

DFT for high-lying giant resonances and prospects for ab initio-based energy density functionals

Gianluca Colò
Dep. of Physics and INFN,
Milano (Italy)

- A DFT-based model for an accurate description of excited states:
QRPA plus particle-vibration coupling

Starting from natural orbits, correlations up to 2p-2h (or 4 quasi-particles) seem to be sufficient for an accurate description of the nuclear response

- Bayesian inference of **nuclear matter parameters**

It would be interesting to study carefully the probability distributions for NM parameters within **different frameworks**

- An attempt for ***ab initio* based DFT**

Highly desirable!

Nuclear response using QRPA plus particle-vibration coupling (PVC)

Hirscheegg, Jan. 23rd, 2026

We start from a Hartree-Fock-Bogoliubov (HFB) set of states obtained with a Skyrme EDF.

First step: **diagonalize H on a two quasi-particle basis (QRPA)**.

This produces a set of “vibrational quanta” or “phonons” associated with the operators Γ_n and Γ_n^+ .

$$\Gamma_n^\dagger = \sum_{\alpha\beta} X_{\alpha\beta}^{(n)} \alpha_\alpha^\dagger \alpha_\beta^\dagger - Y_{\alpha\beta}^{(n)} \alpha_\beta \alpha_\alpha$$

$$|n\rangle = \Gamma_n^\dagger |\tilde{0}\rangle = \left(\sum_{\alpha\beta} X_{\alpha\beta}^{(n)} \alpha_\alpha^\dagger \alpha_\beta^\dagger - Y_{\alpha\beta}^{(n)} \alpha_\beta \alpha_\alpha \right) |\tilde{0}\rangle$$

Connecting
with CC

$$|\Phi\rangle = \exp[\chi^\dagger] |\Phi_0\rangle$$

$$\chi^\dagger = \frac{1}{2} \sum_{\alpha\beta} c_{\alpha\beta} \alpha_\alpha^\dagger \alpha_\beta^\dagger$$

QRPA can be obtained by looking at variations of the total energy at second order in the coefficients c [M. Waroquier *et al.*, Phys. Rep. 148, 249 (1987)]

We wish to improve the structure of the excited states. We can go to the next order in the quasiparticle number in different ways.

$$|N\rangle = \left(\sum_{\alpha\beta} X_{\alpha\beta}^{(1)} \alpha_\alpha^\dagger \alpha_\beta^\dagger - Y_{\alpha\beta}^{(1)} \alpha_\beta \alpha_\alpha + \sum_{\alpha\beta\gamma\delta} X_{\alpha\beta\gamma\delta}^{(2)} \alpha_\alpha^\dagger \alpha_\beta^\dagger \alpha_\gamma^\dagger \alpha_\delta^\dagger - Y_{\alpha\beta\gamma\delta}^{(2)} \alpha_\delta \alpha_\gamma \alpha_\beta \alpha_\alpha \right) |\tilde{0}\rangle$$

$$|N\rangle = \left(\sum_{\alpha\beta} X_{\alpha\beta}^{(1)} \alpha_\alpha^\dagger \alpha_\beta^\dagger - Y_{\alpha\beta}^{(1)} \alpha_\beta \alpha_\alpha + \sum_{\alpha\beta n} X_{\alpha\beta n}^{(2)} \alpha_\alpha^\dagger \alpha_\beta^\dagger \Gamma_n^\dagger - Y_{\alpha\beta n}^{(2)} \alpha_\delta \alpha_\gamma \alpha_\beta \Gamma_n \right) |\tilde{0}\rangle$$

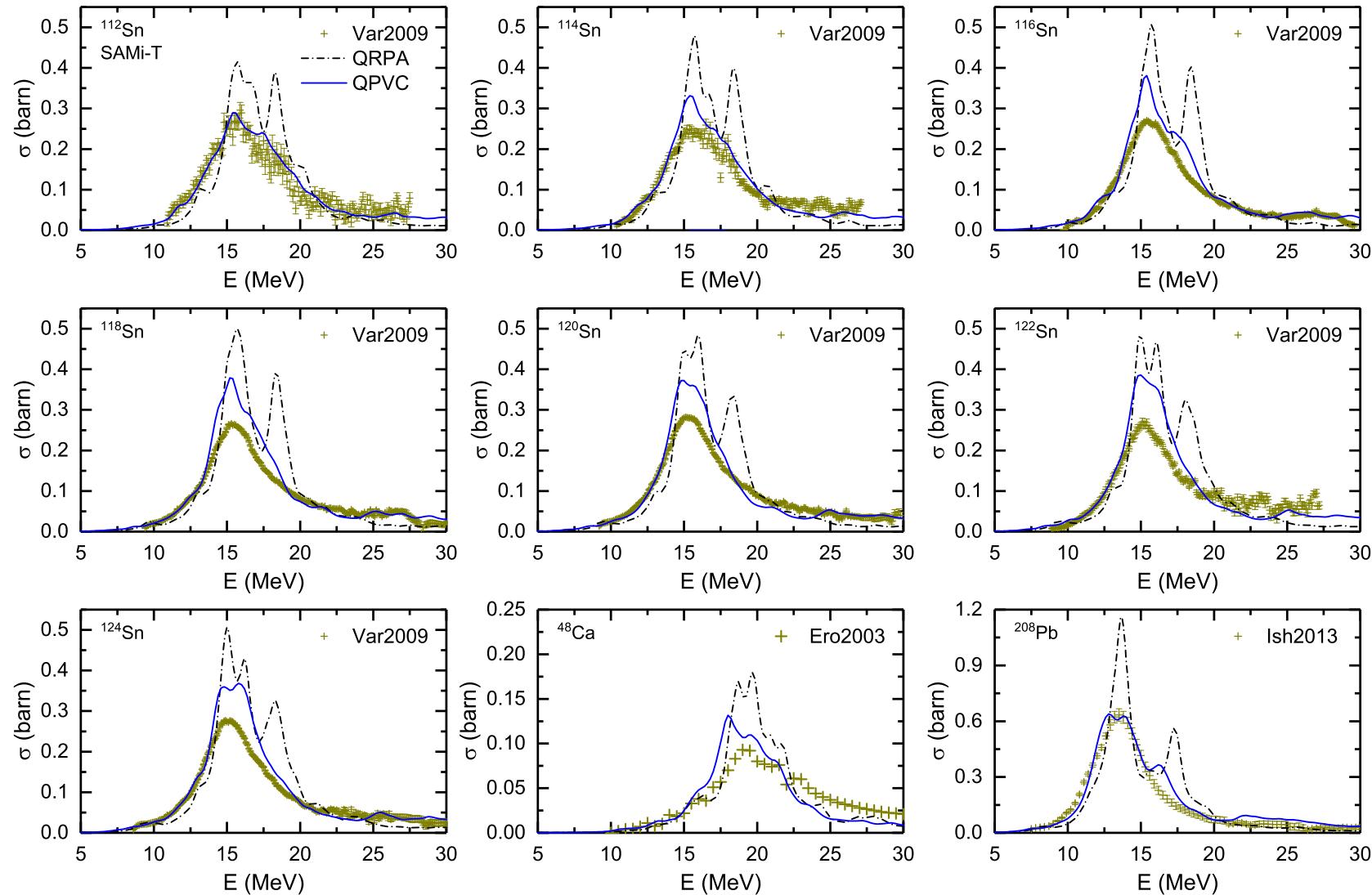
We can now treat these components **explicitly**, although it is quite demanding. In most of the application we have included these components **implicitly** though a self-energy.

$$|\Phi\rangle = \exp[\chi^\dagger] |\Phi_0\rangle$$

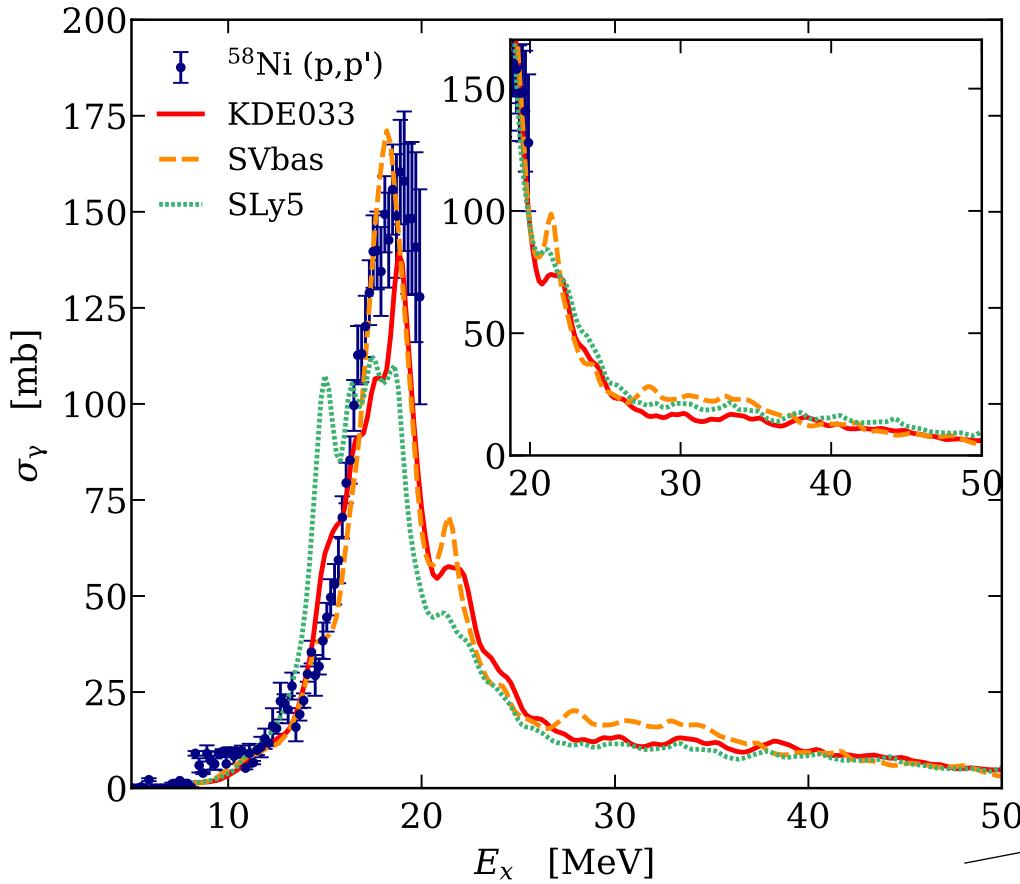
$$\chi^\dagger = \frac{1}{2} \sum_{\alpha\beta} c_{\alpha\beta} \alpha_\alpha^\dagger \alpha_\beta^\dagger + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} c_{\alpha\beta\gamma\delta} \alpha_\alpha^\dagger \alpha_\beta^\dagger \alpha_\delta^\dagger \alpha_\gamma$$

J. Da Providênci, Nucl. Phys. 61, 87 (1965)
 D. Gambacurta *et al.*, J. Phys. G 38, 035103 (2011)

IVGDR in different nuclei



Photoabsorption of ^{58}Ni



Comparison with recent data from (p,p') measured at RCNP, Osaka. Exp. data from I. Brandherm *et al.*

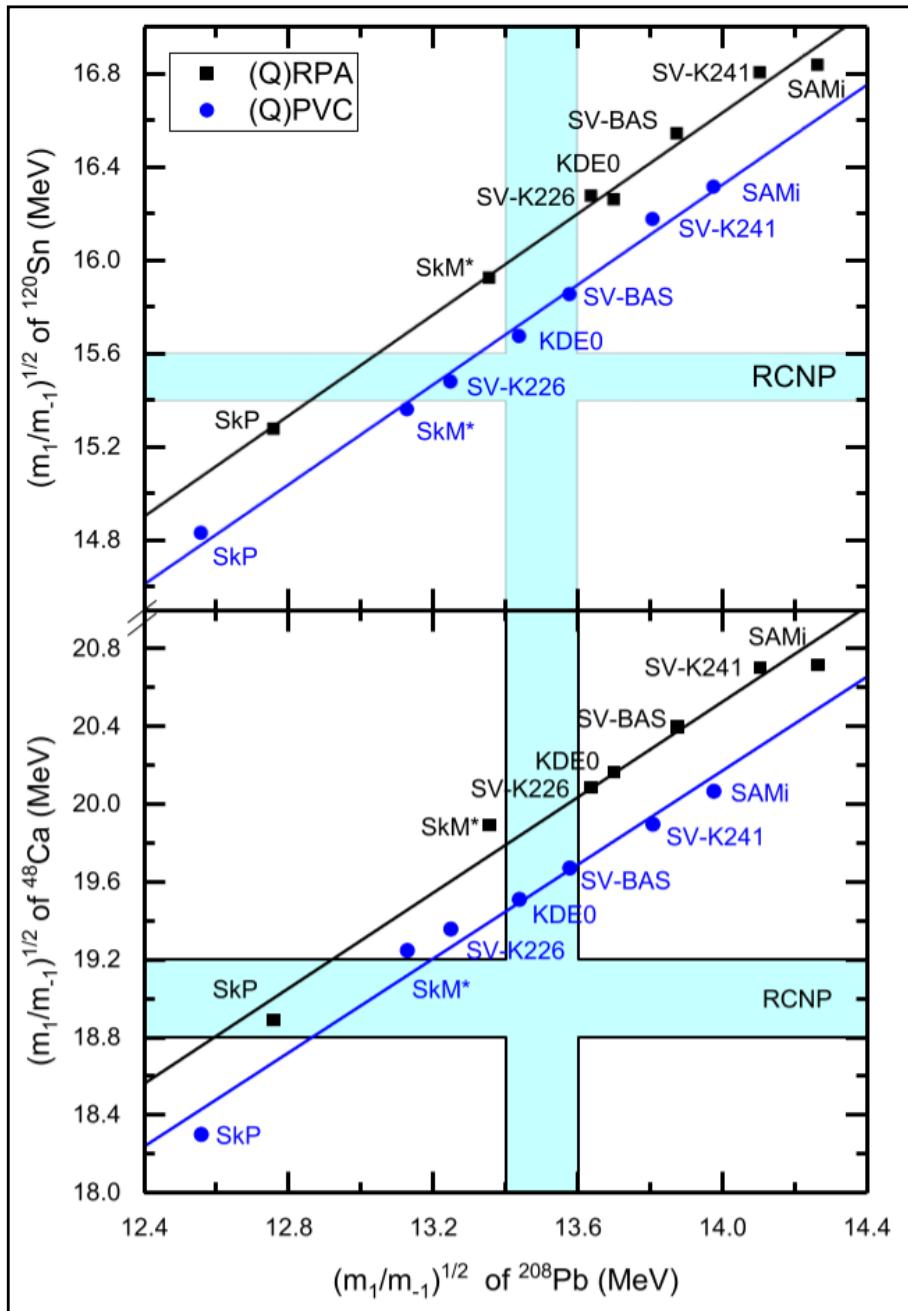
Theory reproduces very well the dipole polarizability and can be used to estimate the high-energy dipole tail.

PHYSICAL REVIEW C 111, 024312 (2025)

Electric dipole polarizability of ^{58}Ni

I. Brandherm¹, F. Bonaiti^{2,3,4}, P. von Neumann-Cosel^{1,*}, S. Bacca², G. Colò^{5,6}, G. R. Jansen^{6,7,4}, Z. Z. Li (李征征)^{8,9,10}, H. Matsubara^{10,11,12}, Y. F. Niu (牛一斐)^{9,10}, P.-G. Reinhard¹³, A. Richter¹, X. Roca-Maza^{14,15,5,6} and A. Tamii¹¹

Hirschegg, Jan. 23rd, 2026



Using this model, we have been able, for the first time, to analyse **in a systematic manner** the consistency between ISGMR energies in different nuclei.

We have used many Skyrme EDFs.

With the inclusion of QPVC effects, a big improvement is achieved.

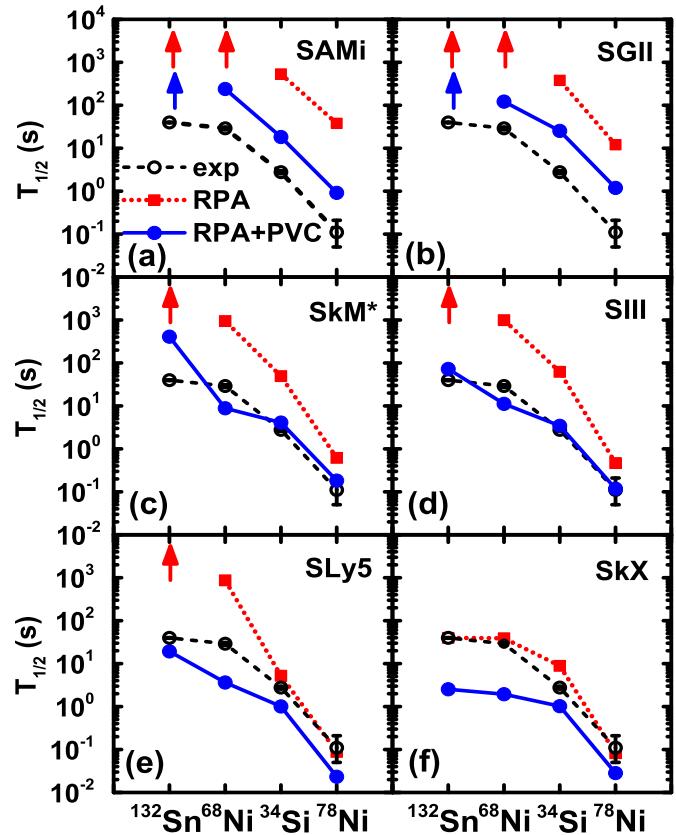
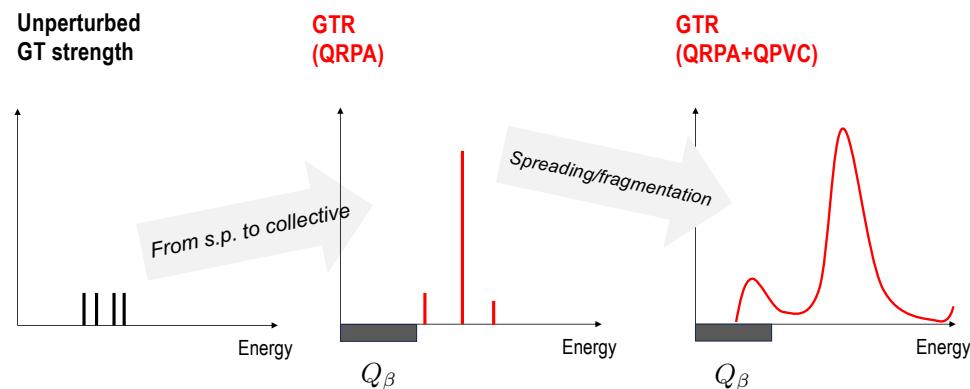
Within QPVC, the ISGMR energy in ^{208}Pb is consistent with ^{120}Sn and points to K around 225-230 MeV.

Z.Z. Li, Y.F. Niu, GC, Phys.
Rev. Lett. 131, 082501 (2023)

QPVC and two-body currents for β -decay

Hirschegg, Jan. 23rd, 2026

Applying QPVC to β -decay



RPA may not leave strength in the Q_β window.

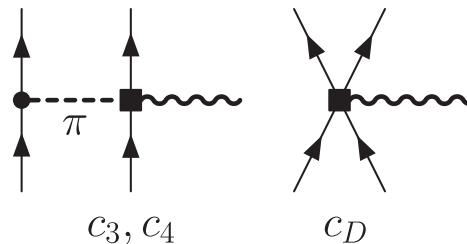
PVC redistributes the GT strength.

Y. F. Niu *et al.*, Phys. Rev. Lett. 114, 142501

Two-body currents included.

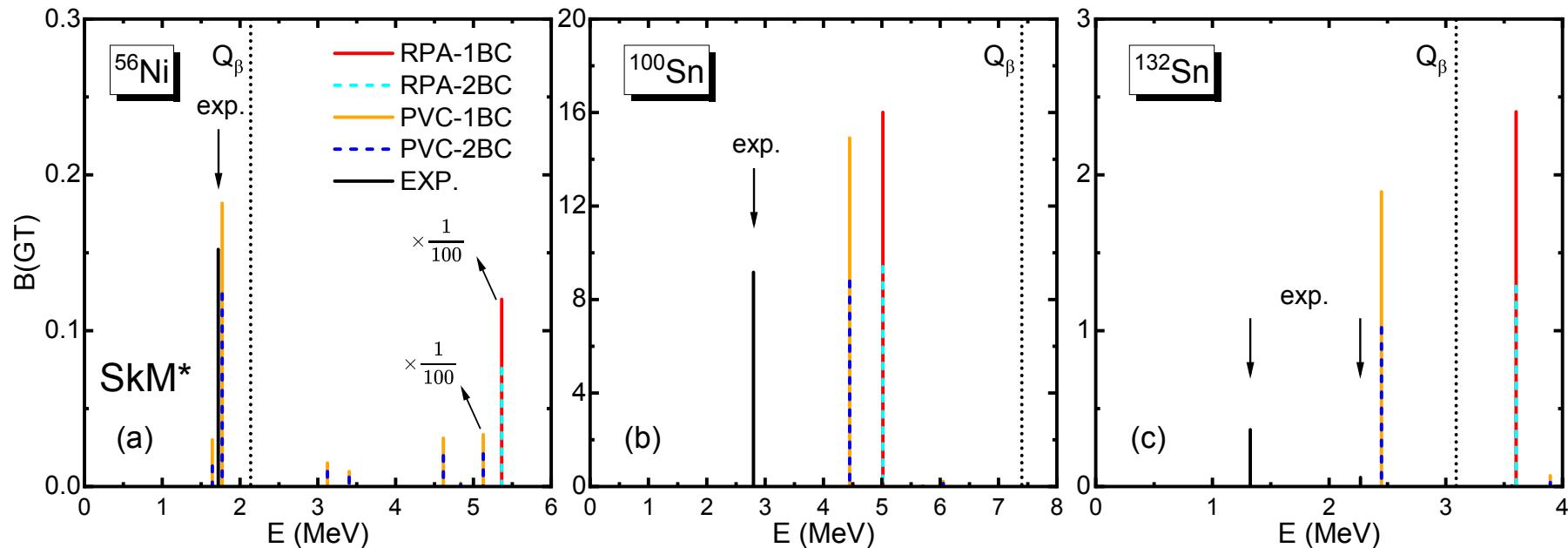
Not a consistent calculation.

$$c_3, c_4, c_D = -4.78, 3.96, 0$$



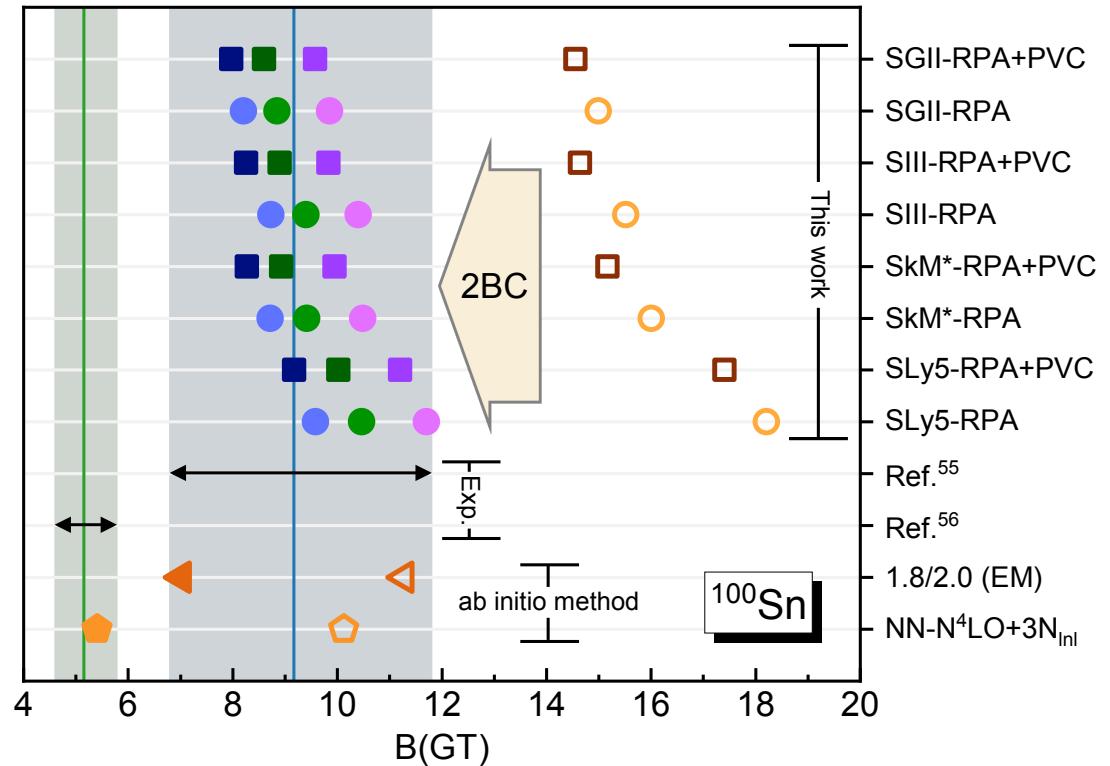
J. Menéndez *et al.*, PRL 107, 062501 (2011)

T.-S. Park *et al.*, PRC 67, 055206 (2003)

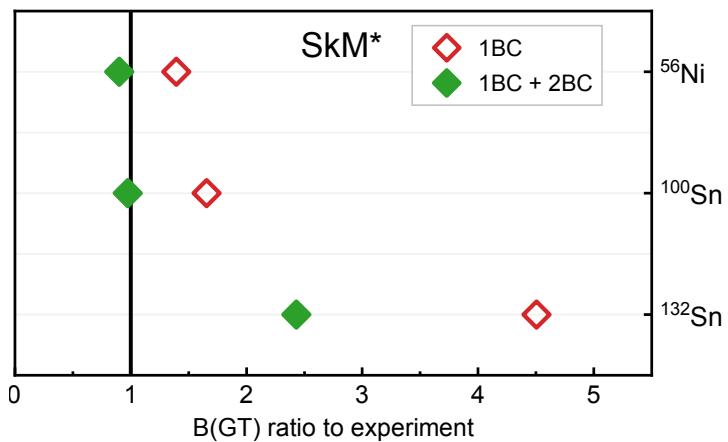


B. L. Wang *et al.* (to be published)

Hirschepp, Jan. 23rd, 2026



see P. Gysbers *et al.*, Nat. Phys. 15, 428 (2019)



We need to start from QPVC because in simple QRPA **the B(GT) in the decay window would vanish (!) for ^{56}Ni and ^{132}Sn**

B. L. Wang *et al.* (to be published)

Hirschepp, Jan. 23rd, 2026

Bayesian inference of nuclear matter parameters

Hirschegg, Jan. 23rd, 2026

13

Observables used for the inference

Ground-state properties			
	<i>B.E.</i> [MeV]	<i>R_{ch}</i> [fm]	ΔE_{SO} [MeV]
²⁰⁸ Pb	1636.4 \pm 2.0*	5.50 \pm 0.05*	2.02 \pm 0.50*
⁴⁸ Ca	416.0 \pm 2.0*	3.48 \pm 0.05*	1.72 \pm 0.50*
⁴⁰ Ca	342.1 \pm 2.0*	3.48 \pm 0.05*	-
⁵⁶ Ni	484.0 \pm 2.0*	-	-
⁶⁸ Ni	590.4 \pm 2.0*	-	-
¹⁰⁰ Sn	825.2 \pm 2.0*	-	-
¹³² Sn	1102.8 \pm 2.0*	4.71 \pm 0.05*	-
⁹⁰ Zr	783.9 \pm 2.0*	4.27 \pm 0.05*	-

Isoscalar resonances		
	E_{GMR}^{IS} [MeV]	E_{GQR}^{IS} [MeV]
²⁰⁸ Pb	13.5 \pm 0.5*	10.9 \pm 0.5*
⁹⁰ Zr	17.7 \pm 0.5*	-

Isovector properties		
	α_D [fm ³]	$m(1)$ [MeV fm ²]
²⁰⁸ Pb	19.60 \pm 0.60	961 \pm 22
⁴⁸ Ca	2.07 \pm 0.22	-

“hfbcqrpa¹” code to compute observables from parameters

B.E. : Binding Energy

R_{ch} : Charge radius

ΔE_{SO} : Spin-orbit splitting

E_{GMR}^{IS} : IsoScalar Giant monopole resonance excitation energy (constrained)

E_{GQR}^{IS} : IsoScalar Giant quadrupole resonance excitation energy (centroid)

α_D : Nuclear polarizability

$m(1)$: EWSR of IVGDR

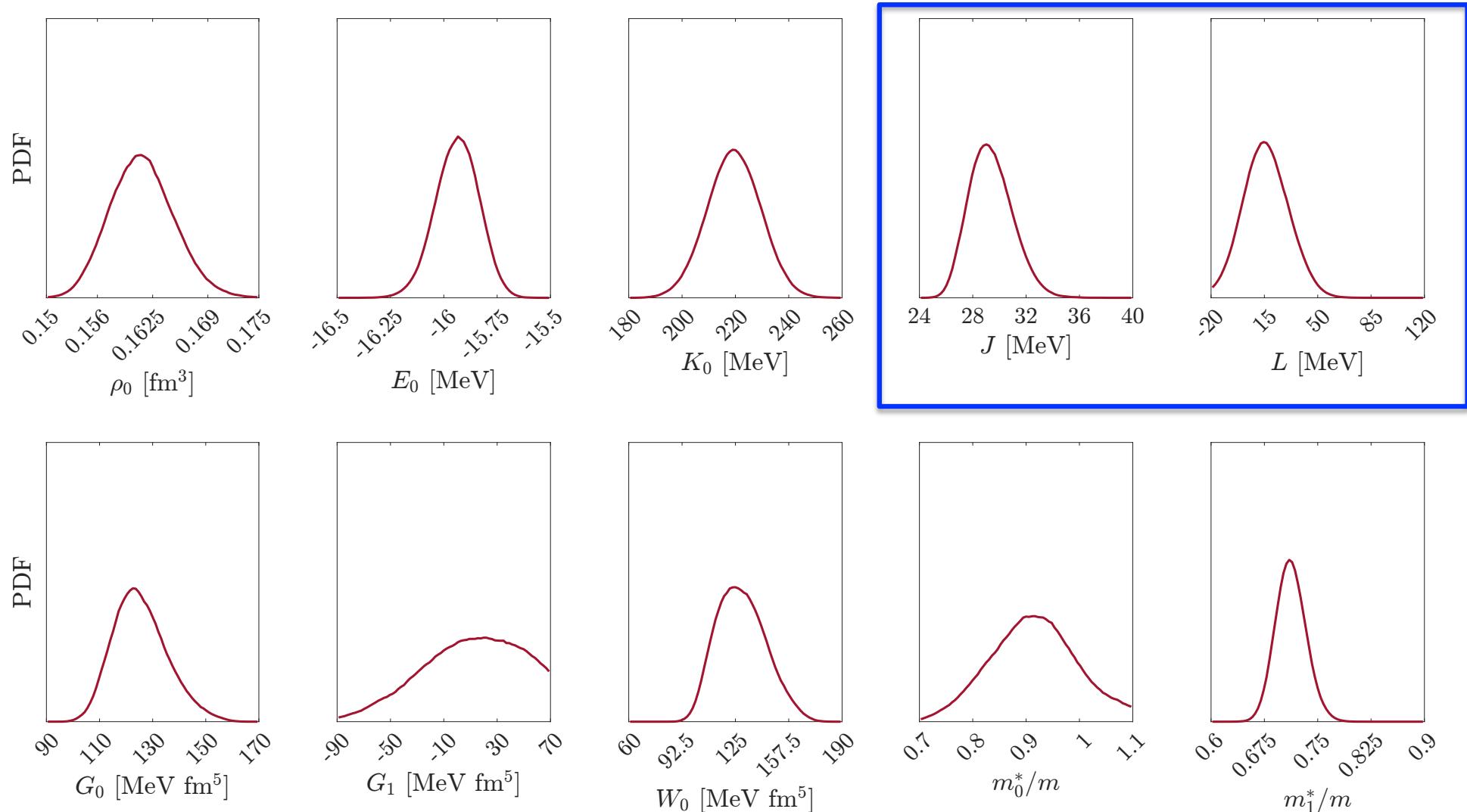
A_{PV} : Parity violating asymmetry

* Theoretical error

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

Standard Skyrme EDF.

Results: marginalized posterior distributions



- We have indications that a larger pool of nuclei is needed to better fix J and L (open-shell and possibly deformed).
- The posterior distributions have been used as priors for an inference based on data taken from **observations of neutron stars** (P. Klausner *et al.*, arXiv:2505.16929).

Neutron Star crust informed by nuclear structure data

Pietro Klausner,^{1,2,3,*} Marco Antonelli,^{1,†} and Francesca Gulminelli^{1,‡}

¹Université de Caen Normandie, CNRS/in2p3, LPC Caen (UMR6534), 14050 Caen, France

²Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, 20133 Milano, Italy

³INFN, Sezione di Milano, 20133 Milano, Italy

- PDFs and correlation matrices from different models can and should be confronted.

Inferred values of the parameters / predictions

Parameter		μ	σ
ρ_0	[fm ³]	0.161	0.004
E_0	[MeV]	-15.938	0.102
K_0	[MeV]	219.483	10.007
J	[MeV]	29.378	1.626
L	[MeV]	16.136	14.732
G_0	[MeV fm ⁵]	125.470	10.210
G_1	[MeV fm ⁵]	9.439	35.735
W_0	[MeV fm ⁵]	128.719	14.848
m_0^*/m		0.913	0.079
m_1^*/m		0.712	0.021

Ground-state properties			
	B.E. (MeV)	R_{ch} (fm)	ΔE_{SO} (MeV)
²⁰⁸ Pb	1636 ± 1.8	5.49 ± 0.03	2.34 ± 0.16
⁴⁸ Ca	417 ± 1.2	3.51 ± 0.02	1.92 ± 0.20
⁴⁰ Ca	342 ± 1.6	3.50 ± 0.02	—
⁵⁶ Ni	482 ± 1.4	—	—
⁶⁸ Ni	590 ± 1.0	—	—
¹⁰⁰ Sn	826 ± 1.6	—	—
¹³² Sn	1103 ± 1.7	4.71 ± 0.03	—
⁹⁰ Zr	784 ± 1.3	4.27 ± 0.02	—
Isoscalar resonances			
	$E_{\text{GMR}}^{\text{IS}}$ (MeV)	$E_{\text{GQR}}^{\text{IS}}$ (MeV)	
²⁰⁸ Pb	13.5 ± 0.3	10.8 ± 0.4	
⁹⁰ Zr	17.8 ± 0.4	—	
Isovector properties			
	α_D (fm ³)	$m(1)$ (MeV fm ²)	A_{PV} (ppb)
²⁰⁸ Pb	19.5 ± 0.5	958 ± 22	589 ± 5
⁴⁸ Ca	2.30 ± 0.08	—	2591 ± 54

All observables are within experimental errors. The BE of ⁵⁶Ni and so splitting of ²⁰⁸Pb are within 1 and 2σ while only the A_{PV} of ²⁰⁸Pb lies at more than 2σ .

Ab initio-based DFT

Hirschegg, Jan. 23rd, 2026

- D. Gambacurta, L. Li, G. Colò, U. Lombardo, N. Van Giai, and W. Zuo, Phys. Rev. C 84, 024301 (2011).
- G. Salvioni, J. Dobaczewski, C. Barbieri, G. Carlsson, A. Idini, and A. Pastore, J. Phys. G 47, 085107 (2020).
- L. Zurek, E. A. Coello Pérez, S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Phys. Rev. C 103, 014325 (2021).

In these works (plus others not quoted here) the idea is that *ab initio* can be used to constrain, or inform, specific terms of the EDF.

Instead, we would like to use *ab initio* calculations of **model systems** like it has been done, or advocated, for electronic systems.

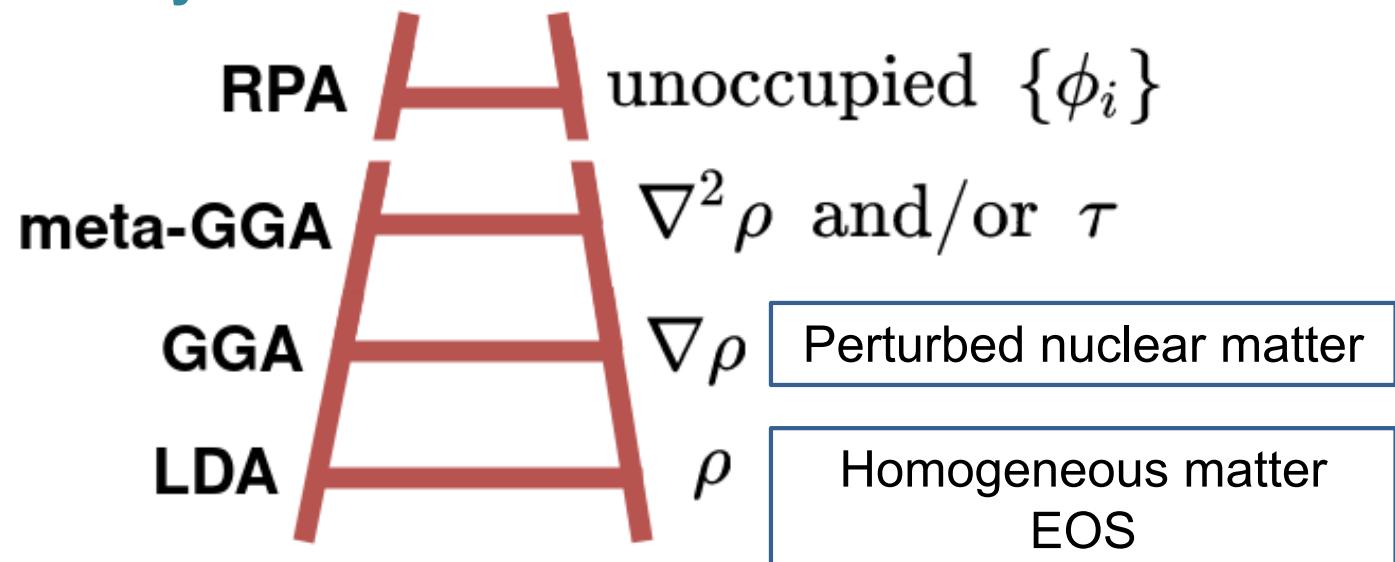
A systematic hierarchy of approximations

Our recently proposed strategy is **systematic** and based on the **Jacob's ladder** of electronic DFT.

J. Perdew, K. Schmidt, AIP Conf. Proc. 577, 1 (2001).

Heaven of chemical accuracy

Earth of Hartree



- Follow a **step-by-step approach**
- Use *ab initio* simulations of model systems as a constraint

The Equation of State (EoS)

$$\rho = \rho_n + \rho_p$$

$$\beta = \frac{\rho_n - \rho_p}{\rho}$$

QMC with simple AV4'+UX_c

SCGF with NNLO_{sat}, ΔNNLO_{GO}

We parametrise the potential part of the EoS.

1. \mathcal{V} is quadratic in β
2. \mathcal{V} is a polynomial in k_F

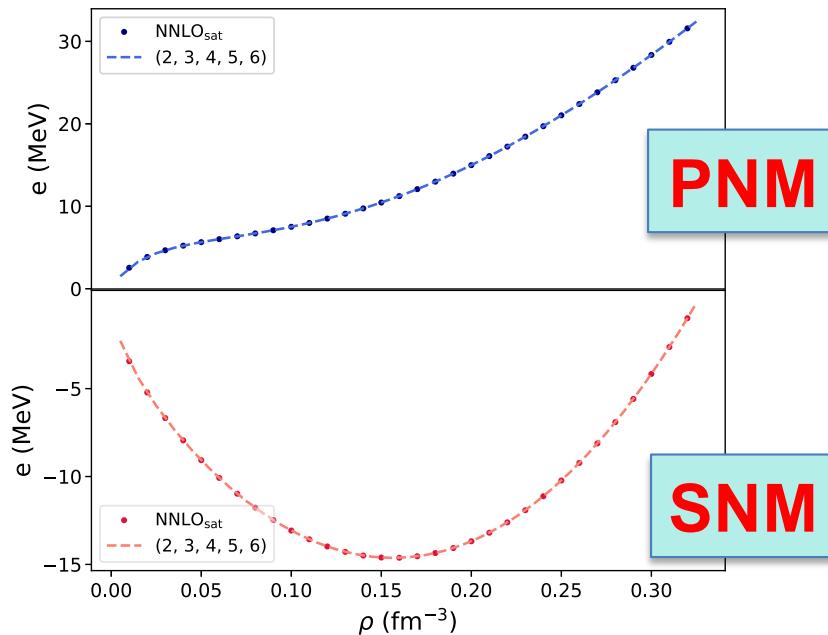
$$v(\rho, \beta) = \sum_{\gamma} (c_{\gamma,0} + \beta^2 c_{\gamma,1}) \rho^{\gamma} \quad \gamma = \frac{n}{3}$$

3. The optimal set of powers is chosen by model selection.

More powers than in empirical EDFs.

Local Density Approximation (LDA)

We find the best series of terms like $\rho^{n/3}$



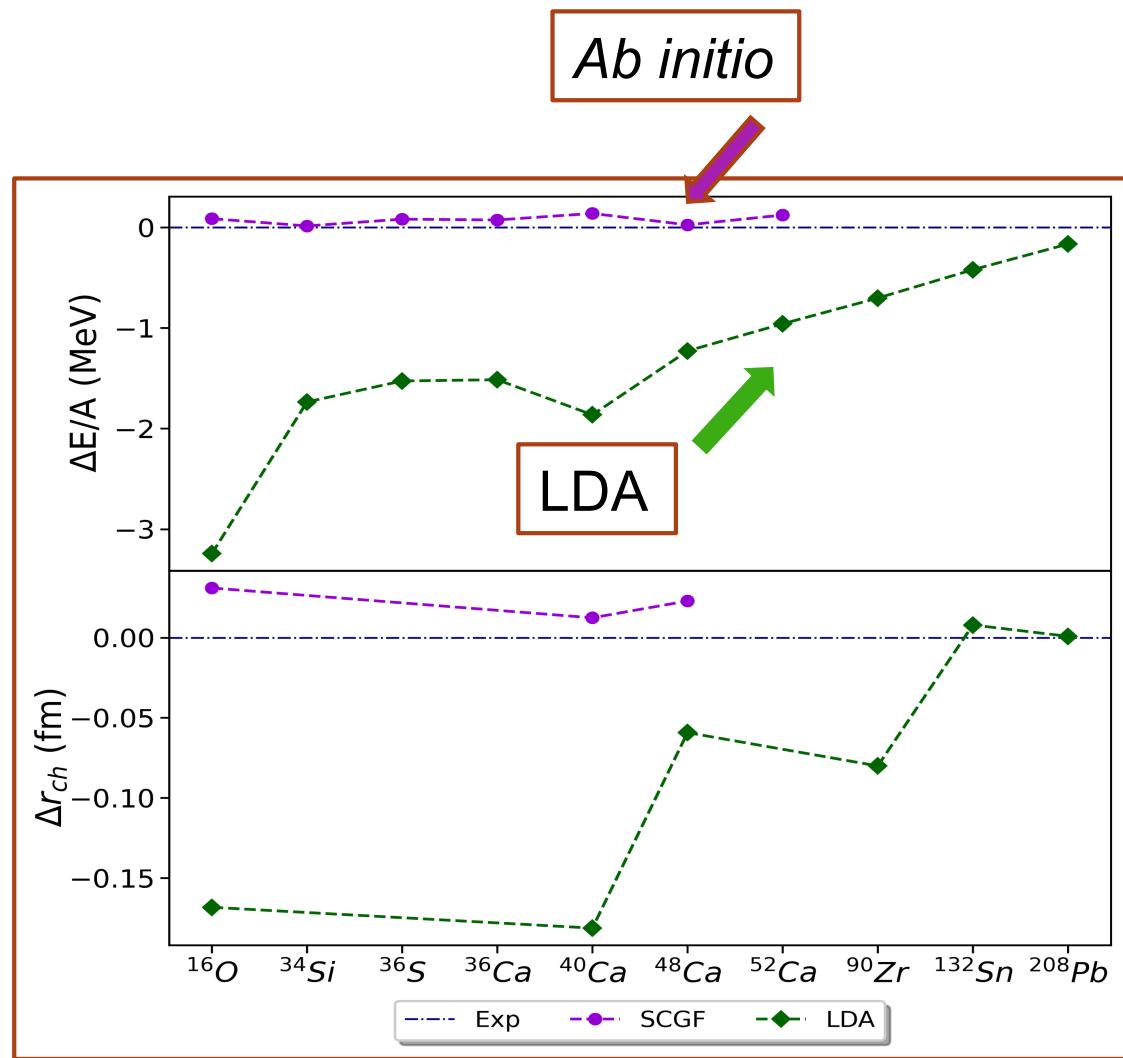
Within LDA, the energy functional is the same as in uniform matter.

We apply it to finite systems as if their local density were uniform.

$$e = \frac{E}{A} = \frac{\mathcal{E}}{\rho}$$

$$E_{\text{pot}} = \int d^3r \rho(\vec{r})e[\rho]$$

Results: NNLO_{sat}



Difference with respect to experiment for E/A (upper panel)
 r_{ch} (lower panel)

Encouraging results in heavy nuclei (^{132}Sn , ^{208}Pb)

Something still missing

Perturbed nuclear matter

Add a **weak external potential** of the type:

$$v_{\text{ext}} = 2v_q \cos(\vec{q} \cdot \vec{r})$$

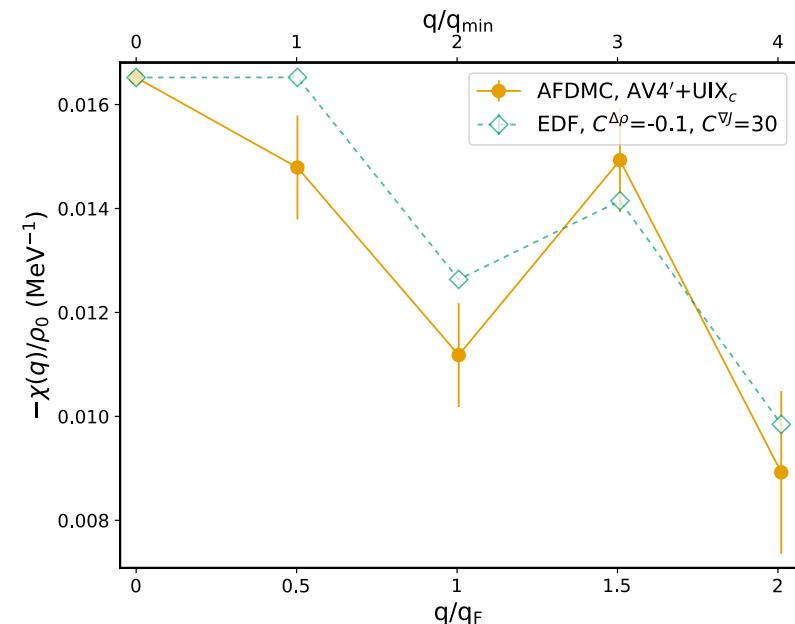
In linear response:

$$\delta\rho(\vec{r}) = 2\chi(q)v_q \cos(\vec{q} \cdot \vec{r})$$

$$\delta e = \frac{\chi(q)}{\rho_0} v_q^2$$

One should check that one is in this **lowest-order PT regime**.

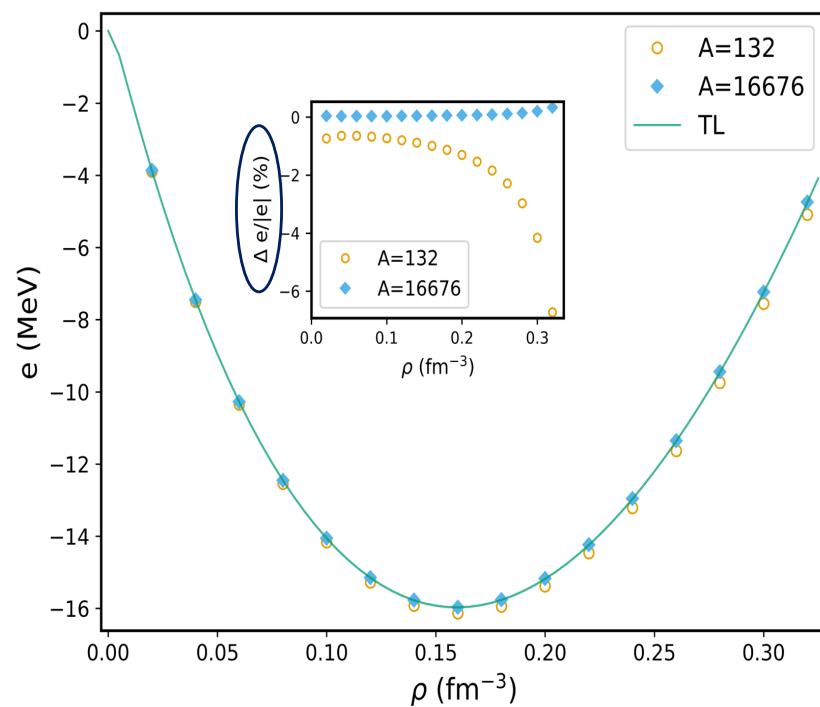
Then, one can try to **optimise the parameters so that EDF matches these results**.



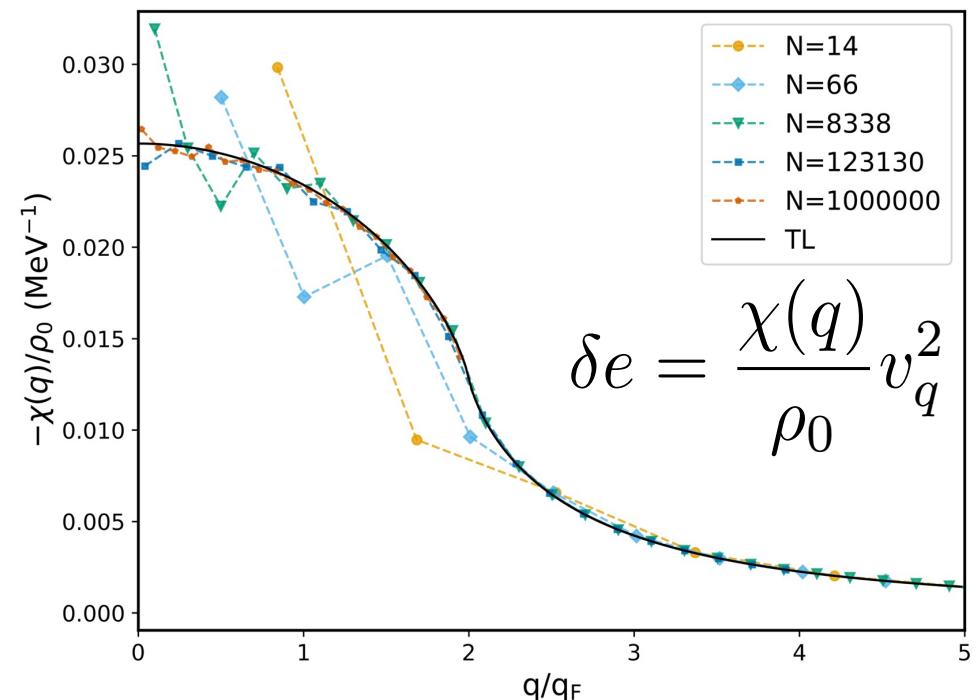
Uncertainties on AFDMC points are of the same order of the variations of the response function with q .

Finite size effects

SNM EOS



Fermi gas response



Finite size effects are **weak** on the EOS but **strong** on $\chi(q)$

- **C. Barbieri, P. Klausner, E. Vigezzi (Milano)**
- **D. Gambacurta (LNS)**
- **F. Pederiva (Trento)**
- **M. Antonelli, F. Gulminelli (LPC Caen, France)**
- **F. Marino (JGU Mainz, Germany)**
- **A. Porro (TU Darmstadt, Germany)**
- **X. Roca-Maza (Milano, now at U. Barcelona, Spain)**
- **A. Lovato (ANL, USA, now at U. Valencia, Spain)**
- **Z.Z. Li (PKU, China)**
- **L. Cao, B.L. Wang (Beijing Normal University, China)**
- **Y. Niu, W.L. Lv (Lanzhou University, China)**

Conclusions

- **Grounding DFT in *ab initio*** is highly desirable but it has not been achieved yet.
- In our attempt, we are stuck by **finite size effects** in the nuclear response.
- Other interesting avenues: comparison of NM parameters and associated correlations from *ab initio*, from different EDFs...
- More generally: we have some expertise coming from DFT applied to high-lying excited states that can be useful when discussing *ab initio* approaches.

Thank you for listening

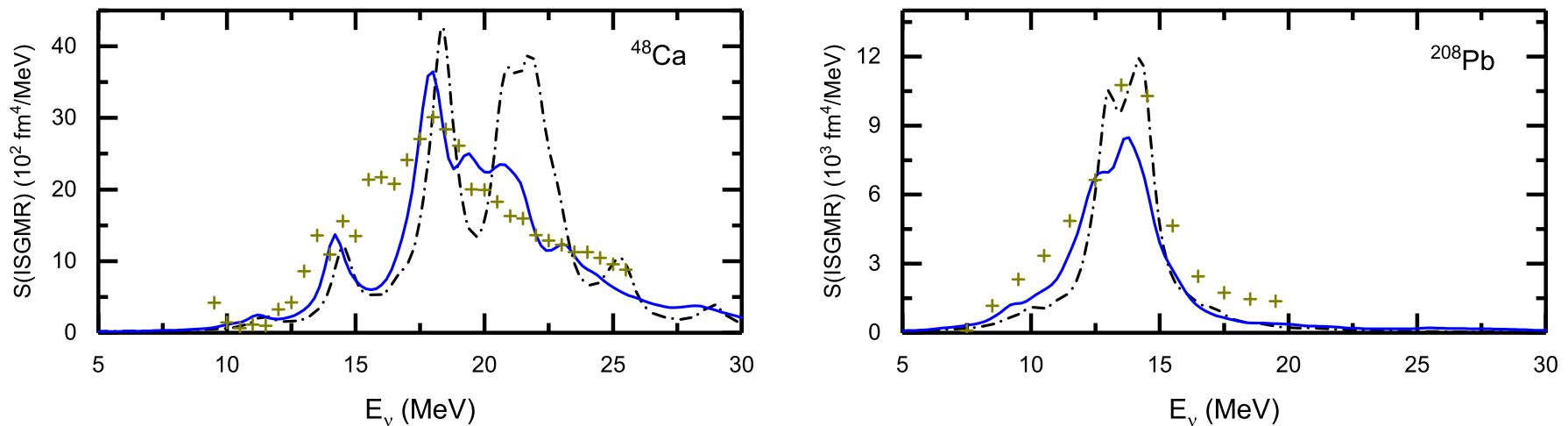
Hirscheegg, Jan. 23rd, 2026

Backup slides

Hirschegg, Jan. 23rd, 2026

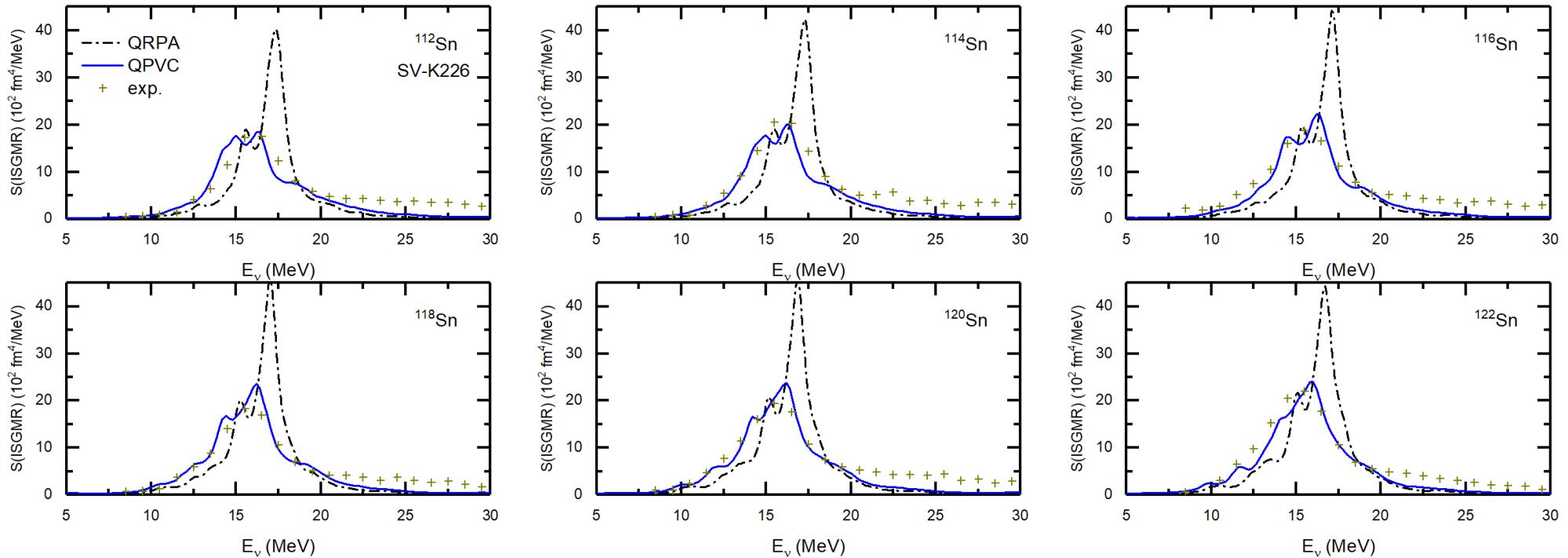
28

ISGMR in ^{48}Ca and ^{208}Pb



- Exp. data from T. Li *et al.*, Phys. Rev. Lett. 99, 162503 (2007) and S.D. Olorunfunmi, Phys. Rev. C 105, 054319 (2022).
- In these two cases there is no pairing.

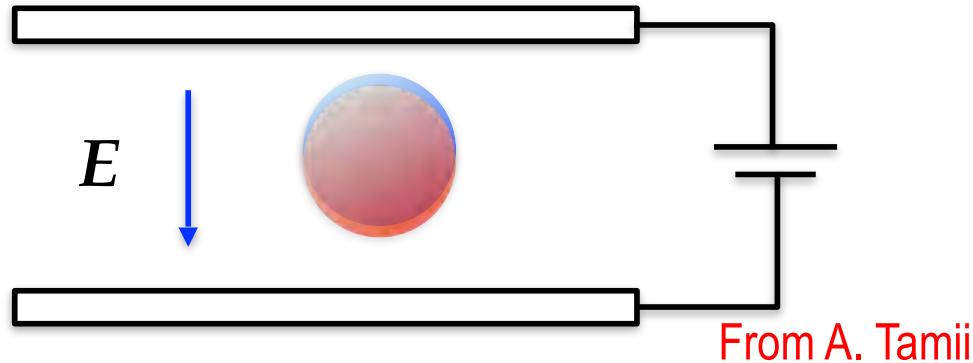
ISGMR in Sn isotopes



- Exp. data from D. Patel *et al.*, Phys. Lett. B726, 178 (2013)
- QPVC reproduces the experimental data quite well.
- The best description is obtained with the Skyrme EDF SV-K226.

Klüpfel, Reinhard, *et al.*, PRC 79, 034310 (2009)

The dipole polarizability



If the nucleus were under the action of a static electric field

$$p = \alpha_D E$$

The **polarizability** can be deduced from the so-called **inverse energy-weighted sum rule** associated with dipole field

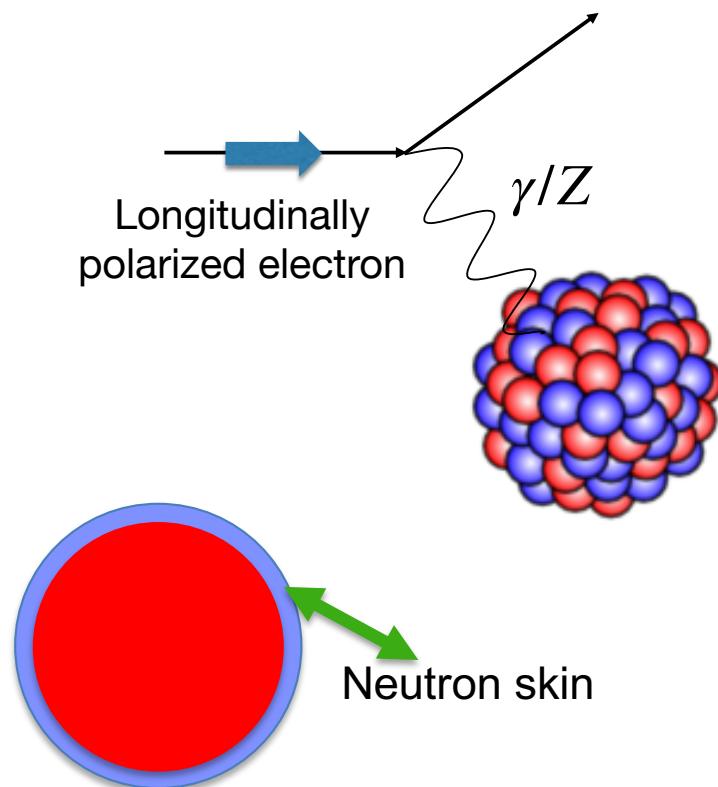
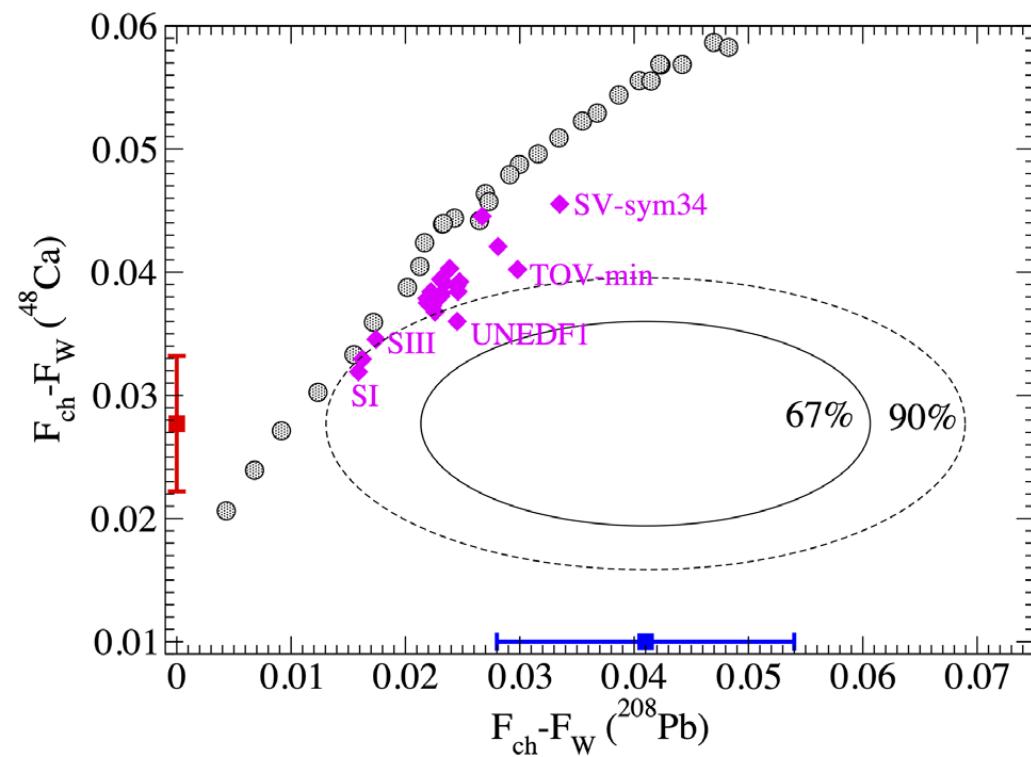
$$\alpha_D = \frac{8\pi e^2}{9} \int dE \frac{dB(E1)}{dE} \equiv \frac{8\pi e^2}{9} m_{-1}$$

A. Migdal, Quadrupole and dipole γ -radiation of nuclei, J. Phys. Acad. Sci. USSR 8(1-6), 331-336 (1944)

$$\alpha_D = \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J}$$

Parity-violating asymmetry (and weak FF)

Parity-violating asymmetry measured in electron scattering is a probe of the **neutron distribution** (in principle, a model-independent probe).



D. Adhikari *et al.*, Phys. Rev. Lett. 129, 042501 (2022)

Hirschegg, Jan. 23rd, 2026

Diagrammatic *ab initio* methods for infinite nuclear matter with modern chiral interactions

F. Marino^{1,*}, W. G. Jiang^{1,2}, and S. J. Novario^{1,3}

¹*Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany*

²*Mainz Institute for Theoretical Physics, Johannes Gutenberg-Universität, 55128 Mainz, Germany*

³*Department of Physics, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA*

(Received 24 July 2024; revised 10 October 2024; accepted 22 October 2024; published 22 November 2024)

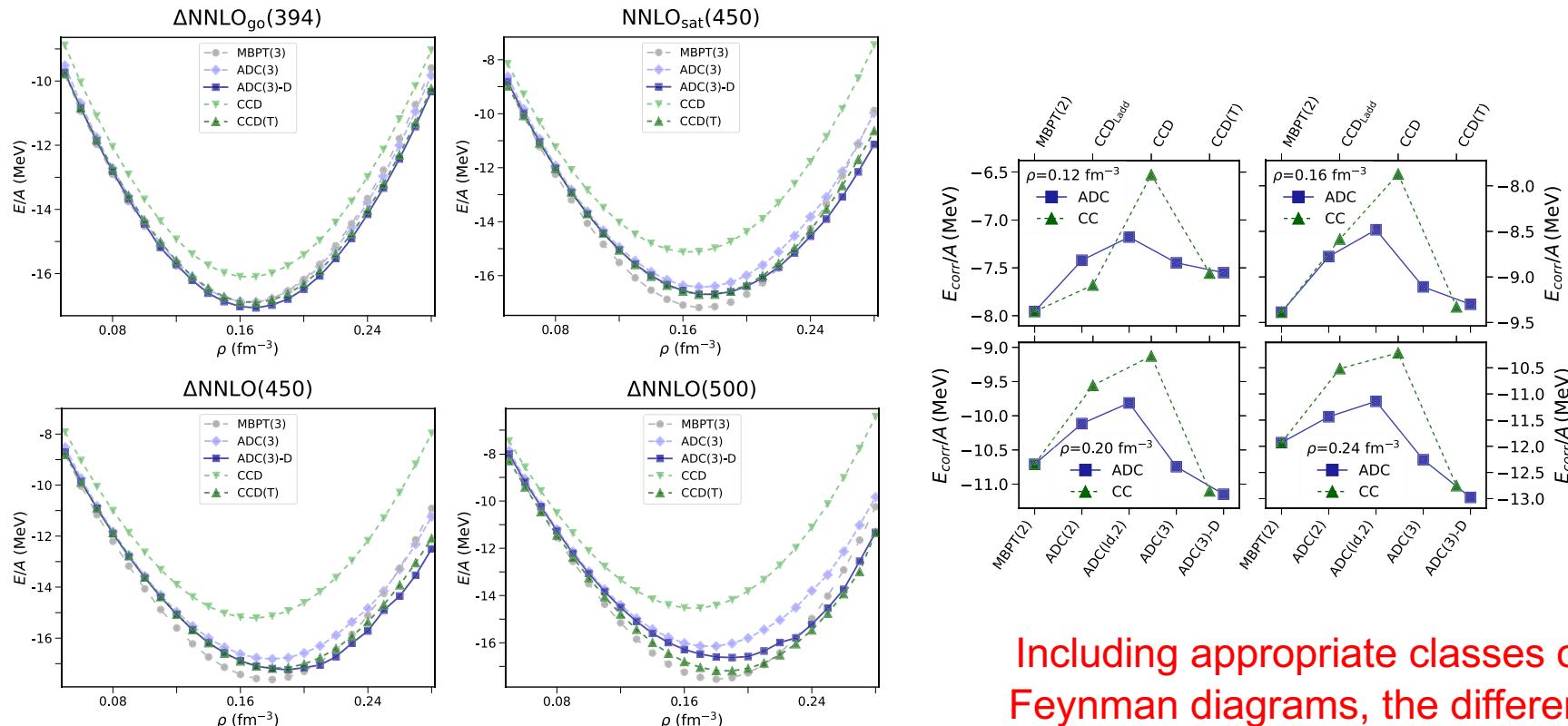


FIG. 6. SNM equations of state obtained with four different chiral interactions. Each panel reports the outcomes of five many-body techniques (see legend). $A = 132$ nucleons subject to PBCs are employed to simulate SNM.

Including appropriate classes of Feynman diagrams, the different MB methods are very close (at a given level of approximation)

Hirschegg, Jan. 23rd, 2026