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The nuclear equation of state (EOS)
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From nucleons to neutron stars cs

= connect microscopic calculations of dense matter
to astrophysical observations
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The equation of state (EOS) is ... ) Rt ]
. . . from I. Svensson, M.
... given by pressure as a function of density Mendes, N. Rutherford

... key to neutron stars and mergers

= goal: provide microscopic information with quantified uncertainties

Hirschegg



EOS developments and uncertainties

= nucleonic matter results for different proton fractions (x) and temperatures (T)
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Keller et al., PRL (2023)
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= order-by-order corrections from effective field theory (EFT)
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= quantify truncation uncertainties with Gaussian processes (GP)

Drischler et al., PRC (2020)

goal: expand GP uncertainties to arbitrary x
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GP uncertainty quantification
following Melendez et al. PRC (2019)

= collection of random variables: f(x) ~ GP[m(x), x(x,x’; 6)]
» kernel: k(x,x’; 0) = % exp [—5(x — X')TL(x — X)]

= consider EFT expansion for observable

E0) = Ea0)| 3 c00) + 37 c(0a®)
i=0 i=k+1

known AE(x)

— reference energy E,¢ and expansion parameter Q = f\—z

= hyperparameters ¢, / are determined from expansion coefficients

4 TECHNISCHE
UNIVERSITAT
5 DARMSTADT

2D correlations
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Asymmetric matter
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application of GP 2D to finite proton-fraction results - together with Luis Hoff

= consider asymmetry (a = 1— 2x) in reference scale
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choices
= stationary kernel
= inverse y? prior for ¢2

= representative grid
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Asymmetric matter
comparison to GP 1D
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= pure neutron matter (PNM) bands are increased

E/A [MeV]

= symmetric nuclear matter (SNM) bands are decreased

— x-dependent reference scale counteracts this effect
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Neutron star matter

GP derivatives and uncertainty propagation —
B-equilibrium:

» constructed GP-2D kernel

— access uncertainties for arbitrary x " Hn=Hp+He,  Hviy =

— access thermodynamic quantities (P, u, ...) » Uy — Hp ~ KE/A
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— we provide the EOS of nuclear matter in -equilibrium with quantified chiral uncertainties
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EOS application

Neutron star crust - with Luis Hoff

= extending the EOS distribution to a lower density regime

challenge: = not only homogeneous matter anymore
= combining matter results with further conditions

method:
= providing P and u by GP-2D
= taking the limits of the 68% bands
= create continuous low density extension
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EOS application

Observation inference - together with Melissa Mendes and Isak Svensson
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= integration of the EOS bands in an inference framework to compare with observations

EOS model: combined chiral EFT constraints with crust and high density extensions (PP, CS)

observations: pulsar mass measurements, NICER, and LIGO/Virgo
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= Unphysical EOS limit

= create EOS samples from EFT band
= ensure the pressure to never decrease
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— posterior samples B
for the EOS in the =
mass-radius plane

P [MeV/fm®]

NULO \EFT < L5ng

100 200 o
€[MeV/fm?]
rschegg

January, 2026

11 12 13
R (k]

R [km)



Summary and outlook
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extension of the GP uncertainty quantification to finite x

accessing f-equilibrium and propagating uncertainties to other

thermodynamic quantities
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= application to crust extension and incorporation in astrophysical

inference framework

= extend the GP to finite temperature results

= consider further sources of uncertainties
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