



Impact of ground-state correlations on the nuclear response

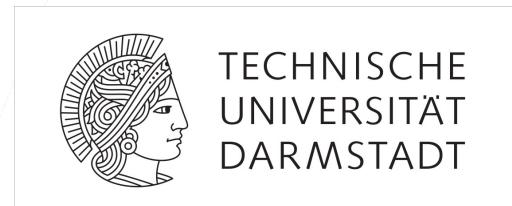
[Porro, Schwenk and Tichai, Phys. Rev. C 112, 054303 \(2025\)](#)

EMMI Workshop – Hirschegg

January 22nd 2026

Andrea Porro

Technische Universität Darmstadt



Outline

Introduction

- Physics case
- Quantities of interest

IMSRG multipole moments

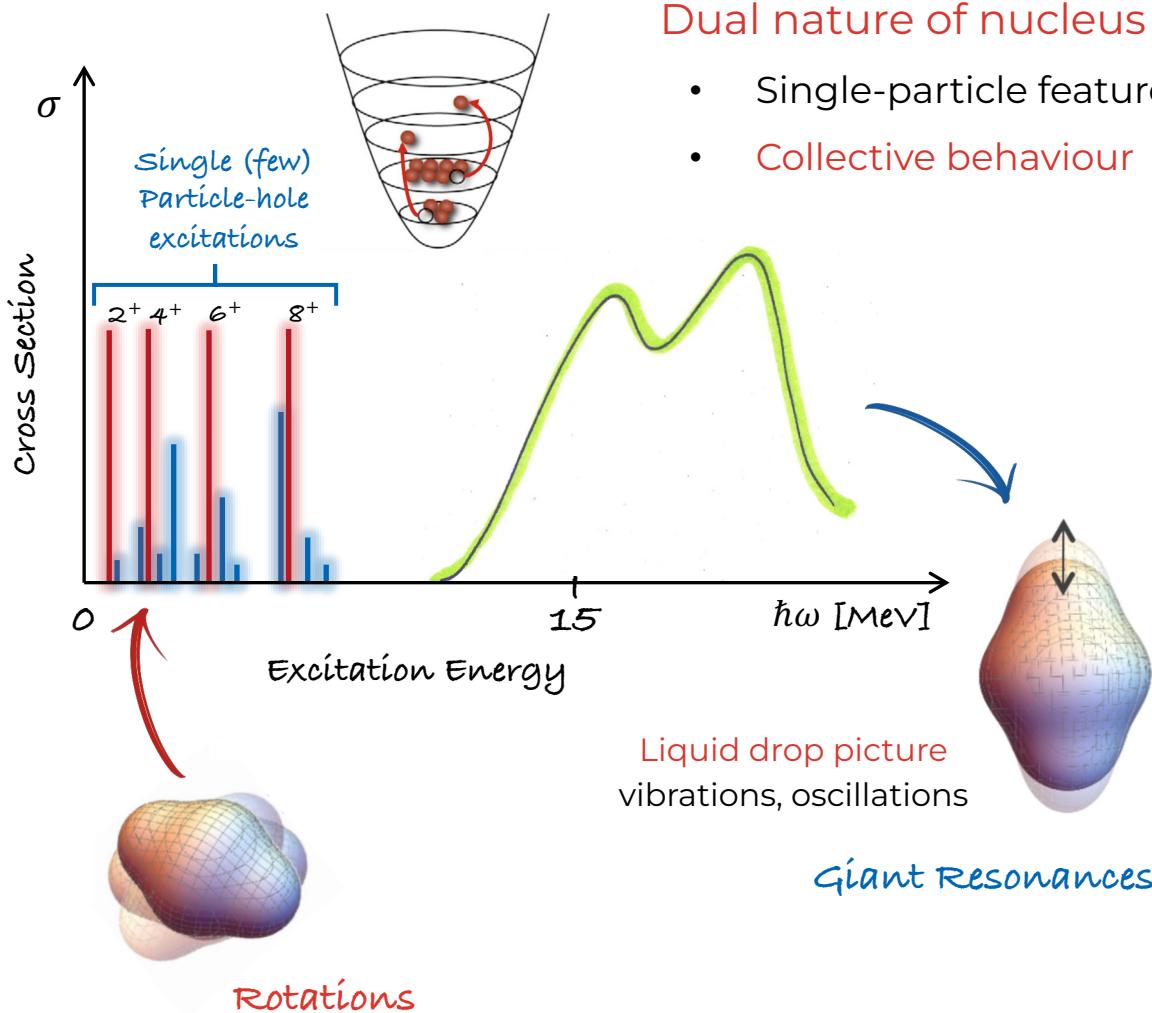
- Strategy
- Model-space convergence
- Numerical results

New perspectives on the EOM

- Formal development
- Numerical results

Challenges and opportunities

Nuclear spectroscopy



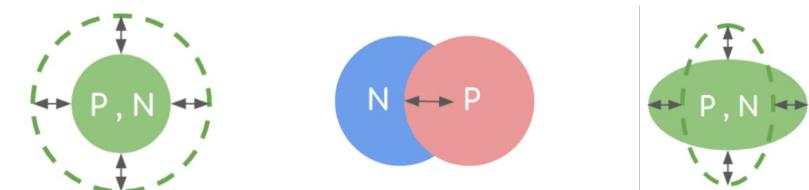
Response function

Fully characterise linear response

$$S(Q_\lambda, E) \equiv \sum_{\mu\nu} |\langle \Psi_\nu | Q_{\lambda\mu} | \Psi_0 \rangle|^2 \delta(E_\nu - E_0 - E)$$

Transition probability ↑
Excitation energy ↑

Studied quantity: multipole response



Moments of the strength

Studied quantity: multipole response

$$S(Q_\lambda, E) \equiv \sum_{\mu\nu} |\langle \Psi_\nu | Q_{\lambda\mu} | \Psi_0 \rangle|^2 \delta(E_\nu - E_0 - E)$$

Related moments

$$m_k(Q_\lambda) \equiv \int_0^\infty E^k S(Q_\lambda, E) dE$$

$$= \sum_{\mu\nu} (E_\nu - E_0)^k |\langle \Psi_\nu | Q_{\lambda\mu} | \Psi_0 \rangle|^2$$

Integrated properties

Must know excited states

Ground state only

Identity resolution

$$1 = \sum_\nu |\Psi_\nu \rangle \langle \Psi_\nu|$$

Complexity shifted to operator structure

$$M_0(Q_\lambda) \equiv \sum_\mu (-1)^\mu Q_{\lambda,-\mu} Q_{\lambda\mu}$$

$$M_1(Q_\lambda) = \frac{1}{2} \sum_\mu (-1)^\mu [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

- Exact treatment for exc states
- Many-body truncation only GS

“Exact sum rules with approximate ground states”

Outline

Introduction

- Physics case
- Quantities of interest

[Phys. Rev. C 112, 054303 \(2025\)](#)

IMSRG multipole moments

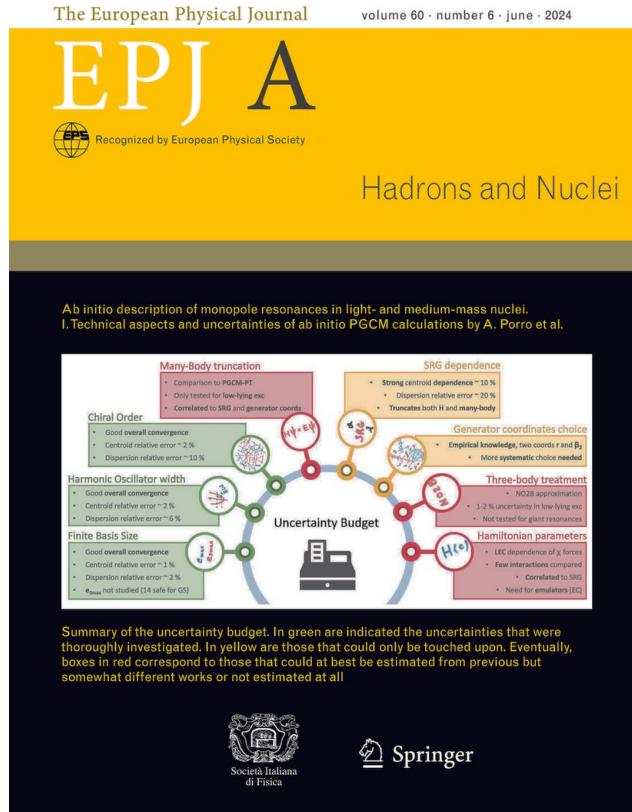
- Strategy
- Model-space convergence
- Numerical results

New perspectives on the EOM

- Formal development
- Numerical results

Challenges and opportunities

Previous PGCM study



Eur. Phys. J. A (2024) 60:155
<https://doi.org/10.1140/epja/s10050-024-01377-5>

THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

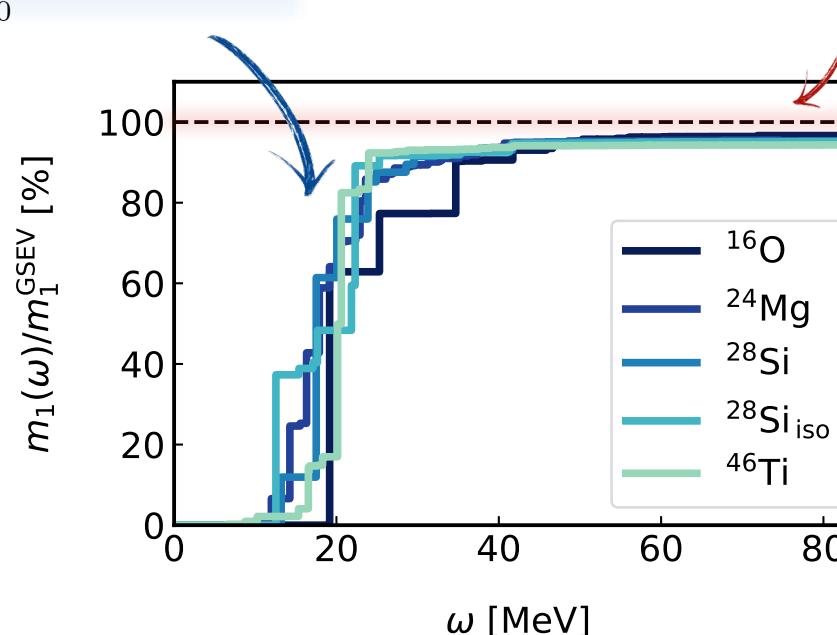
Ab initio description of monopole resonances in light- and medium-mass nuclei

III. Moments evaluation in ab initio PGCM calculations

A. Porro^{1,2,3,a} , T. Duguet^{3,4}, J.-P. Ebran^{5,6}, M. Frosini⁷, R. Roth^{1,8}, V. Somà³

$$m_1(\omega) = \int_0^\omega d\tilde{\omega} S(r^2, \tilde{\omega}) \tilde{\omega}$$

$$m_1^{\text{GSEV}} = \frac{1}{2} \langle \Psi_0 | [r^2, [H, r^2]] | \Psi_0 \rangle$$



- I. [EPJA (2024) 60, 133]
- II. [EPJA (2024) 60, 134]
- III. [EPJA (2024) 60, 155]
- IV. [EPJA (2024) 60, 233]

Based on

PHYSICAL REVIEW C 112, 054303 (2025)

Editors' Suggestion

Impact of ground-state correlations on the multipole response of nuclei: *Ab initio* calculations of moment operators

A. Porro ,^{1,2,*} A. Schwenk ,^{1,2,3,†} and A. Tichai ,^{1,2,3,‡}

¹*Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany*

²*ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany*

³*Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany*

(Received 28 July 2025; accepted 23 September 2025; published 5 November 2025)

We develop a framework that allows us to calculate integrated properties of the nuclear response from first principles. Using the *ab initio* in-medium similarity renormalization group (IMSRG), we calculate the expectation values of moment operators that are linked to the multipole response of nuclei. This approach is applied to the isoscalar mono- and quadrupole as well as the isovector dipole response of closed-shell nuclei from ^4He to ^{78}Ni for different chiral two- and three-nucleon interactions. We find that the inclusion of many-body correlations in the nuclear ground state significantly impacts the multipole response when going from the random-phase approximation to the IMSRG level. Our IMSRG calculations lead to an improved description of experimental data in ^{16}O and ^{40}Ca , including a good reproduction of the Thomas-Reiche-Kuhn enhancement factor. These findings highlight the utility of the moment method as a benchmark for other *ab initio* approaches that describe nuclear response functions through the explicit treatment of excited states.

DOI: [10.1103/1kpc-lknn](https://doi.org/10.1103/1kpc-lknn)

Strategy in the IMSRG framework

Unitary transformation

$$H(s) = U(s) H U^\dagger(s)$$

$$\equiv H^d(s) + H^{od} \rightarrow H^d(\infty)$$

Diagonal

Off-diagonal

$$E_{gs} = \lim_{s \rightarrow \infty} E_0(s) = \langle \Phi | H(s) | \Phi \rangle$$

Steps

- Start from the moment operator in the **HO basis**
- Perform an **IMSRG(2)** calculation
- Evolve moment operators using **Magnus**

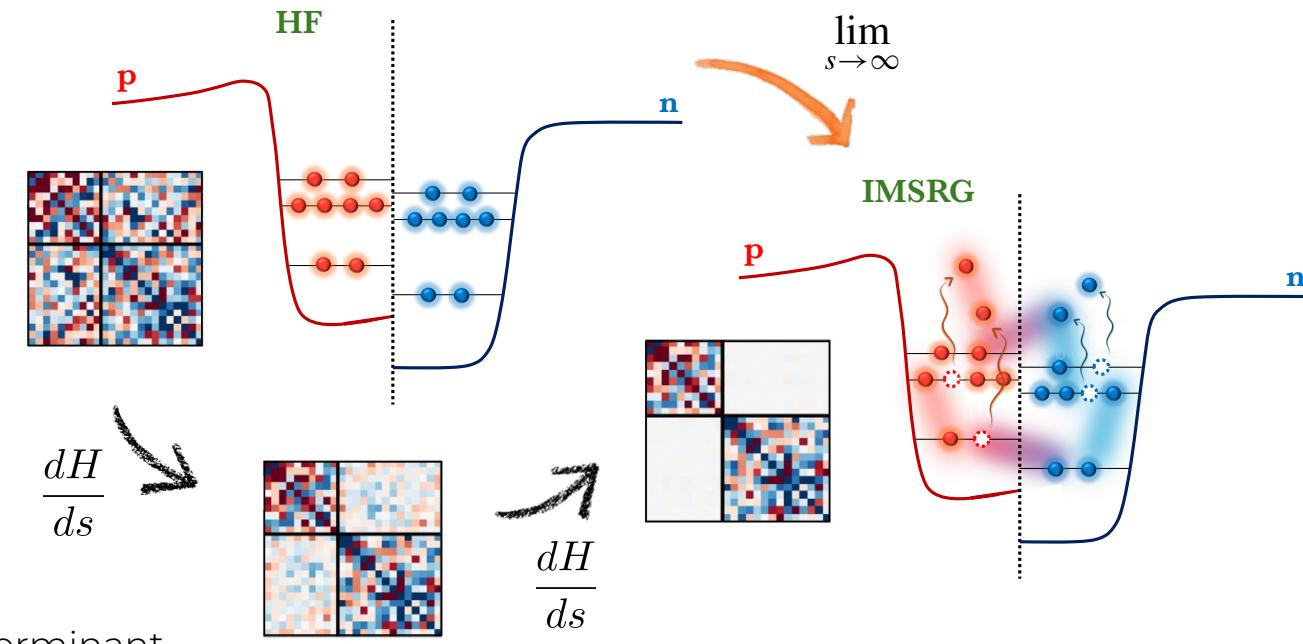
Benchmarks

- HF value of m_0 against **TDA**
- HF value of m_1 against **RPA**

[Tsukiyama, Bogner and Schwenk, PRL, 2011]

[Hergert, Bogner, Morris, Schwenk, Tsukiyama, Phys. Rept., 2016]

$$U(s) \equiv e^{\Omega(s)}$$



$$M_0(Q_\lambda) \equiv \sum_\mu (-1)^\mu Q_{\lambda, -\mu} Q_{\lambda\mu}$$

$$M_1(Q_\lambda) = \frac{1}{2} \sum_\mu (-1)^\mu [Q_{\lambda, -\mu}, [H, Q_{\lambda\mu}]]$$

J-scheme expressions of m_0 and m_1

[Lu and Johnson, PRC 97 (2018) 3, 034330]

Implemented within **imsrg++** code

[github.com/ragnarstroberg/imsrg]

Model-space convergence

Dipole response

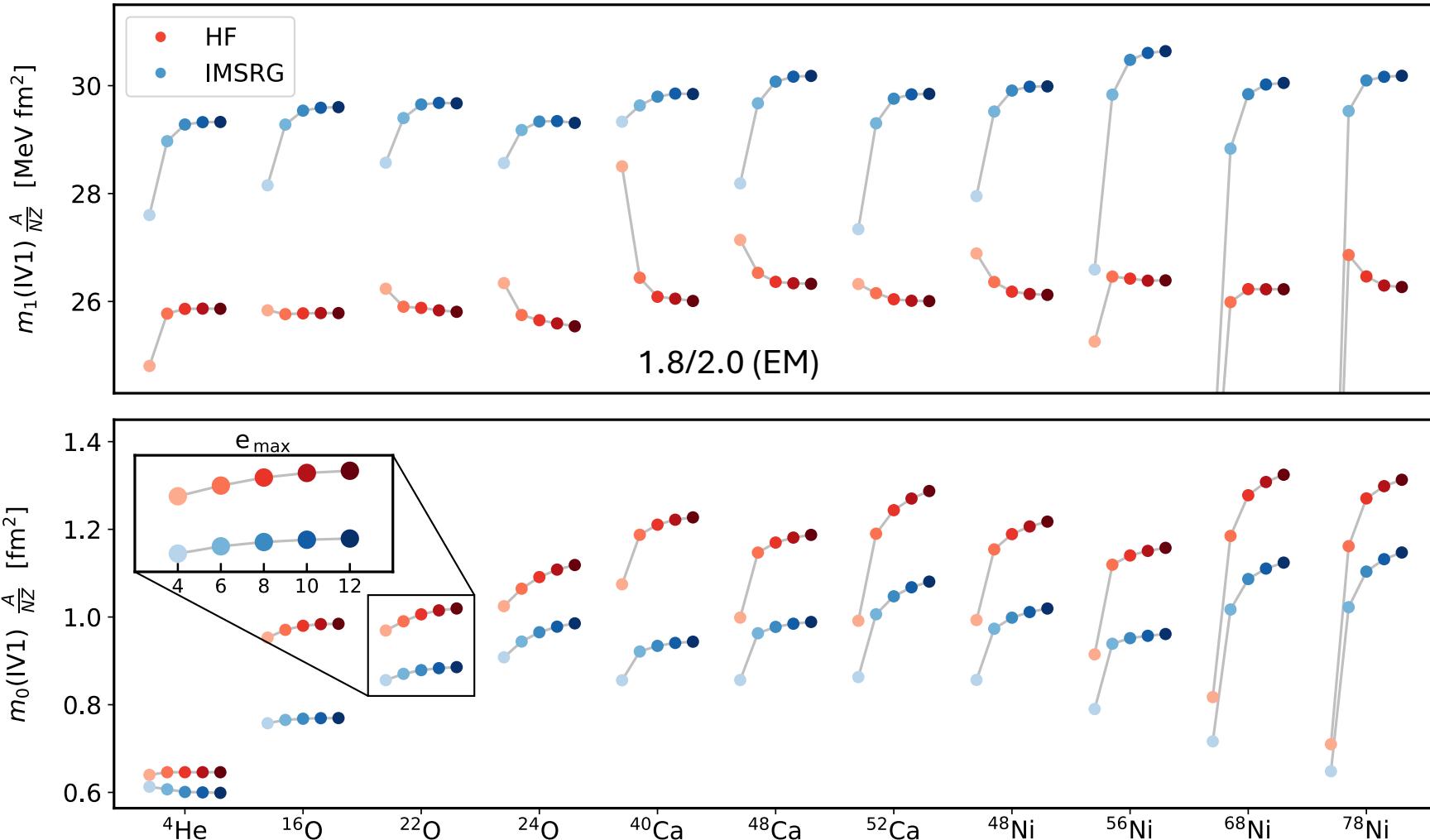
$$M_1(Q_\lambda) = \frac{1}{2} \sum_{\mu} (-1)^\mu [Q_{\lambda, -\mu}, [H, Q_{\lambda\mu}]]$$

- Large correlation impact
- Relative difference $\sim 0.2\%$
- Similar error for $\hbar\omega$ variations

$$Q_{1\mu}^{\text{IV}} = \frac{N}{A} \sum_{i=1}^Z r_i Y_{1\mu}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^N r_i Y_{1\mu}(\hat{r}_i)$$

$$M_0(Q_\lambda) \equiv \sum_{\mu} (-1)^\mu Q_{\lambda, -\mu} Q_{\lambda\mu}$$

- Slower convergence
- Relative difference $\sim 1.3\%$
- 2% error for $\hbar\omega$ variations



Another example: Kumar invariants

0th quadrupole moment

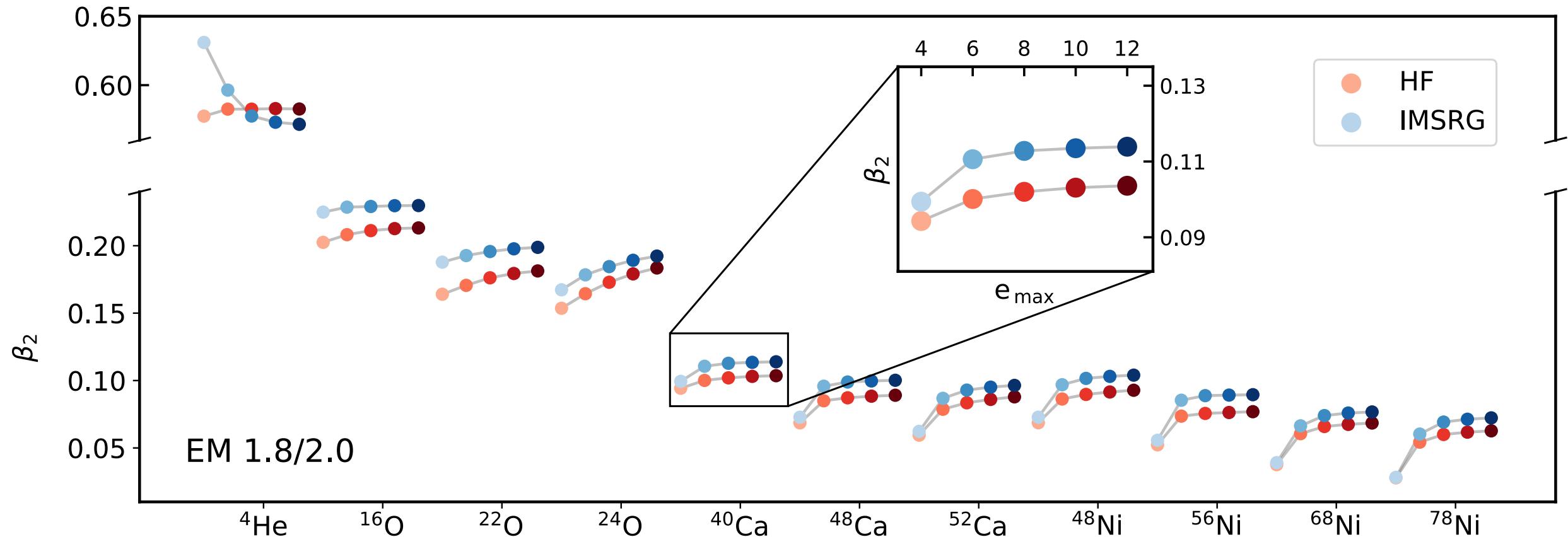
$$m_0(Q_2) = \langle Q_2 \cdot Q_2 \rangle$$

Model-independent deformation «measure»

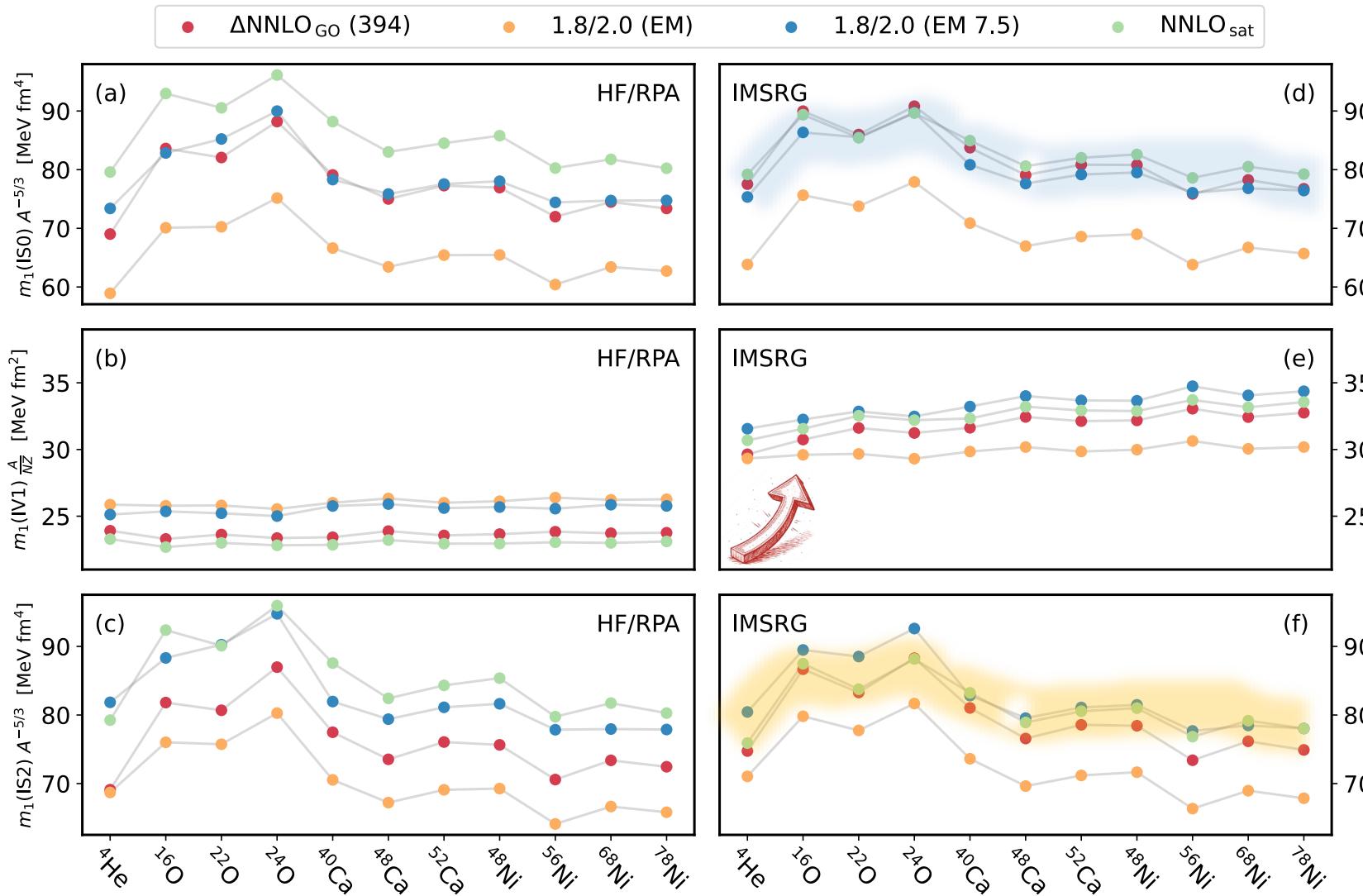
$$\beta_2 \equiv \frac{4\pi}{3r_0^2} \frac{\langle Q_2 \cdot Q_2 \rangle^{1/2}}{A^{5/3}}$$

Higher invariants also fundamental

[Poves et al., PRC 101 (2020) 054307]



Interaction sensitivity



Monopole

- Reduced spread
- ~5% correlations effect

Dipole

- Increase up to 40%
- 2% spread (w/o 1.8/2.0(EM))

Quadrupole

- Reduced spread
- ~5% correlations effect

Photoabsorption cross section

Comparison to exp only makes sense for integrated quantities

$$\int_0^\infty \sigma(E) dE = \frac{2\pi^2}{\hbar c} \langle \Psi_0 | [D, [H, D]] | \Psi_0 \rangle = \frac{16\pi^3}{9} \alpha m_1(\text{IV1})$$

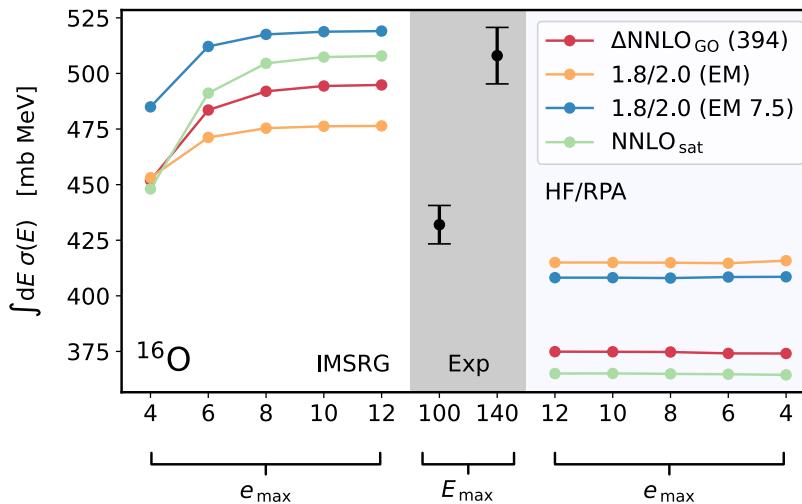
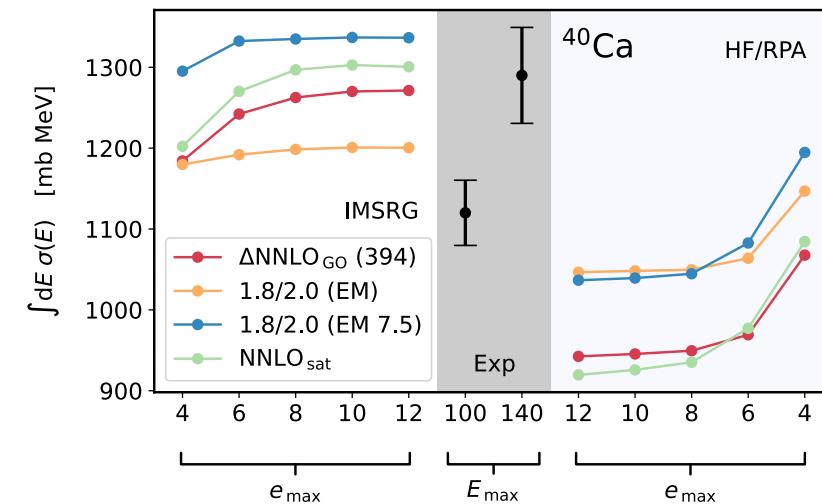
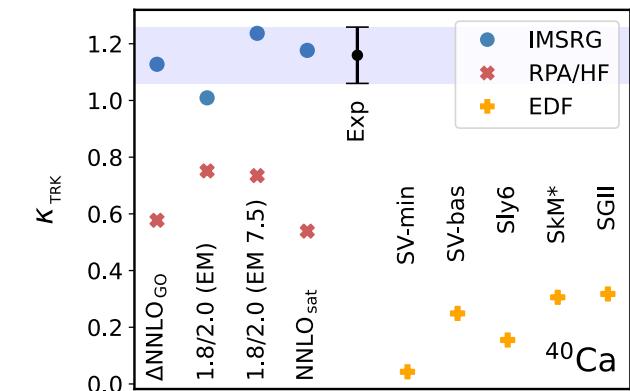
$$\approx 60 \frac{NZ}{A} (1 + \kappa) \text{ mb} \cdot \text{MeV}$$

TRK sum rule

$$\int_0^{E_{\text{max}}} \sigma(E) dE$$

Pion-production threshold

[Ahrens et al., NPA, 1975]



Comparison to **EDF** calculations
[Courtesy of P.-G. Reinhard]

Both needed for consistent description

- Ground-state **correlations**
- Commutator expression generates 2-body currents

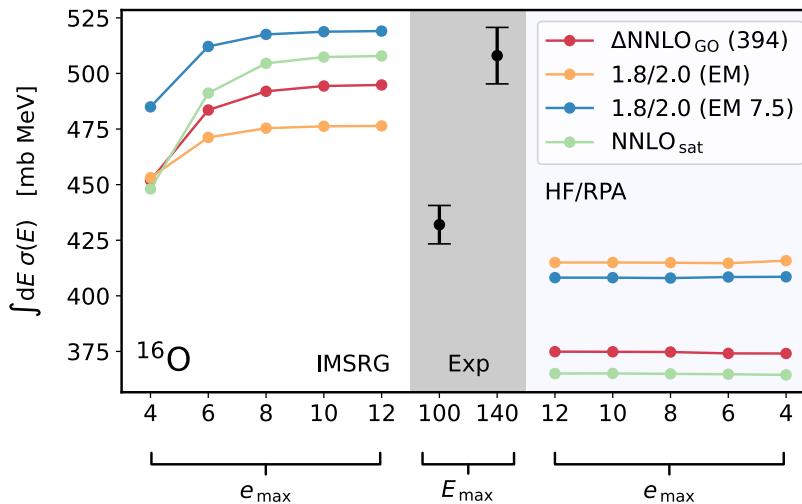
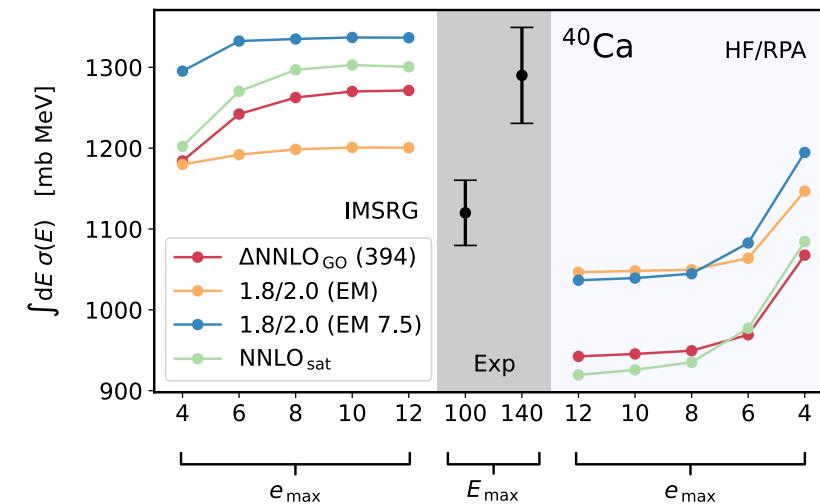
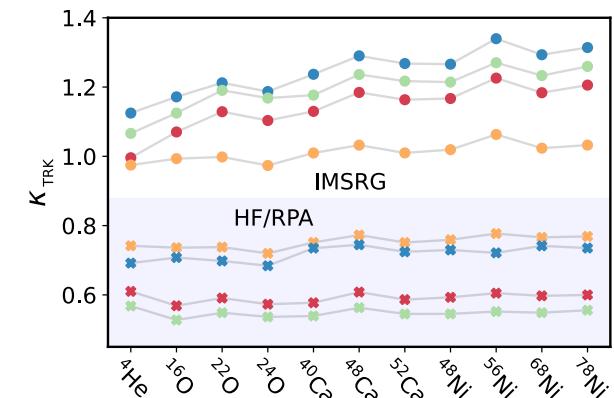
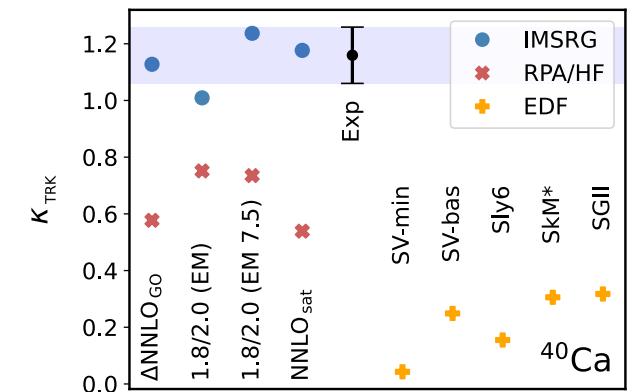
Photoabsorption cross section

Comparison to exp only makes sense for integrated quantities

$$\int_0^\infty \sigma(E) dE = \frac{2\pi^2}{\hbar c} \langle \Psi_0 | [D, [H, D]] | \Psi_0 \rangle = \frac{16\pi^3}{9} \alpha m_1(\text{IV1})$$

$$\approx 60 \frac{NZ}{A} (1 + \kappa) \text{ mb} \cdot \text{MeV}$$

TRK sum rule



Comparison to EDF calculations
[Courtesy of P.-G. Reinhard]

Both needed for consistent description

- Ground-state correlations
- Commutator expression generates 2-body currents

Outline

Introduction

- Physics case
- Quantities of interest

IMSRG multipole moments

- Strategy
- Model-space convergence
- Numerical results

New perspectives on the EOM

- Formal development
- Numerical results

Challenges and opportunities

From moments to response

Family of average energies

$$\bar{E}_k(Q) \equiv \frac{m_k(Q)}{m_{k-1}(Q)}$$

$$\tilde{E}_k(Q) \equiv \sqrt{\frac{m_k(Q)}{m_{k-2}(Q)}}$$

Series of **inequalities**

$$\dots \leq \sqrt{\frac{m_{k+1}}{m_{k-1}}} \leq \frac{m_{k+1}}{m_k} \leq \sqrt{\frac{m_{k+2}}{m_k}} \leq \frac{m_{k+2}}{m_{k+1}} \leq \dots$$

How to go from **average** to **exact** energies ?

Excitation operator approach

$$Q_\nu^\dagger |\Psi_0\rangle = |\Psi_\nu\rangle$$

Exact case: inequalities become **equalities**

$$\tilde{E}_k(Q_\nu^\dagger) = \bar{E}_k(Q_\nu^\dagger) = (E_\nu - E_0) = \omega_\nu \quad \forall k$$

Use this property to **determine** Q_ν^\dagger

Expand in a basis

$$Q_\nu^\dagger = \sum_{\alpha} X_\nu^\alpha q_\alpha^\dagger$$

$$\{q_\alpha^\dagger, \alpha = 1, \dots, N\}$$

Differentiate

$$\delta \tilde{E}_k(Q_\nu^\dagger) = 0$$

$$\delta \bar{E}_k(Q_\nu^\dagger) = 0$$

Family of variational equations

$$\delta m_k(Q_\nu^\dagger) - \tilde{E}_k^2(Q_\nu^\dagger) \delta m_{k-2}(Q_\nu^\dagger) = 0$$

$$\delta m_k(Q_\nu^\dagger) - \bar{E}_k(Q_\nu^\dagger) \delta m_{k-1}(Q_\nu^\dagger) = 0$$

Solutions converge in the full space

An Equation of Motion

Take $k=1$

$$\delta m_1(Q_\nu^\dagger) - \omega_\nu(Q_\nu^\dagger) \delta m_0(Q_\nu^\dagger) = 0$$

Where

$$M_{k,\alpha\beta} \equiv m_k(q_\alpha, q_\beta^\dagger)$$

$$m_k(q_\alpha, q_\beta^\dagger) = \sum_\nu (E_\nu - E_0)^k \langle \Psi_0 | q_\alpha | \Psi_\nu \rangle \langle \Psi_\nu | q_\beta^\dagger | \Psi_0 \rangle$$

In this case

$$m_1(q_\alpha, q_\beta^\dagger) = \langle \Psi_0 | q_\alpha [H, q_\beta^\dagger] | \Psi_0 \rangle$$

$$m_0(q_\alpha, q_\beta^\dagger) = \langle \Psi_0 | q_\alpha q_\beta^\dagger | \Psi_0 \rangle$$

$$\sum_\beta [M_{1,\alpha\beta} - \omega_\nu M_{0,\alpha\beta}] X_\nu^\beta = 0$$

Generalised eigenvalue problem
(GCM-like equation but in an operator space)

Strictly equivalent to the EOM (Rowe)

$K=3$ returns the RPA equations

[PG Reinhard et al., PRA 41 (1990) 10, 5568]

Theoretical comparison

17

	Hamiltonian	Ground state $ \Psi_0\rangle$	Excited states $ \Psi_n\rangle$
This work	H	$ \Phi(s)\rangle = U^\dagger(s) \Phi\rangle$	$\sum_{ab} X^{ab} c_a^\dagger c_b \Phi(s)\rangle$
EOM-IMSRG	$H(s) = U(s) H U^\dagger(s)$	$ \Phi\rangle$	$\sum_{php'h'} X^{php'h'} c_{p'}^\dagger c_{h'} c_p^\dagger c_h \Phi\rangle$
EOM-CC	$\bar{H} = e^{-T} H e^T$	$ \Phi\rangle$	$\sum_{php'h'} X^{php'h'} c_{p'}^\dagger c_{h'} c_p^\dagger c_h \Phi\rangle$

The method is exact in the full space

Approximations introduced here:

- IMSRG(2) ground state
- One-body operator space

Physical motivation

Excitations MUST be mostly 1B
(e.g. electromagnetic)

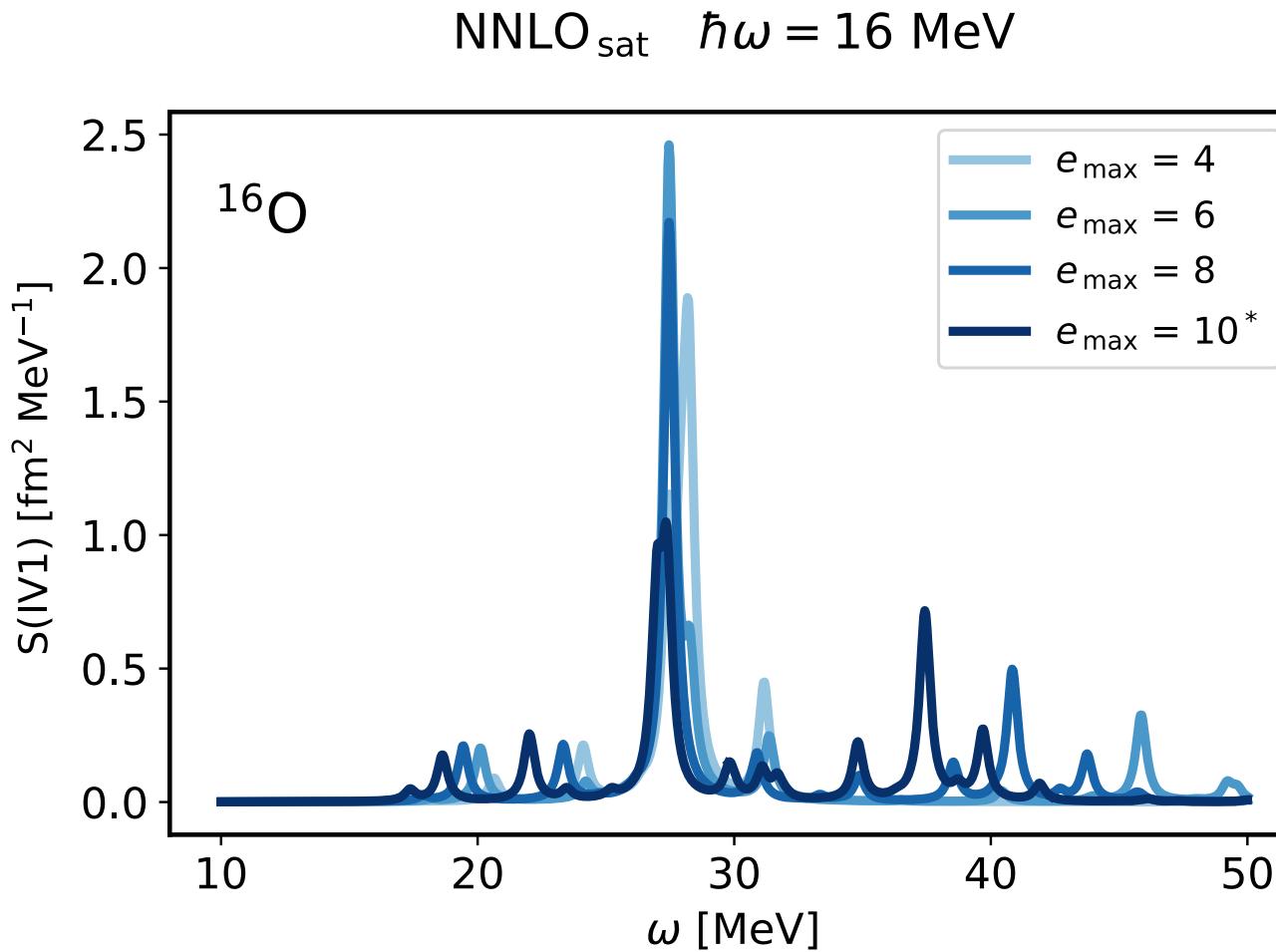
N.B.: 1B wrt correlated GS

Sum rules are exhausted by the 1B space
Independently on the chosen GS

Easier interpretation of approx. levels

Dipole response (preliminary)

18



Basis size for 1⁻ response

e_{max}	# of states
4	66
6	180
8	380

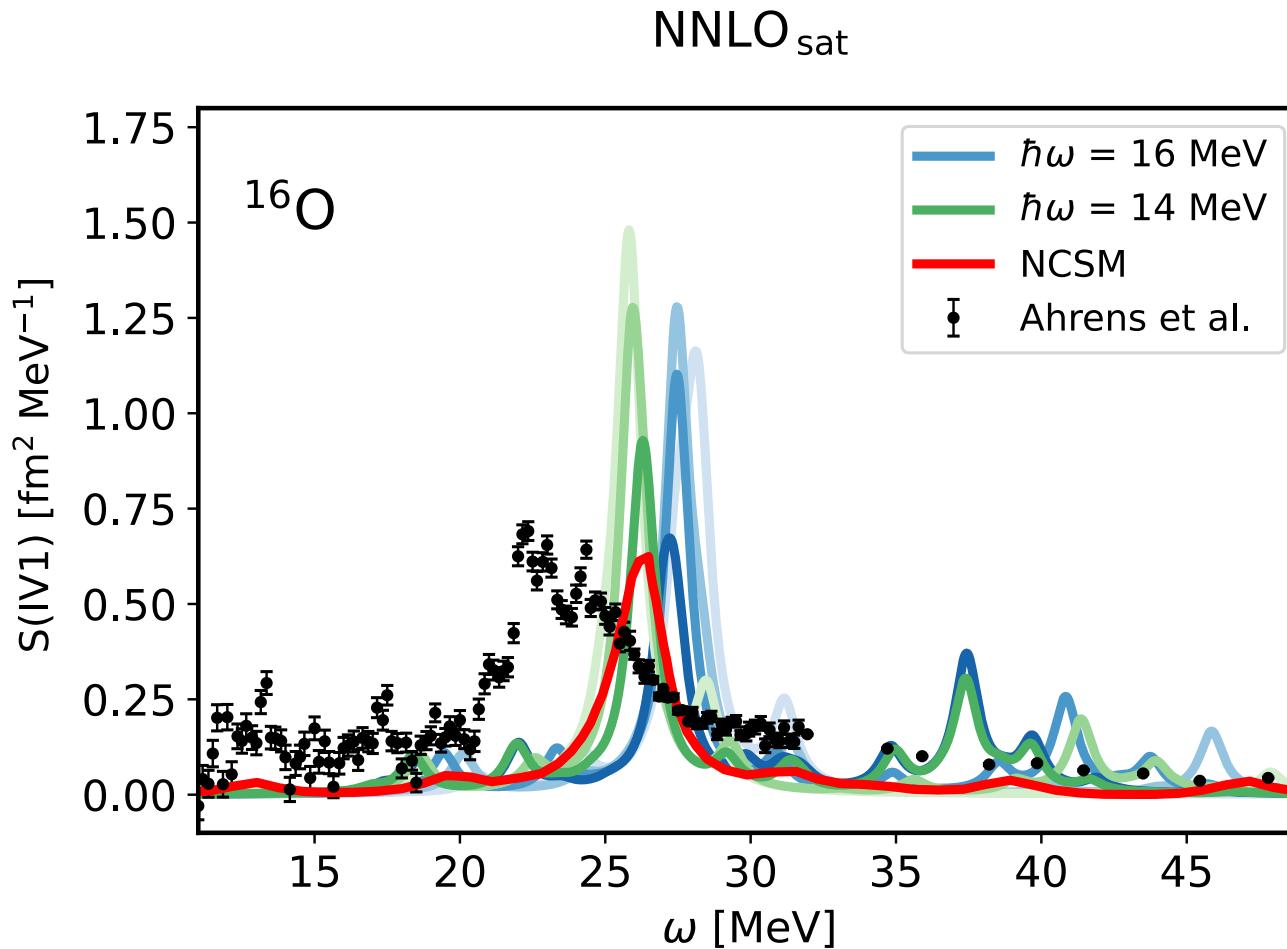
Good e_{max} convergence (GR)

Energy-based truncation for large spaces

Larger spaces affordable with truncations

Dipole response (preliminary)

19



Small residual frequency dependence

Constraints on converged value

Energy too high wrt experiment

Agreement with NCSM

[Stumpf, Wolfgruber and Roth, arXiv:1709.06840v1]

NNLO_{sat} [Ekström et al, PRC 91(5), 051301, 2015]

Outline

Introduction

- Physics case
- Quantities of interest

IMSRG multipole moments

- Strategy
- Model-space convergence
- Numerical results

New perspectives on the EOM

- Formal development
- Numerical results

Challenges and opportunities

Challenges and opportunities

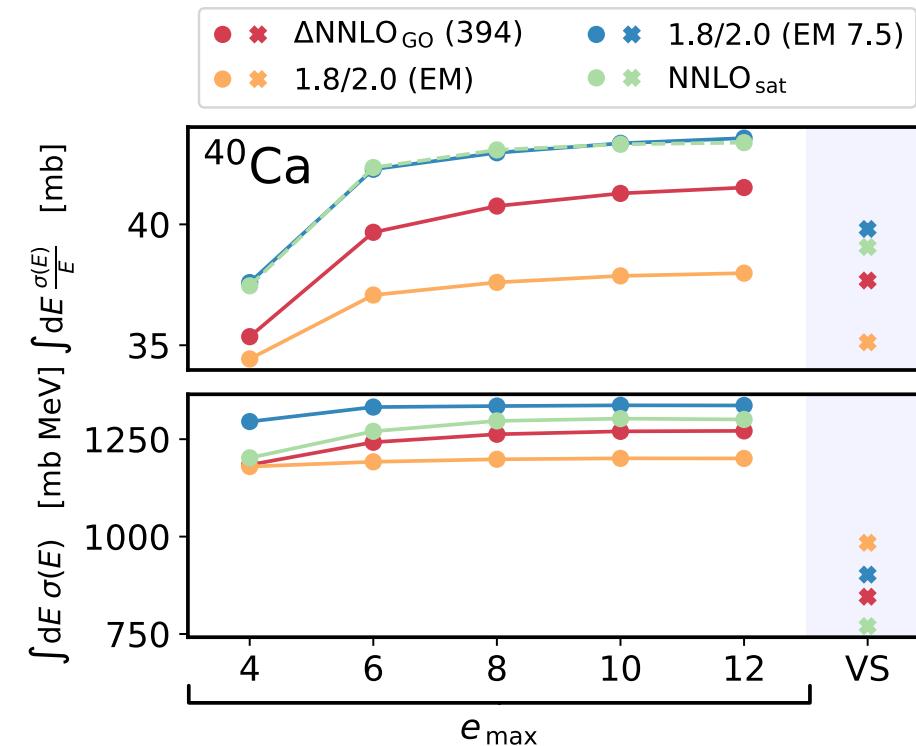
Going open-shell (moments)

Comparison to **VS** calculation for ^{40}Ca with ^{28}Si core

- Large **uncertainties** for m_1 and m_0
- Two-step decoupling
- Is the core well described ? (deformation)

Other possibilities within the IMSRG

- **Multi-reference** formulation
- **Symmetry-breaking** calculations



Response

- No limitation on the **GS** many-body method of choice
- Further efforts for **model-space convergence**
- Comparison to existing methods (**EOM**, **LIT** etc.)
- May be useful for a better understanding of **H** properties