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1) Ingredients: nuclear DFT, empirical calibration, observables
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Nuclar DFT models (zero range, non-relativistic)
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pairing density
spin-orbit density
kinetic density
density, ρ0/1 = ρn ± ρp

variational formulation on the basis of a given energy functional (time even part only)

Etot = Ekin +

∫
d3r Emodel(ρ0, ρ1, τ0, τ1,J0,J1, ρ̃p, ρ̃n) + ECoulomb − Ec.m.−Erot−Ecorr

Emodel = +C(ρ)
0 ρ0 ∗ ρ0 +C(ρ)

1 ρ1 ∗ ρ1 volume C(ρ)
0,1 dens.dep.

+C(∇)
0 ∇ρ0 ∗ ∇ρ0 +C(∇)

1 ∇ρ1 ∗ ∇ρ1 surface C(∇)
0 = C(∇)

0 (∇ρ0)

+C(τ)
0 ρ0 ∗ τ0 +C(τ)

1 ρ1 ∗ τ1 kinetic
+C(ls)

0 ρ0 ∗ ∇J0 +C(ls)
1 ρ1 ∗ ∇J1 spin orbit

+C(pair)
p ρ̃p ∗ ρ̃p +C(pair)

n ρ̃n ∗ ρ̃n pairing

C(pair)
t = C(pair)

t,0 + C(pair)
t,1 ρ0 + C(pair)

t,∇ (∇ρ0)2︸ ︷︷ ︸
Fayans

relativistic mean-field (RMF): zero range ≡ point coupling→ RMF-PC
finite range→ dens.dep. meson coupling RMF-DD

=⇒: typically 11–15 model parameters ↔ tuned to empirical data ↪→
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Strategy for adjusting the model parameters to phenomenological data

objective function:

χ2(θ) =
∑

d∈{data}

(y (th)
d (θ)− y (exp)

d )2

δy2
d

theoretical model:
parameters θ = (θ1...θNp )

⇒ observables y (th)(θ)
? ?

?

pool of fit data:
y(exp) = (y (exp)

1 ...y (exp)
nd

)

minimal χ2: best fit θ0 −→ predictions y (th)
n (θ0)

vicinity θ0: statistical interpretation p(θ) ∝ e−χ
2(θ) ≡ probability distribution

⇒ variances (≡ from leeway of model parameters)
covariances ≡ Coeff. of Determination (CoD) , sensitivity analysis

error propagation: from residuals of EB , rC , ... using Bayesian calculus
−→ typically factor 2 larger than from statistical analysis
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Observables from charge density ρC(r) & formfactor F (q)

Muonic atoms: quality source for Barrett radius 〈r k e−αr 〉 model−→ rms radius rC

Optical methods: high precision for isotopic r 2
C differences (soon also: r 4

C)

Charge formfactor from electron scattering:
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low q (< 2/fm)
free from correlations
=⇒ safe in DFT

=⇒ form parameters
rC, Rbox, σC, halo

involved exp. analysis
=⇒
robust for stable nucl.
unsafe isotopic diff.
no exotic nuclei yet

FC =
∑
t=p,n

(
Ft ∗ gt + Fls,t ∗ gmag,t

)
, g = nucleon intrinsic formf., F from mean field calc.
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“Standard” fit data – ground state properties (Klüpfel et al, PRC 79 (2009) 034310)
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2) Achievements: energies and charge formfactors
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Global quality of DFT fits (in terms of rms residuals)
3 different DFT functionals: Skyrme & Fayans, relativistic point-coupling (RMF-PC)
all fitted to the same “standard” data
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comparable (high) quality of nuclear bulk prop. - in spite of different density dependence

RMF-PC less flexible in describing formfactor parameters (reason ???)
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Extrapolation to symmetric nuclear matter properties (NMP)
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the two non-relativistic models (Skyrme & Fayans) make similar predictions

the relativistic RMF-PC model predicts substantially different NMP

←→ effective masses m∗/m and κTRK make the major difference

RMF↔ non-relativistic: similar for stable nuclei, different for super-heavy elements
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Multiple Correlation Coefficients (MCC) with radii in 208Pb
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rrms,C&Rbox very similar↔ mostly bulk binding, some l∗s, also some pairing
σC ↔ incompressibility K & surface, some isovector (symmetry energy)
neutron skin rrms,n − rrms,p ↔ 99% isovector, also some surface
note: for Skyrme fit without radius information (rrms,C , Rbox,C , σC )!
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Information from differences of bulk observables

Differences of observables yield new information, other than the observables as such:

energy difference: .
separation energy↔ Fermi energy.

3. energy difference (odd-even energy staggering): .
∆

(3)
p ↔ proton pairing, ∆

(3)
n ↔ neutron pairing.

neutron-proton radius difference (skin): .
explores predominantly symmetry energy (↪→)

isotopic radius difference: .
pairing, spin-orbit, surface structure (depending on nucleus) ↪→

radius odd-even staggering: .
pairing surface energy ↪→
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Radius differences: isotopic trend δr2
C and odd-even staggering
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fit to bulk data (Skyrme SV-min) fails in predicting isotopic trends of radii
fit of Skyrme functional to δrC extended data =⇒ impossible to meet the trends

Fayans: gradient in pairing ∝ ρ̃2(∇ρ0)2 & in surface term =⇒ trends well reproduced
=⇒ new data force extension of the functional and help model development
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3) Open ends: homework problems and perspectives
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3) Open ends: problems and promising perspectives
Neutron radius rn: .

from APV (CREX/PREX)& polarizability αD ⇒ conflicting data

Binding energies EB of super-heavy elements: .
Skyrme under-estimates EB ↔ RMF over-estimates EB ,
but energy differences (S2n/2p, Qα) well predicted

Giant dipole resonance (GDR): .
EGDR in heavy nuclei o.k., but trend EGDR(Z ,N) toward light nuclei wrong.

Low-lying collective modes, fission: .
Large span of predictions −→ use data for model development? (pairing)

Structure of functionals: .
finite-range attractive term from explicit pion-exchange
⇒ degrades surface thickness σC

Fourth moment of charge radius rC,4: .
Quality data expected soon←→ rC,4 highly correlated with σC

⇒ surface thickness for unstable elements.
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Compatibility of APV measurements in 208Pb and 48Ca
APV = parity violating asymmetry, from high-E polarized electron scattering
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attempt to fit additionally both APV does not work
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Extrapolations to super-heavy elements
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Problem with reproducing trends of GDR with A
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Next steps in Fayans model development
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Finite-range functionals (long-range pion contribution from chiral L)
add pion-term to Skyrme DFT, readjust Skyrme parameters (coop. L. Zurek, A. Schwenk)
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Fourth moment of charge radius rC,4 ←→ σC

Optical measurement + elaborate analysis =⇒ determine also r4 = (〈r 4
C〉/Z )1/4

Can rC&rC,4 predict σC? −→ multiple correlation analysis
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Conclusions
Nuclear DFT, calibration & statistical interpretation:

energy-density functionals −→ description of energies and densities
structure motivated by low-q expansion, parameters tuned to empirical data
χ2 fit & statistical analysis −→ predictions with error bands, correlations

Form parameters:
density −→ formfactor −→ rrms,Rbox , σ
charge formfactor FC(q)←− Fp(q),Fn(q),Fls,p(q),Fls,n(q)& nucleon formf.

Performance:
high quality bulk properties (EB, rrms,C,Rbox,C, σC) from 16O to actinides
radius differences δr2

C ↔ require Fayans functional ((∇ρ)2 in Epair&Esurf)
neutron skin↔ symmetry energy J,L

Future development:
neutron radius (PREX/CREX),EB in super-heavy elements, trend of GDR
use info from low-lying collective modes, fission (↔ pairing)
use info info from ab-initio models (finite range, density dependence, pairing)
upcoming information on 〈r4

C〉 ←→ σC , δσC in exotic nuclei

P.–G. Reinhard (Inst. Theor. Physics, Erlangen) Nuclear Density-Functional theory: achievements and open ends Hirschegg 2026 22 / 23



P.–G. Reinhard (Inst. Theor. Physics, Erlangen) Nuclear Density-Functional theory: achievements and open ends Hirschegg 2026 23 / 23


	Ingredients: nuclear DFT, empirical calibration, observables
	Achievements: energies and charge formfactors
	Open ends: homework problems and perspectives
	Conclusions

