughter nucleus, the energies carried away by the electron and57
(anti)-neutrino are equal to Q� . If the nucleus decays over an excited state at energy E, the energies carried58
away by the leptons are smaller, and clearly E cannot exceed Q� (in the usual jargon, it lies in the �-decay59
window or Q� window). This explains the integration limits in Eq. (4). There is a further important point,60
though. The phase space factor f is written in Eq. (4) as a function of ! = Q� +mec

2 � E, which is the61
electron kinetic endpoint and is easy to determine experimentally; this function is62

f(!) =

Z !

mec2
dEe peEe (! � Ee)

2
F (Z + 1, Ee), (5)

with the electron energy, momentum and Fermi function denoted as Ee, pE and F , respectively. These63
facts have two important consequences. If, in a theoretical calculation, there is no strength, or very little64
strength, below Q� , then the decay half-life is infinite or largely overestimated. But also the position of65
the final states within the Q� window is very important. If the states have lower energies E, f(!) grows66
significantly and the half-life is, consequently, very sensitive to the values of the final states energies. This67
explains why �-decay is a challenge for nuclear structure models: it calls for high accuracy in calculations68
of the low-lying spectra of the daughter nucleus, because of the “magnifying lens” effect of the phase space69
factor.70
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Q�

Spreading/fragmentation 

Figure 1. (Left panel) Schematic view of the neutron and proton levels, with the possible GT transitions
between occupied neutron levels and unoccupied proton levels, for 132Sn. The figure is inspired by Fig.
8 of (Rubio et al. (2020)). (Right panel) Schematic view of the different approximations to calculate the
B(GT ) distributions. The different GT transitions between occupied and unoccupied levels merge, to a
large extent into the collective GTR (the residual interaction is repulsive in this case, and the GTR lies at
higher energy than the average of the s.p. transitions). QRPA plus QPVC produces a downward shift of the
strength and a significant fragmentation: this increases the likelihood to find a realistic amount of strength
within the Q� window.

In Fig. 1, in the left panel, we show possible GT transitions in the nucleus that we have picked up as an71
example for our general discussion, namely 132Sn. There are many single-particle transitions but, as is72
well known, most of their GT strength will be absorbed by the collective Gamow-Teller resonance (GTR)73
at higher energy, 16.3 MeV in the daughter nucleus 132Sb (in other words, outside the Q� window that74
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PVC redistributes the GT strength.
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FIG. 3: (Color online). Theoretical and experimental B(GT) distributions with respect to the daughter nucleus in 56Ni, 100Sn, and 132Sn.
The theoretical results are obtained within RPA and RPA + PVC models with the SkM* interaction. The black vertical dotted lines indicate
the experimental values of Qω [66]. The red and yellow solid lines represent the RPA and RPA + PVC results with one-body current,
respectively. The cyan and blue dashed lines represent the RPA and RPA + PVC results by including the two-body currents. Experimental
data are showed as the black solid lines[66].

than the measured energy. For 132Sn [Fig. 3(c)], experi-
ments observed two 1+ states at energies 1.33 MeV and 2.27
MeV[66] with summed B(GT)=0.42, respectively. The RPA
calculation predict the lowest state at 3.60 MeV, which is
above the ω-decay window. The lowest state(E = 2.45 MeV)
in the RPA + PVC calculation is below the Qω(E = 3.09
MeV), and the calculated energy is consistent with the pre-
vious study[32]. The calculated B(GT) is 2.404(1.892) by
RPA(RPA + PVC) with one-body current. The results (1.285
and 1.021) given by RPA and RPA + PVC models with two-
body currents get much better agreement with the experi-
mental B(GT) value. In summary, two-body currents con-
sistently reduce the B(GT) in both RPA and RPA + PVC
frameworks, and the RPA + PVC model including two-body
currents achieves better overall agreement with experimental
observations.

TABLE I: Individual contributions of the four terms in Eq. (3) to
B(GT).

BGT (1) BGT (1,3) BGT (1,3,4) Exp. q

56 Ni 0.212 0.133 0.137 0.152 0.80
100 Sn 15.168 8.923 8.930 9.17+2.64

→2.37 0.77
132 Sn 1.892 1.025 1.021 0.42+0.02

→0.02 0.73

To evaluate the contribution of each term in Eq. (3) to the
B(GT), we calculate the corresponding B(GT) values in the
studied nuclei. We quantify the two-body current effect by
defining the quenching factor q,

q =

√
BGT (1,3,4)

BGT (1)
. (5)

Where BGT(1) denotes the B(GT) value obtained from
only the first matrix element in Eq. (3), BGT(1,3) de-
notes the B(GT) from the first and third matrix elements,
and BGT(1,3,4) denotes the B(GT) from the first, third, and
fourth matrix elements. Table I shows the individual contri-
butions of the four terms in Eq. (3) to the B(GT) within RPA
+ PVC calculations, where the first NMEs corresponds to the

TABLE II: The contribution of momentum term of chiral two-body
currents in 100Sn. The results are obtained with three different
(c3, c4) parameter sets.

(c3, c4) w/o Momentum w/i Momentum

(→3.2, 5.4) 8.270 8.290
(→4.78, 3.96) 8.930 8.950
(→3.4, 3.4) 9.948 9.970

contribution of one-body current to the 1p-1h component,
and the second NMEs remains identically zero due to its vi-
olation of the Pauli exclusion principle. We find that the con-
tributions of two-body currents are predominantly from the
third term, while the fourth term exhibits minimal influence.
Physically, the third term represents the effect of two-body
currents on the 1p-1h component, and the fourth term rep-
resents their effect on the 1p-1h ↑ phonon component. The
values in the 6th column are the extracted quenching factors
q from the results given by RPA + PVC with two-body cur-
rents for 56Ni, 100Sn, and 132Sn, respectively, which are in
the range of 0.73→0.80, aligning closely with the commonly
adopted empirical quenching factor q ↓ 0.75 [25]. Thus,
including the chiral two-body currents in RPA + PVC cal-
culations has made a great step for the accurate description
of GT transitions within density functional theory without
adjusting the coupling constant gA.

To show the contributions of momentum and short-range
terms of the two-body currents to NMEs, we calculate the
individual contributions of these terms, we take the results
of 100Sn as an example. Table II shows the B(GT) for 100Sn
with and without momentum term. It is shown that the con-
tribution of momentum term remains negligible regardless of
the adopted LECs. However the computational cost for this
term is substantial, so this term is usually neglected in the
calculations[49].

Let us finally discuss the effect of short-range term on
the B(GT). Fig. 4 shows the calculated B(GT) as function
of the short-range coupling constant c̄D, where c̄D changes
from -2 to 2 under different c3 and c4 parameter sets. It is
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We show that chiral effective field theory (EFT) two-body currents provide important contributions to

the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the

momentum-transfer dependence that is probed in neutrinoless double-beta (0!"") decay. We then

calculate for the first time the 0!"" decay operator based on chiral EFT currents and study the nuclear

matrix elements at successive orders. The contributions from chiral two-body currents are significant and

should be included in all calculations.

DOI: 10.1103/PhysRevLett.107.062501 PACS numbers: 23.40.!s, 12.39.Fe, 21.60.Cs, 23.40.Hc

Weak interaction processes provide unique probes of the
physics of nuclei and fundamental symmetries, and play a
central role in astrophysics [1]. The structure of strongly
interacting systems is explored with " decays and weak
transitions. Superallowed decays allow high precision tests
of the standard model, and neutrinoless double-beta (0!"")
decays probe the nature of neutrinos, their hierarchy, and
mass. Weak processes mediate nuclear reactions that drive
stellar evolution, supernovae, and nucleosynthesis.

Surprisingly, key aspects of well-known decays remain a
puzzle. In particular, when calculations of Gamow-Teller
(GT) transitions of the spin–isospin-lowering operator
gA!#! are confronted with experiment, some degree of
renormalization, or ‘‘quenching’’ q, of the axial coupling
geffA ¼ qgA is needed. Compared to the single-nucleon
value gA ¼ 1:2695ð29Þ, the GT term seems to be weaker
in nuclei. This was first conjectured in studies of "-decay
rates, with a typical q % 0:75 in shell-model (SM) calcu-
lations [2] and other many-body approaches [3]. In view of
the significant effect on weak reaction rates, it is no sur-
prise that this suppression has been the target of many
theoretical works. It is also a major uncertainty for 0!""
decay nuclear matrix elements (NMEs), which probe larger
momentum transfers of order the pion mass, p&m$,
where the renormalization could be different. Here we
revisit this puzzle based on chiral effective field theory
(EFT) currents.

Chiral EFT provides a systematic basis for nuclear
forces and consistent electroweak currents [4,5], where
pion couplings contribute both to the electroweak axial
current and to nuclear interactions. This is already seen
at leading order: gA determines the axial one-body (1b)
current and the one-pion-exchange nucleon-nucleon (NN)
potential. Two-body (2b) currents, also known as meson-
exchange currents, enter at higher order, just like
three-nucleon (3N) forces [4]. As shown in Fig. 1, the
leading axial contributions are due to long-range

one-pion-exchange and short-range parts [5], with cou-
plings c3, c4, and cD, which also enter the leading 3N
(and subleading NN) forces [4,6]. Although the importance
of 2b currents is known from phenomenological studies
[7], chiral currents and the consistency with nuclear forces
have only been explored in the lightest nuclei [5,6,8]. In
this Letter, we present first calculations for GT transitions
and for the 0!"" decay operator based on chiral EFT
currents. A preview of the NMEs (Fig. 2) and the quench-
ing of gA (Fig. 3) shows the great importance of using
chiral 2b currents in nuclei.

In chiral EFT, the nuclear current J%y
L is organized in an

expansion in powers of momentum Q&m$ over a break-
down scale !b & 500 MeV. Consistently with nuclear
forces [4], we count the nucleon mass as a large scale,
corresponding numerically to Q=m& ðQ=!bÞ2, so that the
leading relativistic 1=m corrections are of order Q2, and
1=m2 terms of order Q4. To order Q2 (and also Q3 in this

counting), the 1b current, J%y
L ðrÞ ¼ PA

i¼1 #
!
i ½&%0J0i;1b !

&%kJki;1b(&ðr! riÞ, has temporal and spatial parts in mo-

mentum space [5]:

J0i;1bðp2Þ ¼ gVðp2Þ ! gA
P ) !i

2m
þ gPðp2ÞEðp ) !iÞ

2m
; (1)

Ji;1bðp2Þ ¼ gAðp2Þ!i ! gPðp2Þpðp ) !iÞ
2m

þ iðgM þ gVÞ
!i + p

2m
! gV

P

2m
; (2)

FIG. 1. Chiral 2b currents and 3N force contributions.
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FIG. 1: (Color online). Comparison of the calculated GT strength
B(GT) for 100Sn ω-decay with the experimental data[55, 56] and
the ab initio calculations[44]. The results are obtained within RPA
and RPA + PVC methods with different Skyrme interactions. Open
symbols denote one-body current results, solid symbols are the re-
sults given by including two-body currents, and blue, green and
purple symbols correspond to the distinct coupling constants (c3, c4)
with c̄D = 0.

models, respectively. In the calculations, different Skyrme
interactions, including SGII, SIII, SkM* and SLy5[58, 59],
are adopted to show the conclusions are interactions inde-
pendence. In the figure open (solid) symbols represent the
results with the one-body current only (with including the
two-body currents). For the results with two-body currents,
symbols with blue, green and purple colors correspond to
the results given by adopting the coupling constants (c3, c4)
= (→3.2, 5.4) [60], (→4.78, 3.96) [61] and (→3.4, 3.4) [62] in
GeV→1, respectively, and the short-range coupling constant
is assigned to an intermediate value with c̄D = 0 for all the
cases[49]. The results with only the one-body current sys-
tematic overestimate the experimental data. While the re-
sults with two-body currents show good agreement with ex-
perimental data from Ref. [55] but are larger than that from
Ref. [56]. The overall quenching induced by two-body cur-
rents ranges between 0.72 to 0.82, which closely matches
the widely adopted empirical quenching factor q ↑ 0.75
[25]. Furthermore, results given by RPA + PVC model, no
matter with one-body or with two-body currents is included,
are systematic lower than the corresponding results in RPA
model with the same Skyrme interactions. This is because
the PVC model contains more many-body correlations than
the RPA model, and it shifts part of the B(GT) strength from
the high-energy to low-energy region and reduces the B(GT)
value. The last two rows in Fig. 1 show the results taken
from Ref.[44], where the results are calculated by ab ini-
tio coupled-cluster theory with (solid symbols) and without
(open symbols) the contribution of 2BC. It is found that the
inclusion of 2BC can quench the B(GT) of 100Sn effectively.
For the results with 2BC, one result overlaps with the eval-
uation in Ref. [56](the lower one), another result is at the
lower end of the measurement in Ref.[55](the higher one).

To investigate the systematic effects of chiral two-body
currents on B(GT) in ω decay, we have extended our study
to two additional doubly magic nuclei 56Ni and 132Sn. The
calculations are performed within RPA + PVC model using
the SkM* interaction, and for the LECs parameter set we
choose the intermediate values (c3, c4) = (→4.78, 3.96) and

FIG. 2: (Color online). Ratio of theoretical to experimental B(GT)
for doubly magic nuclei 56Ni, 100Sn, and 132Sn, computed within
RPA + PVC model with the SkM* interaction. Open symbols de-
note the contributions from one-body current only and solid sym-
bols are the results by including the two-body currents.

c̄D = 0. Results in the subsequent paragraphs are calculated
with the same routine as in this paragraph unless otherwise
specified. Fig. 2 shows the ratio of theoretical to experi-
mental B(GT) for the doubly magic nuclei 56Ni and 132Sn,
the result of 100Sn is also included in the figure, the experi-
mental data are taken from Refs.[55, 63–65]. It is found that
two-body currents systematically suppress the B(GT) values
for all selected nuclei. For 100Sn, the calculated result nearly
coincides with experimental data. For 56Ni, the one-body
current overestimates the measurement, the inclusion of two-
body current slightly underestimates the measurement. For
132Sn, the B(GT) given by one-body current exceeds the ex-
perimental value by nearly a factor of five, while including of
two-body currents leads to a significant improvement com-
pared to the experimental data.

Fig. 3 shows the theoretical and experimental B(GT) dis-
tributions of 56Ni, 100Sn, and 132Sn, which gives the descrip-
tion of the results shown in Fig. 2 in more details. Two
effects can be seen clearly: one is the many-body corre-
lations on the wavefunctions of excited states provided by
RPA + PVC calculations, which shift the energies of 1+
states to lower energies and slightly reduce the B(GT) val-
ues; another one is the effects from meson-exchange two-
body currents, which systematically reduce the calculated
strengths in both RPA and RPA + PVC models with a con-
sistent quenching factor of approximately 0.75 for each ex-
cited states. The followings are the explanations in more de-
tails. For 56Ni [Fig. 3(a)], experiments observed only one
1+ state at 1.72 MeV within the Qω window where this nu-
cleus undergoes orbital electron capture (EC) process[66].
There is no strength appeared below the Qω for RPA calcu-
lation. While the RPA + PVC calculation allows this pro-
cess becoming possible. The B(GT) given by one-body cur-
rent (0.212) slightly overestimates the experimental value
(0.152), and by two-body currents (0.137) reduces it slightly
underestimates the experimental result. For 100Sn [Fig. 3(b)],
experiments observed a strong GT transition at 2.80 MeV
with B(GT) ↑ 9.167 [55] and decaying through 90% ω+ and
10% EC processes[66]. Both RPA and RPA + PVC predict
states within the ω-decay window, the RPA + PVC yields
slightly lower energies and lower strengths. When including
two-body currents, results given by RPA (9.412) and RPA
+ PVC (8.930) show excellent agreement with the exper-
imental B(GT) although the predicted energies are higher
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c̄D = 0. Results in the subsequent paragraphs are calculated
with the same routine as in this paragraph unless otherwise
specified. Fig. 2 shows the ratio of theoretical to experi-
mental B(GT) for the doubly magic nuclei 56Ni and 132Sn,
the result of 100Sn is also included in the figure, the experi-
mental data are taken from Refs.[55, 63–65]. It is found that
two-body currents systematically suppress the B(GT) values
for all selected nuclei. For 100Sn, the calculated result nearly
coincides with experimental data. For 56Ni, the one-body
current overestimates the measurement, the inclusion of two-
body current slightly underestimates the measurement. For
132Sn, the B(GT) given by one-body current exceeds the ex-
perimental value by nearly a factor of five, while including of
two-body currents leads to a significant improvement com-
pared to the experimental data.
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tion of the results shown in Fig. 2 in more details. Two
effects can be seen clearly: one is the many-body corre-
lations on the wavefunctions of excited states provided by
RPA + PVC calculations, which shift the energies of 1+
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body currents, which systematically reduce the calculated
strengths in both RPA and RPA + PVC models with a con-
sistent quenching factor of approximately 0.75 for each ex-
cited states. The followings are the explanations in more de-
tails. For 56Ni [Fig. 3(a)], experiments observed only one
1+ state at 1.72 MeV within the Qω window where this nu-
cleus undergoes orbital electron capture (EC) process[66].
There is no strength appeared below the Qω for RPA calcu-
lation. While the RPA + PVC calculation allows this pro-
cess becoming possible. The B(GT) given by one-body cur-
rent (0.212) slightly overestimates the experimental value
(0.152), and by two-body currents (0.137) reduces it slightly
underestimates the experimental result. For 100Sn [Fig. 3(b)],
experiments observed a strong GT transition at 2.80 MeV
with B(GT) ↑ 9.167 [55] and decaying through 90% ω+ and
10% EC processes[66]. Both RPA and RPA + PVC predict
states within the ω-decay window, the RPA + PVC yields
slightly lower energies and lower strengths. When including
two-body currents, results given by RPA (9.412) and RPA
+ PVC (8.930) show excellent agreement with the exper-
imental B(GT) although the predicted energies are higher

We need to start from QPVC because in 
simple QRPA the B(GT) in the decay 
window would vanish (!) for 56Ni and 
132Sn

see P. Gysbers et al., Nat. 
Phys. 15, 428 (2019)

B. L. Wang et al. (to be published)
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Bayesian inference                                 
of nuclear matter parameters

 



Observables used for the inference 
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3

Observable chosen for the fit
“hfbcs-qrpa1” code to compute 
observables from parameters

1G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

4

Table 1: Observables and initial adopted errors (see text for details).

Ground-state properties
B.E. [MeV] Rch [fm] �ESO [MeV]

208Pb 1636.4 ± 2.0* 5.50 ± 0.05* 2.02 ± 0.50*
48Ca 416.0 ± 2.0* 3.48 ± 0.05* 1.72 ± 0.50*
40Ca 342.1 ± 2.0* 3.48 ± 0.05* -
56Ni 484.0 ± 2.0* - -
68Ni 590.4 ± 2.0* - -
100Sn 825.2 ± 2.0* - -
132Sn 1102.8 ± 2.0* 4.71 ± 0.05* -
90Zr 783.9 ± 2.0* 4.27 ± 0.05* -

Isoscalar resonances
EIS

GMR
[MeV] EIS

GQR
[MeV]

208Pb 13.5 ± 0.5* 10.9 ± 0.5*
90Zr 17.7 ± 0.5* -

Isovector properties
↵D [fm3] m(1) [MeV fm2] APV (ppb)

208Pb 19.60 ± 0.60 961 ± 22 550 ± 18
48Ca 2.07 ± 0.22 - 2668 ± 113

Supplemental material

* Theoretical error

 : Binding Energy 
 : Charge radius 

 : Spin-orbit splitting 
 : IsoScalar Giant monopole 

resonance excitation energy (constrained)  
 : IsoScalar Giant quadrupole 

resonance excitation energy (centroid)  
: Nuclear polarizability 

 : EWSR of IVGDR 
: Parity violating asymmetry

B . E .
Rch

ΔESO
EIS

GMR

EIS
GQR

ρD
m(1)

APV

14

Standard Skyrme EDF.



Results: marginalized posterior distributions
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Progressive marginalized posteriors
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We perform a Bayesian analysis of the neutron star (NS) equation of state (EoS) based on a

wide set of Skyrme functionals,
derived from previous nuclear physics inferences.

The novelty of

this approac
h lies in starting from the full multidimensional pos

terior distrib
ution of nuclear m

atter

parameters, consist
ent with a comprehensive s

et of static a
nd dynamic nuclear str

ucture obser
vables.

We construct unified EoSs for npeµ matter, where
the inner crust of the NS is treated using an

extended Thomas-Fermi method, provi
ding for the first time a fully consistent B

ayesian treatment

of the correlation of bulk with surface as well as with spin-orbit and e!ective mass parameters.

We then employ a standard Bayesian framework to identify those EoSs that satisfy astrophysica
l

constraints f
rom NS mass measurements, the tida

l deformability from GW170817, and
NICER mass-

radius obser
vations. We also examine NS observables,

such as the crustal moment of inertia
, which

is crucial in
understandin

g pulsar glitch
es. Compared to previous works, we observe an increase in

both the NS surface thickness an
d the crustal moment of inertia

.

I. Introdu
ction

The equation
of state (EoS

) of neutron
stars (NSs) r

e-

mains a major uncertainty
in nuclear astrophysics,

as a

wide range of baryonic densities must be covered, whi
ch

cannot be ac
cessed by a single theo

ry or experimental ap-

proach. While the high
-density behavior of d

ense matter

is mostly probed by astrophysica
l observation

s, nuclear

physics experiments provide robust constraints at sub-

saturation densities. A key challenge is to ensure that

nuclear uncertainties
are properly accounted for when

extrapolating
empirical information on finite nuclei to

deduce the bulk behavior of m
atter.

In this work, we take a Bayesian approach to the NS

EoS, leverag
ing a wide set of S

kyrme functionals
derived

from a previous in
ference using

nuclear struc
ture data [1].

Unlike tradit
ional studies

that impose nuclear
matter pa-

rameter priors in an ad hoc manner [2], our approach

starts from the full poste
rior distribut

ion of Skyrme func-

tionals that are consistent w
ith a large set of static

and

dynamical nuclear
experimental observa

bles. These in-

clude masses and charge radii, spin-or
bit splittings, th

e

excitation energies of the isoscalar giant monopole and

quadrupole
resonances,

the energy-weigh
ted sum rule

of the isovector giant dipole, as well as the electric

dipole polarizabiliti
es ωD

of 208Pb and
48Ca [3, 4], and

the parity-violat
ing asymmetries APV

measured in the

PREX-II and
CREX experiments [5, 6],see

[1] for details
.

These latter
observables a

re sensitive t
o the neutron-

skin

thickness of
nuclei, which

is deeply linked to the symme-

try energy and the EoS of pure neutr
on matter [7]. More-

over, it has b
een argued that both ωD

and APV
measure-

ments entail re
levant conseq

uences for NS
s [8–10]. Deriv-

ing the prior from an experiment-informed posterior en-

→ klausner@lpccaen.in2p
3.fr

† antonelli@lpccaen.in2p
3.fr

‡ gulminelli@lpccaen.in2p
3.fr

ables an exact treatm
ent of correla

tions betwee
n nuclear

matter parameters [11], wh
ile preserving

the information

content of th
e nuclear obse

rvables and providing a more

physically grounded prior for the
NS EoS.

From these Skyrme functionals,
we construct unified

EoSs for npeµ matter, where
the inner crust is treated

using an extended Thomas-Fermi method that makes full

use of the nuclear-phys
ics-informed finite-size terms of

the energy functional. The extension to densities above

saturation is achieved using the meta-modeling tech-

nique, while
maintaining consistency with the underlyin

g

functional fo
rm. We then perform a Bayesian inference to

determine which of these unified EoSs satisfy
astrophys-

ical constrain
ts, including

NS mass measurements, tidal

deformability constraints from GW170817, and
NICER

mass-radius observations
. Additionally

, we explore key

NS observables,
such as the crustal moment of inertia,

which plays a crucial role in pulsar glitch
models [12].

The paper is structured as follows. In Section II, we

briefly present the meta-modeling technique and explain

how we compute the NS EoS from it. Section III is

dedicated to describing our Bayesian setup and how we

map the Skyrme posterior into a MM prior. Section IV

presents the
numerical details

of the computation of the

inner crust. We then report our main results in Sec-

tion V, and conclude in Section VI with a summary and

some perspectives.

II. Stellar
EoS from the nuclear

Skyrme-Meta-Model

The metamodel (MM) introduced
in Margueron et al.

[13] provides
a relatively simple analytic representatio

n

of the nuclear EoS at zero temperature and for a given

proton fraction, und
er the core assumption that matter

is purely nucleonic. For astrophysica
l application

s, it is

complemented with electrons and
muons in weak equilib-

rium, forming cold-catalyze
d npeµ matter. In this study,
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• We have indications that a larger pool of nuclei is needed 
to better fix J and L (open-shell and possibly deformed).

• The posterior distributions have been used as priors for 
an inference based on data taken from observations of 
neutron stars (P. Klausner et al., arXiv:2505.16929).

• PDFs and correlation matrices from different models can 
and should be confronted.

16
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Corner plot and mean values
posterior distributions.

Parameter µ �
⇢0 [fm3] 0.161 0.004
E0 [MeV] -15.938 0.102
K0 [MeV] 219.483 10.007
J [MeV] 29.378 1.626
L [MeV] 16.136 14.732
G0 [MeV fm5] 125.470 10.210
G1 [MeV fm5] 9.439 35.735
W0 [MeV fm5] 128.719 14.848
m⇤

0/m 0.913 0.079
m⇤

1/m 0.712 0.021

6

All observables are within experimental 
errors. The BE of 56Ni and so splitting of 
208Pb are within 1 and 2𝜎 while only the 
APV of 208Pb lies at more than 2𝜎. 

KLAUSNER, COLÒ, ROCA-MAZA, AND VIGEZZI PHYSICAL REVIEW C 111, 014311 (2025)

TABLE IV. Mean and standard deviation of the observables’
posterior distributions.

Ground-state properties

B.E. (MeV) Rch (fm) !ESO (MeV)

208Pb 1636 ± 1.8 5.49 ± 0.03 2.34 ± 0.16
48Ca 417 ± 1.2 3.51 ± 0.02 1.92 ± 0.20
40Ca 342 ± 1.6 3.50 ± 0.02 −
56Ni 482 ± 1.4 − −
68Ni 590 ± 1.0 − −
100Sn 826 ± 1.6 − −
132Sn 1103 ± 1.7 4.71 ± 0.03 −
90Zr 784 ± 1.3 4.27 ± 0.02 −

Isoscalar resonances

E IS
GMR (MeV) E IS

GQR (MeV)

208Pb 13.5 ± 0.3 10.8 ± 0.4
90Zr 17.8 ± 0.4 −

Isovector properties

αD (fm3) m(1) (MeV fm2) APV (ppb)
208Pb 19.5 ± 0.5 958 ± 22 589 ± 5
48Ca 2.30 ± 0.08 − 2591 ± 54

standard deviation of observables along the samples. The re-
sults are collected in Table IV.

We find that almost all our results lie within 1σc from the
experimental data, where σc =

√
σ 2

inf + σ 2
exp, and σinf is the

standard deviation of the resulting posterior distribution while
σexp is the experimental error (even for those observables to
which we assigned a theoretical error for the inference).

The only exceptions are the binding energy of the 56Ni and
the spin-orbit splitting of 208Pb, which are between 1σc and
2σc, and the 208Pb APV, that lies at slightly more than 2σc
(2.08). This is in keeping with our previous discussion (see
Fig. 3) about the tension between 208Pb APV and 48Ca APV
and the dominant effect of αD which leads to low values for J
and L.

Finally, we turn to the correlations between the model
parameters and the observables. To study those, we take the
model results over the training grid, which spans the whole pa-
rameter space, and compute the Pearson correlation factors of
all possible combinations observable-parameter; we thus find
a correlation matrix, which we show in Fig. 5. The observables
are along the columns, grouped by their type and ordered
from the lightest to the heaviest nucleus, while the parameters
are on the rows, divided into isoscalar, isovector, and spin
orbit. The value of the correlation coefficient is in a colored
scale, going from dark blue (−1, total anticorrelation) to
dark red (1, total correlation). 0, no correlation, is mapped in
white.

The energy at saturation E0 is mainly anticorrelated with
the binding energies, and very little with the charge radii.
On the other hand, the saturation density ρ0 is anticorrelated
with the charge radii (and especially with that of 208Pb).
These correlations can be expected on quite general grounds.
If one increases E0, nuclei are overbound and the “anticor-
relation” is merely a result of the sign convention on the
binding energy; at the same time, a higher (lower) satura-
tion density leads to more compact (more dilute) nuclei. The
compressibility K0 is highly correlated with both E IS

GMR
′s, as

is well known and has been discussed already. The isoscalar
surface parameter G0 is correlated well with the ground
state observables (slightly more to those of lighter nuclei,
where the surface plays a stronger role), while the isoscalar

FIG. 5. Correlations between parameters and observables. The two thick horizontal lines divide the spin-orbit, isoscalar and isovector
parameters, while the thick vertical lines separate the different groups of observables included in our analysis according to their type.

014311-10
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Ab initio-based DFT

 



• D. Gambacurta, L. Li, G. Colò, U. Lombardo, N. Van Giai, and W. Zuo, Phys. Rev. C 84, 
024301 (2011).
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085107 (2020).
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103, 014325 (2021).
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In these works (plus others not quoted here) the idea is that ab initio can be 
used to constrain, or inform, specific terms of the EDF.

Instead, we would like to use ab initio calculations of model systems like it has 
been done, or advocated, for electronic systems.



A systematic hierarchy of approximations
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Our recently proposed strategy is systematic and based on the Jacob’s 
ladder of electronic DFT.
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• Follow a step-by-step approach
• Use ab initio simulations of model systems 

as a constraint

J. Perdew, K. Schmidt, AIP Conf. Proc. 577, 1 (2001).

Heaven of chemical accuracy

Earth of Hartree

Homogeneous matter
EOS

Perturbed nuclear matter
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We parametrise the potential part of the EoS.

1.       is quadratic in 

2.       is a polynomial in kF

3. The optimal set of powers is chosen by model selection.
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QMC with simple AV4’+UXc

SCGF with NNLOsat, ΔNNLOGO

21More powers that in empirical EDFs.
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).
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PNM

Local Density Approximation (LDA)
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We find the best series of terms like 

SNM

Within LDA, the energy 
functional is the same as 
in uniform matter. 

We apply it to finite 
systems as if their local 
density were uniform.
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Results: NNLOsat

Difference with respect 
to experiment for 
E/A (upper panel)
rch (lower panel)

Encouraging results in 
heavy nuclei (132Sn, 
208Pb)

Something still missing
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Ab initio

LDA

F. Marino et al., PRC 104, 024315 (2021)



Perturbed nuclear matter
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Add a weak external potential of the type:

In linear response:
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One should check that one is in this 
lowest-order PT regime.
Then, one can try to optimise the 
parameters so that EDF matches 
these results.

Results for perturbed nuclear matter within QMC 103

Figure 8.3: Left: AFDMC energies for the AV40+UIXc interactions (solid markers) and predictions
by the best-fit GA EDF (hollow markes) in PNM at a density ⇢0 =0.16 fm�3 as a function of
the strength of the external perturbation vq/EF for different values of the momentum q/qmin. The
parameters C�⇢ and CrJ are reported in the legend. Solid (dashed) lines represent the predictions
of fits to the AFDMC (EDF) perturbed energies, see Eq. (1.22).
Right: static response ��(q)/⇢0 as a function of the momentum extracted from the AFDMC (filled
markers) and EDF (empty markers) calculations. The momentum is expressed both in units of qF
(q/qF , bottom) and in units of qmin (q/qmin, top). For q/qmin > 1, the response has been obtained
by fitting the perturbed energies with Eq. (1.22). Error bars represent the uncertainty on the fit
parameters. The response at zero momentum has been obtained using the CSR [Eq. (B.54)]. Lines
are a guide to the eye.

vq/EF in the case of PNM at ⇢0= 0.16 fm�3. In light of Ref. [125], for the Argonne 4 inter-
action the constrained propagation is accurate, and thus no unconstrained propagation
is performed. Note that we compare energy differences, since these determine the re-
sponse properties; in the homogeneous system, the spline-based wave function yields a
lower unperturbed energy. We appreciate that for modest intensities of the perturbation
the two sets of calculations give compatible results within the statistical error bars. At
the highest strength shown (vq/EF = 0.15), instead, using Mathieu orbitals enhances the
effects of the perturbation compared to the backflow wave function. Thus, our ansatz
compares well with the recently introduced wave functions of Ref. [185] in the regime
of almost uniform matter, where the latter are expected to be accurate, and, by incorpo-
rating the effect of the perturbation in its reference state, it improves upon it for stronger
external potentials. We also comment that the ansatz used by Gezerlis et al. [73, 227] is
slightly simpler than ours, as it lacks operator correlations. However, while these are
rather important for SNM, they are expected to be of little impact in PNM in the case of
the Argonne 4 potential, that contains no spin-orbit terms, see [125].

This analysis hints that our QMC ansatz is adequate for our problem. However, the
static response is a delicate quantity, related to small energy differences, and we cannot
exclude that deficiencies or missing correlations in the currently used trial states may
affect the outcomes noticeably. Incorporating backflow correlation not only in plane
waves, but also Mathieu (or generic) orbitals could pave the way for more refined calcu-
lations of perturbed matter, and would be an interesting development for the future.

In principle, we could consider the possibility that the ansatz for the GA EDF be
too simple. However, additional terms, such as e.g. fourth-order density gradients, are
expected to be small corrections to the dominant �⇢ terms. Also, ⇢⌧ terms have been
neglected in this work, and thus the effective mass has been assumed to be equal to

Uncertainties on AFDMC points are 
of the same order of the variations of 
the response function with q.



Fermi gas response

Finite size effects
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SNM EOS

Finite size effects are weak on the EOS but strong on 𝝌(𝒒)
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Conclusions
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• Grounding DFT in ab initio is highly desirable but it has not been 
achieved yet.

• In our attempt, we are stuck by finite size effects in the nuclear 
response.

• Other interesting avenues: comparison of NM parameters and 
associated correlations from ab initio, from different EDFs...

• More generally: we have some expertise coming from DFT applied to 
high-lying excited states that can be useful when discussing ab initio 
approaches.

Thank you for listening
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ISGMR in 48Ca and 208Pb
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FIG. 1. (Color online) ISGMR strength functions in even-even 112-124Sn, 48Ca, and 208Pb isotopes, calculated either by (Q)RPA using a
smoothing with Lorentzian having a width of 1 MeV (dash dot [black] line), or (Q)RPA+(Q)PVC (solid [blue] line). The SV-K226 Skyrme
force is used. The experimental data are given by green crosses [6, 13, 37].

momentum cuto↵ jmax = 15/2 are set for Ca isotopes, while
larger cuto↵s Ecut = 100 MeV, jmax = 21/2 are used for Sn
and Pb isotopes. On top of QRPA, we have included the cou-
pling with phonons having J⇡ = 0+, 1�, 2+, 3�, 4+, 5�, with
energy less than 30 MeV and exhausting a fraction of non-
energy-weighted (isoscalar or isovector) sum rule larger than
2%. The subtraction procedure is adopted, as described in
[40].

The sum rules, or k-th moments of the strength function
S (E) are defined as mk =

R 1
0 S (E)EkdE. In our case, S (E) is

with respect to the operator F̂00 =
PA

i=1 r2
i . The fulfillment of

the energy-weighted sum rule (EWSR) m1 (%), and inverse
energy-weighted sum rule (IEWSR) m�1 (fm4/MeV), calcu-
lated by QRPA+QPVC, have been checked. Taking 120Sn
with the SV-K226 Skyrme set as an example, the EWSR is
given as 215185.4 fm4MeV from the expectation value of the
double-commutator on the nuclear ground state. In a fully
self-consistent PVC approach, m1 should be fulfilled in the
case without subtraction [41]. Up to 100 MeV, m1 is indeed
exhausted at 98.7%. With the subtraction procedure, m1 is ex-
hausted by 106.8%, while m�1 is 818.45 fm4/MeV, which is
nearly equal to the one in QRPA (820.71 fm4/MeV) as dis-
cussed in [30].

There are many choices of characteristic energy for GRs,
such as the centroid energy m1/m0, the constrained energyp

m1/m�1, and the scaling energy
p

m3/m1. In the follow-
ing, we will use the constrained energy

p
m1/m�1 for our dis-

cussion since m�1 is unchanged in the case of QPVC with
subtraction. Our conclusions would remain the same if we
were to choose another definition for the ISGMR energy. The
ISGMR energies are calculated in the energy interval 10–
30 MeV for Ca, and 5–25 MeV for Sn and Pb, because the
strength is negligible outside these intervals.

In Fig. 1, we show the strength functions of the ISGMR, ob-
tained either in the framework of (Q)RPA by using a smooth-
ing with Lorentzian having a width of 1 MeV (dash dot [black]
line), or within (Q)RPA+(Q)PVC (solid [blue] line), using the
SV-K226 Skyrme force, in the even-even 112-124Sn, 48Ca, and
208Pb nuclei. We compare the results with the experimental
ones ([green] crosses) [6, 13, 37]. In general, with the inclu-
sion of (Q)PVC e↵ects, the results are significantly improved
with respect to (Q)RPA, so we can achieve a good description
of data both in the light 48Ca isotope, medium-heavy Sn iso-
topes, and heavy 208Pb. In 112�124Sn, QRPA gives one small
peak and one higher peak while the experimental strength dis-
plays a broad single peak. The ISGMR energies are higher
than the experimental ones, as pointed out in previous pa-
pers [15, 17]. With the inclusion of QPVC e↵ects, widths
are comparable with the experimental ones (cf. also [42]).
Moreover, within the self-consistent QRPA+QPVC model,
the downward shifts of energies by 0.7–0.8 MeV (with re-
spect to QRPA) make the ISGMR energies in agreement with
data, along the whole Sn isotopic chain. In the case of 48Ca,
the strength function has two main peaks in the RPA calcu-

• Exp. data from T. Li et al., Phys. Rev. Lett. 99, 162503 (2007) and S.D. 

Olorunfunmi, Phys. Rev. C 105, 054319 (2022).

• In these two cases there is no pairing.
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• Exp. data from D. Patel et al., Phys. Lett. B726, 178 (2013)

• QPVC reproduces the experimental data quite well.

• The best description is obtained with the Skyrme EDF SV-K226. 
Klüpfel, Reinhard, et al., PRC 79, 034310 (2009)
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Static Electric Dipole Polarizability (αD)

in a static electric field
nucleus

with fixing the c.m. position

E

Inversely energy-weighted sum-rule of B(E1)

first order perturbation calc. A.B. Migdal: 1944

E(w) ~

Electric dipole moment

αD: electric dipole polarizability

αD = 8πe2

9 ∫ dB(E1)
Ex

5

The restoring force originates from the 
symmetry energy.

From A. Tamii

If the nucleus were under the 
action of a static electric field  
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dB(E1)

dE
⌘ 8⇡e2

9
m�1

The polarizability can be deduced from 
the so-called inverse energy-weighted 
sum rule associated with dipole field

A. Migdal, Quadrupole and dipole γ-
radiation of nuclei, J. Phys. Acad. Sci. 
USSR 8(1-6), 331-336 (1944)
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Parity-violating asymmetry measured in electron scattering is a probe 
of the neutron distribution (in principle, a model-independent probe).

Parity Violating Electron Scattering 

Dominant 

σ ∝ |Mγ + MZ |2

Parity-violating 

Electron elastic scattering:  

APV = σR − σL

σR + σL
∼ ∝ |MZ |

|Mγ |

γ/ZLongitudinally 
polarized electron 

≈ GFQ2QW

4πα 2Z

FW(Q2)
Fch(Q2)PVES probes weak form factor; 


primarily neutron distributions
!4

Neutron skin

CREX and PREX-2 results tend to predict Fch − FW
slightly below the PREX-2 result for 208Pb and slightly
above the CREX result for 48Ca.
Figure 3 shows the momentum transfer dependence of

Fch − FW as predicted by a few nonrelativistic and rela-
tivistic density functional models. It is evident that some
model results cross as a function of q, emphasizing the
somewhat different q dependence. In the limit q → 0,
FchðqÞ − FWðqÞ ≈ q2ðR2

W − R2
chÞ=6, where RW is the rms

radius of ρWðrÞ and Rch is the charge radius. Since this
equation is not valid at the larger q of CREX, the extraction
of RW − Rch introduces some model dependence.
Relativistic and nonrelativistic density functional model

predictions of RW − Rch versus FchðqÞ − FWðqÞ are plotted
in Fig. 4(a). The somewhat different ρWðrÞ shapes lead to
the vertical spread in the nonrelativistic models. Figure 4(b)
shows a similar plot of point neutron minus proton radii
Rn − Rp versus FchðqÞ − FWðqÞ. To calculate Rn − Rp
given Fch − FW , one must include full current operators
including spin orbit ðL⃗ · S⃗Þ contributions [67]. Relativistic
models tend to have somewhat larger L⃗ · S⃗ currents. As a
result, the gray circles in Fig. 4(b) are somewhat lower than
those in Fig. 4(a) when compared to nonrelativistic models.
Lines with slope matching that of the relativistic model
variation are drawn to enclose the full range of displayed
models, providing the model range and central values listed
in Table III. This underscores the fact that the CREX 48Ca
Rn − Rp has significant modeling uncertainty, in contrast to
the PREX 208Pb Rn − Rp, see Ref. [31]. Reduced model
uncertainty would result if theoretical predictions were
compared to the model-independent Fch − FW in Fig. 2
rather than to Rn − Rp in Fig. 5.

FIG. 2. Difference between the charge and weak form factors
of 48Ca (CREX) versus that of 208Pb (PREX-2) at their respec-
tive momentum transfers. The blue (red) data point shows
the PREX-2 (CREX) measurements. The ellipses are joint
PREX-2 and CREX 67% and 90% probability contours. The gray
circles (magenta diamonds) are a range of relativistic (nonrelativ-
istic) density functionals. For clarity, only some of these functionals
are labeled (SI [39], SIII [51], SV-sym34 [54], TOV-min [55], and
UNEDF1 [57]) The complete list is in Ref. [31].

FIG. 3. The difference between the charge and weak form
factors for 48Ca as a function of momentum transfer q ¼

ffiffiffiffiffiffi
Q2

p
.

The curves show results for nonrelativistic (SI, SLY4, UNEDF0,
UNEDF1) and relativistic (NL3) density functional models. The
CREX measurement is indicated by a circle with the inner black
error bar showing the contribution from statistics and the total
experimental error bar in red.

FIG. 4. (a) 48Ca weak minus charge rms radius versus charge
minus weak form factor at the CREX momentum transfer. The
CREX experimental value and uncertainty is shown (red square).
The gray circles (magenta diamonds) show a range of relativistic
(nonrelativistic) density functionals. (b) 48Ca neutron minus
proton rms radius versus charge minus weak form factor.

TABLE III. Extracted RW − Rch and Rn − Rp radii. The first
uncertainty is experimental and the second reflects the shape
uncertainty in ρWðrÞ estimated from the spread in Fig. 4.

Quantity Value$ ðexpÞ $ ðmodelÞ ðfmÞ
RW − Rch 0.159$ 0.026$ 0.023
Rn − Rp 0.121$ 0.026$ 0.024

PHYSICAL REVIEW LETTERS 129, 042501 (2022)

042501-5

D. Adhikari et al., Phys. Rev. Lett. 129, 042501 (2022)
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Diagrammatic ab initio methods for infinite nuclear matter with modern chiral interactions

F. Marino ,1,* W. G. Jiang ,1,2 and S. J. Novario 3

1Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
2Mainz Institute for Theoretical Physics, Johannes Gutenberg-Universität, 55128 Mainz, Germany
3Department of Physics, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA

(Received 24 July 2024; revised 10 October 2024; accepted 22 October 2024; published 22 November 2024)

A comparative study of the equation of state for pure neutron matter and symmetric nuclear matter is presented
using three ab initio methods based on diagrammatic expansions: coupled-cluster theory, self-consistent Green’s
functions, and many-body perturbation theory. We critically evaluate these methods by employing different
chiral potentials at next-to-next-to-leading-order (NNLO)—all of which include both two- and three-nucleon
contributions—and by exploring various many-body truncations. Our investigation yields highly precise results
for pure neutron matter and robust predictions for symmetric nuclear matter, particularly with soft interactions.
Moreover, the new calculations demonstrate that the NNLOsat (450) and !NNLOgo(394) potentials are consistent
with the empirical constraints on the saturation point of symmetric nuclear matter. Additionally, this benchmark
study reveals that diagrammatic expansions with similar architectures lead to consistent many-body correlations,
even when applied across different methods. This consistency underscores the robustness of the diagrammatic
approach in capturing the essential physics of nucleonic systems.

DOI: 10.1103/PhysRevC.110.054322

I. INTRODUCTION

Infinite nuclear matter serves as an idealized and funda-
mental concept in nuclear physics, describing an extended,
homogeneous system of strongly interacting nucleons. This
theoretical construct is vital for understanding the properties
of nuclear systems under extreme conditions, such as those
found in the cores of neutron stars [1–4], during supernova
explosions, and in other dynamic processes involving the
formation and evolution of compact celestial bodies. The
essential property of nuclear matter is its equation of state
(EOS), which, at zero temperature, describes the energy per
particle as a function of the nucleonic density.

Comparing the theoretical predictions for the EOS with
the empirical constraints from experimental nuclear physics
and astrophysical. observations [5–7] provides insights into
our understanding of nuclear interactions [8,9]. For example,
potentials rooted in chiral effective field theory (χEFT) have
long struggled to accurately reproduce the bulk properties of
finite nuclei and the saturation point of symmetric nuclear
matter (SNM) with the same underlying nuclear potential
[10–12]. However, consistency with the empirical constraints
is now possible with more recent models [13–17].

While pure neutron matter (PNM) is a relatively weakly
correlated system at nuclear densities up to saturation den-
sity ρ0 ≈ 0.16 fm−3 and above [18] (the uncertainties of
which are predominantly related to the interaction, see, e.g.,
Refs. [19–21]), the nuclear force is rather strong in the T = 0
isospin channel. Advanced many-body methods [22,23] are

*Contact author: frmarino@uni-mainz.de

thus essential to draw reliable estimates of the EOS and ex-
ploit the coinciding developments in ab initio chiral potentials
[11,24–26].

A variety of ab initio techniques have been applied to
determine the nuclear matter EOS. Among others, we men-
tion Brückner-Hartree-Fock [1], finite-temperature Green’s
functions [27–30], and frameworks based on many-body
perturbation theory (MBPT) [8,15,31,32]. Methods of the
Quantum Monte Carlo family, such as Auxiliary field diffu-
sion Monte Carlo (AFDMC) [18,19,33] and configuration-
interaction Monte Carlo (CIMC) [34,35], have been used
extensively for PNM, but feature few applications to SNM
[36–38].

Over the last decade, coupled-cluster (CC) theory, a pop-
ular and accurate method in both quantum chemistry [39,40]
and nuclear physics [41], has been applied to nuclear matter
[42,43], mostly in conjunction with the interactions developed
by the Göteborg and Oak Ridge groups [13,14,17,44,45], such
as NNLOsat [13] and the delta-full models !NNLO [45] and
!NNLOgo [14]. The CC method truncated at the level of
doublet amplitudes with the addition of perturbative triples
corrections [CCD(T)] recovers a large fraction of the correla-
tion energy at a polynomially scaling computational cost and
is considered one of the best-performing ab initio techniques
for ground state (g.s.) energies.

At the same time, a self-consistent Green’s functions
(SCGF) method [46,47] based on the algebraic diagram-
matic construction (ADC) approximation for the self-energy
[46,48–50], which has been a state-of-the-art approach for
finite nuclei for years (see, e.g., Refs. [51–54]), has been
proposed for infinite nuclear matter [55–59]. ADC-SCGF is
a versatile tool for zero-temperature nuclear matter, which

2469-9985/2024/110(5)/054322(13) 054322-1 ©2024 American Physical Society
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FIG. 6. SNM equations of state obtained with four different chiral interactions. Each panel reports the outcomes of five many-body
techniques (see legend). A = 132 nucleons subject to PBCs are employed to simulate SNM.

values of the symmetry energy at saturation and look more
consistent with each other in this respect. An additional out-
come of this analysis is that MBPT(3) in a finite model space
is a valid and cheaper alternative to CC and SCGF for neutron
matter.

B. Symmetric nuclear matter

Symmetric matter is a strongly correlated system and rep-
resents a more demanding test for ab initio methods. While,
for a given interaction, all techniques essentially converge
to the same result in PNM, larger method differences are in
general observed for SNM, although the magnitude of their
discrepancy is somewhat dependent on the potential. Each
panel of Fig. 6 reports the EOS for a different chiral inter-
action, with five curves denoting the outcomes of the different
methods: MBPT(3), CCD, CCD(T), ADC(3), and ADC(3)-D.
These results are also reported in tabular form in the sup-
plementary material [77]. The four potentials are ordered by

increasing values of their cutoff, with !NNLOgo(394) (top
left) being the softest interaction and !NNLO(500) (bottom
right) being the hardest. Note that, in any case, chiral forces
are considerably softer than the phenomenological potentials,
such as the Argonne models [78,79], even without similarity-
renormalization-group (SRG) evolution [22], as regularization
suppresses the hard repulsive core. This is essential to en-
suring good convergence with respect to both the many-body
truncation and the model space dimension for methods rooted
in a basis expansion. (Coordinate-space Monte Carlo methods
such as AFDMC can handle the hard core relatively more eas-
ily, but studies with fully realistic interactions are somewhat
limited to PNM, with few exceptions [36]. Finite-temperature
SCGF, which is based on a continuum of momentum states,
can also handle hard potentials [27,80].)

Additionally, while it is generally known that particle-
particle ladder diagrams–which are resummed in Brücker
theory, as well as in CC and SCGF–should be the domi-
nant contributions to the nuclear matter energy [60,81], their
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FIG. 7. Correlation energy per particle in SNM at various densities as obtained by different methods using the NNLOsat (450) interaction.
Calculations with CC (ADC) schemes of increasing complexity are shown as green triangles (blue squares), and the approximation names
are reported in the top (bottom) horizontal axis. MBPT(2) is taken as the first point of both the CC and ADC sequences, and ADC(3)-D and
CCD(T) results are close to each other to ease their comparison. Lines are a guide to the eye. See main text for details.

the dominant contribution in the HEG, while ladders are in
nuclear matter. It is also important to note that the excess
repulsion of CCD is compensated in CCD(T) by a signifi-
cant density-dependence of the correction (6), which almost
doubles from −1 MeV at ρ = 0.08 fm−3 to −2 MeV at ρ =
0.24 fm−3.

General trends have been observed by comparing different
CC and ADC truncation schemes. CCD(T) and ADC(3) agree
well, with CCD(T) always yielding additional binding energy.
This is consistent with the situation in nuclei, where numer-
ical calculations show that the agreement of Dyson-ADC(3),
CC with perturbative triples, as well as in-medium SRG at
the two-body level [IM-SRG(2)] with perturbative 3p3h cor-
rection [22], all containing similar correlations, is generally
good. Importantly, ADC(3)-D is in impressive quantitative
accordance with CCD(T). The ability of this scheme to handle
strong correlations, already noted in the past [55,73], is now
confirmed by our extensive nuclear matter calculations, and
the excellent agreement of ADC(3)-D and CCD(T) is summa-
rized in Fig. 8, in which the absolute difference between their
predictions for the SNM EOS is reported for different inter-
actions. Discrepancies lie within a few hundred keV, but, with
the exception of "NNLO(500), are smaller than 200 keV up
to ρ = 0.20 fm−3, well above saturation density.

The pattern “ADC(3) > ADC(3) − D ≈ CCD(T)′′ is es-
tablished for the SNM (and PNM) energies per particles
across different potentials and density ranges. ADC(2,ld),

CCDLadd, and especially CCD underestimate correlation ener-
gies. The relatively simple ADC(2) also provides less binding
than ADC(3), but is overall more accurate and consistent in
its trend than the previous ones, and, due to its computational

FIG. 8. Difference (in absolute value) between ACD(3)-D and
CCD(T) energies per particle in SNM for different chiral interactions
(see legend).
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the

*francesco.marino@unimi.it

latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
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(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
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theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).
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the AFDMC, the spin-isospin degrees of freedom are de-
scribed by single-particle spinors, the amplitudes of which are
sampled using Monte Carlo techniques based on the Hubbard-
Stratonovich transformation, reducing the computational cost
from exponential to polynomial in A. However, some of
the contributions characterizing fully realistic nuclear forces,
such as isospin-dependent spin-orbit contributions, cannot be
treated in this way, yet. Hence, the AFDMC is limited to
somewhat simplified interactions, but it can be applied to
compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave
function, which is commonly expressed as the product of a
long-range component |!⟩ and of two- plus three-body corre-
lations:

|"T ⟩ =
∏

i< j

f c
i j

∏

i< j<k

f c
i jk|!⟩. (7)

In the above equation, we assumed the correlations to be spin-
isospin independent. This simplified ansatz, consistent with
Refs. [58,81,82], is justified by the fact that the AV4′ + UIXc
Hamiltonian does not contain tensor or spin-orbit terms.

In finite nuclei, |!⟩ is constructed by coupling different
Slater determinants of single-particle orbitals in the |nl jmj⟩
basis so as to reproduce the total angular momentum, total
isospin, and parity of the nuclear state of interest [6]. On the
other hand, infinite nuclear matter is modeled by simulating
a finite number of nucleons on which periodic-box boundary
conditions are imposed [83]. In this case, the single-particle
states are plane waves with quantized wave numbers:

k = 2π

L
(nx, ny, nz ) ni = 0,±1,±2, . . . , (8)

where L is the size of the box and the shell closure condition
must be met in order to satisfy translational invariance. As
a consequence, the number of nucleons in a box must be
equal to the momentum space “magic numbers” (1, 7, 19, 27,
33, . . . ) times the number of spin/isospin states: 2 for PNM,
4 for SNM. The equations of state of nuclear matter discussed
in Sec. IV A are computed with 66 neutrons (PNM) and
76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with
“stiff” forces that can generate wave functions with high-
momentum components. This is in contrast with remarkably
successful many-body approaches that rely on a basis ex-
pansion [11,12,84,85], which need relatively “soft” forces to
obtain converged calculations. However, like standard dif-
fusion Monte Carlo algorithms, the AFDMC suffers from
the fermion sign problem, which results in large statistical
errors that grow exponentially with τ . To control it, we
employ the constrained-path approximation, as described in
Refs. [6,69,86]. This scheme is believed to be accurate for
Hamiltonians that do not include tensor or spin-orbit opera-
tors, as is the case for the AV4′ + UIXc potential. Expectation
values of operators Ô that do not commute with the Hamilto-
nian are evaluated by means of the mixed estimator [4]

⟨Ô(τ )⟩ ≈ 2
⟨"T |Ô|"(τ )⟩
⟨"T |"(τ )⟩

− ⟨"T |Ô|"T ⟩
⟨"T |"T ⟩

. (9)

Also, charge radii are estimated from the proton radii with the
formula r2

ch = r2
p + (0.8 fm)2.

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is
described in depth in Refs. [27,28,87]. In this section, the
discussion is limited to even-even nuclei and to quasilocal
EDFs, i.e., functionals that can be expressed as the volume
integral of an energy density E (r) which is a function of
the local densities [28] and their gradients. Nonlocal EDFs
such as Gogny ones are not treated. Moreover, for simplicity
pairing terms are neglected. Applications shall be limited to
magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional
of the time-even proton and neutron densities [number density
ρq(r), kinetic density τq(r), and spin-orbit density Jq(r), with
q = n, p] [28,35] and reads

E =
∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35]

Ekin =
∫

dr Ekin(r) =
∫

dr
h̄2

2m
τ0(r). (11)

The Coulomb contribution ECoul is treated in the standard
local Slater approximation [88]. The most general form of the
potential term

Epot =
∫

dr Epot(r) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be
outlined in the next section. Neutron and proton densities have
been recoupled into the isoscalar (t = 0) and isovector (t = 1)
channels: isoscalar densities are total densities (e.g., ρ0 =
ρn + ρp), while isovector densities account for proton-neutron
differences (ρ1 = ρn − ρp). The coefficients of the various
terms are all, in principle, functions of the density, although
in practice most of them are set to a constant value [27].
The mean field equations are then derived by relating the
densities to the single-particle orbitals φ j (r) and applying the
variational principle [87]:

[
−∇ · h̄2

2m∗
q (r)

∇ + Uq(r) + UCoul(r)δq,p (13)

+ Wq(r) · (−i)(∇ × σ )
]
φ j (r) = ϵ jφ j (r) (14)

where

Uq = δE
δρq

,
h̄2

2m∗
q (r)

= δE
δτq

, Wq = δE
δJq

, (15)

and m∗
q (r), Uq(r), and Wq(r) are called effective mass, mean

field, and spin-orbit potential, respectively.
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ ̸= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q

ρq∇ · Jq

)]

. (29)

Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&

1 &ρ1τz − W0

2
(∇ · J + ∇ · Jq)

(31)

and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs

σE
(
C&

0 ,C&
1 ,W0

)
=

√∑nE
k=1

(
E th

k − E exp
k

)2

nE
, (32a)

σrch

(
C&

0 ,C&
1 ,W0

)
=

√∑nr
k=1

(
rth

k − rexp
k

)2

nr
(32b)

are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
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q (r), where

U bulk
q (r) = δEbulk

δρq(r)
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γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ ̸= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q

ρq∇ · Jq

)]

. (29)

Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&
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and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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E th
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nE
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48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
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q (r), where

U bulk
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δρq(r)

=
∑
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{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ ̸= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:
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where
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The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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