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Neural Quantum States, Jacobi-Pfaffian

The MPNN Architecture - Message Passing Neural Network

architecture - creates antisymmetrized descriptors of particle location

that are already well processed by NNs.

Ψ(X) = eJ(X)ΦPJ(X)

ΦPJ(X) = pf(P ) ; pf2(P ) = Det(P )

P ≡



0 ϕ(x1, x2) · · · ϕ(x1, xN )

−ϕ(x2, x1) 0 · · · ϕ(x2, xN )

...
...

. . .
...

−ϕ(xN , x1) −ϕ(xN , x2) · · · 0



J. Kim, G. Pescia, B. Fore, N. Nys, G. Carleo, S. Gandolfi, M. Hjorth-Jensen, and
A. Lovato, Communications Physics 7, 148 (2024)

Nir Barnea (HUJI) 3 / 23



Neural Quantum States, Jacobi-Pfaffian

The MPNN Architecture - Message Passing Neural Network

architecture - creates antisymmetrized descriptors of particle location

that are already well processed by NNs.

Ψ(X) = eJ(X)ΦPJ(X)

ΦPJ(X) = pf(P ) ; pf2(P ) = Det(P )

P ≡



0 ϕ(x1, x2) · · · ϕ(x1, xN )

−ϕ(x2, x1) 0 · · · ϕ(x2, xN )

...
...

. . .
...

−ϕ(xN , x1) −ϕ(xN , x2) · · · 0



J. Kim, G. Pescia, B. Fore, N. Nys, G. Carleo, S. Gandolfi, M. Hjorth-Jensen, and
A. Lovato, Communications Physics 7, 148 (2024)

Nir Barnea (HUJI) 3 / 23



Neural Quantum States, Hidden nucleons

A prominent example of an antisymmetric

wavefunction is the Hidden Nucleons

architecture. This extension of the slater

determinant allows much more flexibility.

ΨHN (X) ≡

∣∣∣∣∣∣∣
ϕv(X) χv(Xh)

χh(X) Jh(Xh)

∣∣∣∣∣∣∣ ,
Flexibility can be enhanced by

incorporating a symmetric Jastrow like

terms.

A. Lovato et al., Phys. Rev. R
4, 043178 (2022)

A. Lovato et al. (2024)
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Neural Quantum State (NQS) Codes (ChatGPT)

General-purpose NQS / VMC frameworks

NetKet (Python, JAX)

Spin, Bose/Fermi; RBM, CNN, scalable VMC

NeuralQuantumStates.jl (Julia)

Early Julia-based NQS; pedagogical and research-oriented

Quantum chemistry–focused NQS

PauliNet (Python, PyTorch)

Fermi w.f. with explicit physical priors (Slater, Jastrow)

FermiNet (Python, JAX)

Electronic structure

DeepErwin (Python, TensorFlow/JAX)

Deep-learning-based variational ansatz for molecules

Hybrid quantum / differentiable programming libraries

PennyLane (Python)

NQS-like variational w.f. and differentiable quantum models

TorchQuantum (Python, PyTorch)

Neural-network-driven quantum state representations
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What about
reactions?
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The Response function

The EW interaction Hamiltonian: ĤEW =

∫
dxÂµ(x)Ĵ

µ(x)

Example - the photo-absorption cross-section

σ(ω) = 4π2αω
∑
J

[REJ
(ω) +RMJ

(ω)]

Sonia BaccaJuly 7th 2015 19

The Continuum Problem
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Exact knowledge limited in
energy and mass number

Lorentz Integral Transform        Reduce the continuum problem to a bound-state-like equation
Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 

Wednesday, 8 July, 15

RΘ(ω) =
∑∫
f

|⟨Ψf |Θ̂|Ψ0⟩|2δ(Ef − E0 − ω)
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The Lorentz Integral Transform

(LIT)



The Lorentz Integral Transform method

Response in continuum

R(ω) =
∑∫
f

|⟨Ψf |Θ̂|Ψ0⟩|2δ(Ef −E0−ω)

Lorentz integral transform (LIT) method

L(σ,Γ) =
∫

dω
R(ω)

(σ − ω)2 + Γ2
= ⟨Ψ̃|Ψ̃⟩

The LIT equation

(H − E0 − σ + iΓ)|Ψ̃⟩ = Θ̂|Ψ0⟩

V. Efros, W. Leidemann, G.
Orlandini, PLB 238, 130

(1994)

The LIT:

The LIT equation is a Schrödinger equation with a source

|Ψ̃⟩ has bound-state asymptotic behavior

R(ω) is obtained inverting the LIT
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Example - Electron scattering

The CC-LIT method
Longitudinal response of 40Ca

J. E. Sobczyk, B. Acharya, S. Bacca, and G. Hagen
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Few LIT Lemmas

The LIT variational principle

The convergence lemma

The HLIT ground state gap

The fidelity and the accuracy of the LIT
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The LIT variational principle

The LIT equation

(Ĥ − z)|Ψ̃⟩ = |R⟩ ; |R⟩ ≡ Θ̂|Ψ0⟩,

Here z = E0 + σ − iΓ.

Lemma:

The solution Ψ̃ is unique, and minimizes the functional

I[Ψ̃] =
∣∣(Ĥ − z)|Ψ̃⟩ − |R⟩

∣∣2
Proof:

If |Ψ̃0⟩ is the exact LIT WF then I[Ψ̃0] = 0.

Otherwise, for |Ψ̃⟩ = |Ψ̃0 + δΨ̃⟩ one has

I[Ψ̃] =
∣∣(Ĥ − z)|Ψ̃0 + δΨ̃⟩ − |R⟩

∣∣2
= |(Ĥ − z)|δΨ̃⟩|2 ≥ Γ2⟨δΨ̃|δΨ̃⟩|2 ≥ 0.

V. Efros, W. Leidemann, and G .Orlandini, PLB 238, 130 (1994).

Nir Barnea (HUJI) 11 / 23



The convergence lemma

Lemma: The relative accuracy of the LIT function L is given by

∣∣∣∣∆L
L

∣∣∣∣ = O


√
I[Ψ̃]

Γ
√
L

 ; ∆L = ⟨Ψ̃|Ψ̃⟩ − ⟨Ψ̃0|Ψ̃0⟩

In the limit Γ → 0, σ ≈ ω, and L → (π/Γ)R,

Hence, we may further suggest that

∣∣∣∣∆R
R

∣∣∣∣ = O

√
I[Ψ̃]

ΓR


Implication:

For a desired relative accuracy in R, we need to calculate I with a

precision proportional to Γ.
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The LIT Hamiltonian

Given the LIT equation

(Ĥ − z)|Ψ̃⟩ = |R⟩ ; |R⟩ ≡ Θ̂|Ψ0⟩,

we introduce the LIT Hamiltonian:

HLIT ≡ (Ĥ − z∗)(1− P̂R)(Ĥ − z) ; P̂R =
|R⟩⟨R|
⟨R|R⟩

Observations:

HLIT is Hermitian

The LIT w.f. |Ψ̃⟩ minimizes HLIT

|Ψ̃⟩ is the zero energy eigenstates of HLIT

The spectrum of HLIT has a gap above the ground state.
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FIDELITY and the LIT accuracy

The Lorentz Integral Transform is obtained from the solution of the

inhomogeneous equation:

(Ĥ − z) |Ψ̃⟩︸ ︷︷ ︸
|L⟩

= Ô |Ψ0⟩︸ ︷︷ ︸
|R⟩

We solve the LIT equation maximizing the FIDELITY

F =
⟨L|R⟩⟨R|L⟩
⟨L|L⟩⟨R|R⟩

Upper bounds on the LIT uncertainty:

∆L(ω0,Γ) ≤ D N−1||R⟩|
Γ

√
1−F
F

,

where

D = min
( ∣∣∣(1− PR)|Ψ̃⟩

∣∣∣ , ∣∣∣(1− PR)
H√

σ2 + Γ2
|Ψ̃⟩

∣∣∣)
Nir Barnea (HUJI) 14 / 23



NNLIT



The NNLIT method, E. Parnas, et al. (PRL 2026)

Key Idea:

A variational Monte Carlo framework to compute dynamical nuclear

response functions

Neural-network quantum states (NQS)

Lorentz Integral Transform (LIT)

Both ground state Ψ0 and LIT state Ψ̃ represented by NQS

Optimized via the neural net

Avoids explicit treatment of continuum states

Compact representation

Efficient scaling with particle number

Rigorous upper bounds for systematic errors derived

Nir Barnea (HUJI) 15 / 23



Deuteron LIT Benchmark
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NQS-EIHH 4He LIT Benchmark
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Deuteron photoabsorption, E. Parnas, et al. (PRL 2026)

Pionless EFT inspired potential [A]

Excellent accuracy at the LIT level

Inversion - Basis expansion + regulation, Maximum entropy

Error bars - sys+stat+inver
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[A] R. Schiavilla, et. al., Phys. Rev. C 103, 054003 (2021).
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4He photoabsorption cross-section σγ(ω)

σγ(ω) = 4π2αωRD1(ω)
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4He photoabsorption, E. Parnas, et al. (PRL 2026)

Pionless EFT inspired potential [A]

Comparison with highly accurate EIHH calculations

LIT reproduced at percent-level accuracy

Photoabsorption cross-section:

Good agreement with the experimental data
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Summary



Conclusions and Outlook

NQS+LIT provides an accurate and scalable framework for nuclear

responses

Robust propagation of statistical and systematic uncertainties

Successful description of 2H and 4He photoabsorption data

Outlook:

Extension to nuclei with A ≤ 20

Improved interactions (local χEFT)

Applications beyond nuclear physics (atoms, molecules)
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Thank you !
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