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Nuclear spectroscopy

Dual nature of nucleus

Response function
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[Pictures from Dytrych et al,, PRL, 2020]



Studied quantity: multipole response Exact implementation up to m;
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Ab initio calculations of moment operators
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We develop a framework that allows us to calculate integrated properties of the nuclear response from
first principles. Using the ab initio in-medium similarity renormalization group (IMSRG), we calculate the
expectation values of moment operators that are linked to the multipole response of nuclei. This approach is
applied to the isoscalar mono- and quadrupole as well as the isovector dipole response of closed-shell nuclei
from “He to "®Ni for different chiral two- and three-nucleon interactions. We find that the inclusion of many-body
correlations in the nuclear ground state significantly impacts the multipole response when going from the
random-phase approximation to the IMSRG level. Our IMSRG calculations lead to an improved description
of experimental data in '°0 and “’Ca, including a good reproduction of the Thomas-Reiche-Kuhn enhancement
factor. These findings highlight the utility of the moment method as a benchmark for other ab initio approaches
that describe nuclear response functions through the explicit treatment of excited states.
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Strategy in the IMSRG framework

HF

Unitary transformation

H(s) =U(s)HU'(s)
= H4(s) + H°Y — HY(0)

Diagonal Off-diagonal

AN
By = lim Eo(s) = (®|H(s)|®) s . i
S— OO ‘ i
&* Slater determinant -

Steps
« Start from the moment operator in the HO basis
 Perform an IMSRG(2) calculation

«  Evolve moment operators using Magnus .
Ul(s) = S

Benchmarks

) [Tsukiyama, Bogner and Schwenk, PRL, 2011]
* HF value of mj against TDA

. . [Hergert, Bogner, Morris, Schwenk,
HF value of m; against RPA Tsukiyama, Phys. Rept., 2016]
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Mo(@3) = 37 (-1)"@x Qs
Mi(@3) = 5 31 @r e [H, Q]

J-scheme expressions of mg and m;
[Lu and Johnson, PRC 97 (2018) 3, 034330]

Implemented within imsrg++ code

[github.com/ragnarstroberg/imsrg]



Model-space convergence
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Oth quadrupole moment Model-independent deformation «measure»

mo(Q2) = (Q2 - Q2) B2 = in (@ Qo)

— 37’8 A5/3 Higher invariants also fundamental
[Poves et al., PRC 101 (2020) 054307]
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Photoabsorption cross section

Comparison to exp only makes sense for integrated quantities
Pion-production threshold
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Both needed for consistent description

« Ground-state correlations

« Commutator expression generates 2-body currents



Photoabsorption cross section

Comparison to exp only makes sense for integrated quantities
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From moments to response

Family of average energies Series of inequalities
k(Q):mk (Q) [m m m m
—1 < k+1§ k—i—lg k—|—2§ k—|—2§“.
mrg—1 mg mg MEg+1
mi(Q)

How to go from average to exact energies ?

Excitation operator approach Exact case: inequalities beocme equalities
QY [Wo) = |0,) Ex(Q)) = Er(Q)) = (BEy — Eo) =w, Vk
Use this property to determine Q,t
Expand in a basis Differentiate Family of variational equations
N i B _ B2(Of ) —
QL= X2l SEL(QF) = 0 5mk(Q?) Ek(Q?)dmk—Q(QI;) 0
o [ Ty — 5mk(Qy) _ Ek(Qy)5mk—1(Qy) =0
{¢, a=1,..,N} 0Bk(Q,) =0

Solutions converge in the full space



An Equation of Motion -

Take k=1
S (@) — i, (Q})5mo(QF) = 0 D My, ap — wuMo,ap] X =0
Where B

Mk, ag = Mk (4o, CJZ;)

Generalised eigenvalue problem
mi(dasah) = 3 (By — Bo)* (olgal¥,) (U, g} o) = #
v (GCM-like equation but in an operator space)

INn this case

ml(Qaaqg) — <\IJO‘QOA [H, qg]|\IjO>

mo(qa, q;) — <\I’0\qaqg\\lfo> Strictly equivalent to the EOM (Rowe)

K=3 returns the RPA equations

[PG Reinhard et al., PRA 41 (1990) 10, 5568]
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Hamiltonian Ground state |Ug) Excited states |¥,,)

This work H D (5)) = UT(s)|P) S Xl | ®(s))
EOM-IMSRG  H(s) = U(s)HU'(s) D) > phrir XM T epiche, | @)
EOM-CC H=e¢THel D) D ol b Xphp/h/c;,ch/c;gch D)

The method is exact in the full space
Approximations introduced here:

Physical motivation N.B.: 1B wrt correlated GS
IMSRG(2) ground state

Excitations MUST be mostly 1B
One-body operator space _
(e.g. electromagnetic)

Sum rules are exhausted by the 1B space

Easier interpretation of approx. levels
Independently on the chosen GS



Dipole response (preliminary)
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Basis size for 1- response

€, ax # of states
4 66
6 180
8 380

Good enax convergence (GR)
Energy-based truncation for large spaces

Larger spaces affordable with truncations

NNLO.., [Ekstrém et al, PRC 91(5), 051301, 2015]



Dipole response (preliminary)

S(IV1) [fm?2 MeV™1]
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Small residual frequency dependence

Constraints on converged value

Energy too high wrt experiment

Agreement with NCSM
[Stumpf, Wolfgruber and Roth, arXiv:1709.06840V]1]

NNLO.., [Ekstrém et al, PRC 91(5), 051301, 2015]
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Going open-shell (moments)

Comparison to VS calculation for 49Ca with 28Sij core

o
 Large uncertainties for m;and mg F 40 -
« Two-step decoupling im
« Isthe core well described ? (deformation) g 3>
Other possibilities within the IMSRG -E 12501
«  Multi-reference formulation ; 1000 -
«  Symmetry-breaking calculations E 750

Response

* No limitation on the CS many-body method of choice
* Further efforts for model-space convergence
« Comparison to existing methods (EOM, LIT etc.)

« May be useful for a better understanding of H properties
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k4
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e max
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