
Quantifying uncertainties
for the nuclear equation of state in β -equilibrium

Hannah Göttling

in collaboration with Luis Hoff, Kai Hebeler and Achim Schwenk
arXiv:2512.19593

January, 2026 Hirschegg 0



The nuclear equation of state (EOS)
From nucleons to neutron stars

■ connect microscopic calculations of dense matter
to astrophysical observations
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The equation of state (EOS) is ...

... given by pressure as a function of density

... key to neutron stars and mergers

■ goal: provide microscopic information with quantified uncertainties
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EOS developments and uncertainties

■ nucleonic matter results for different proton fractions (x) and temperatures (T)

Keller et al., PRL (2023)
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■ order-by-order corrections from effective field theory (EFT)
■ quantify truncation uncertainties with Gaussian processes (GP)

Drischler et al., PRC (2020)

goal: expand GP uncertainties to arbitrary x
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GP uncertainty quantification
following Melendez et al. PRC (2019)

■ collection of random variables: f(x) ∼ GP[m(x), κ(x, x′; θ)]

■ kernel: κ(x, x′; θ) = c̄2 exp
[
− 1

2 (x− x′)TL(x− x′)
]

■ consider EFT expansion for observable

E(x) = Eref(x)
[∑k

i=0
ci(x)Qi(x)︸ ︷︷ ︸
known

+
∑∞

i=k+1
ci(x)Qi(x)︸ ︷︷ ︸

∆E(x)

]

→ reference energy Eref and expansion parameter Q = kF
Λb

2D correlations
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⇒ hyperparameters c̄2, ℓ are determined from expansion coefficients
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Asymmetric matter
application of GP 2D to finite proton-fraction results - together with Luis Hoff

■ consider asymmetry (α = 1− 2x) in reference scale
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Drischler et al., PRC (2020)
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■ stationary kernel

■ inverse χ2 prior for c̄2

■ representative grid
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Asymmetric matter
comparison to GP 1D

GP-1D: different c̄2 GP-ND: one c̄2
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■ pure neutron matter (PNM) bands are increased

■ symmetric nuclear matter (SNM) bands are decreased

→ x-dependent reference scale counteracts this effect
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Neutron star matter
GP derivatives and uncertainty propagation

■ constructed GP-2D kernel
→ access uncertainties for arbitrary x
→ access thermodynamic quantities (P, µ, ...)

β -equilibrium:

■ µn = µp + µe, µν ,ν̄ = 0

■ µn − µp ∼ ∂xE/A

0 0.1 0.2 0.3

n [fm−3]

0

10

20

30

40

E
/A

[M
eV

]

β-equilibriumNLO

N2LO

N3LO

0 0.1 0.2 0.3

n [fm−3]

0

5

10

15

20

P
[M

eV
fm
−

3
]

β-equilibriumNLO

N2LO

N3LO

0 0.1 0.2 0.3

n [fm−3]

0

0.02

0.04

0.06

0.08

x

NLO

N2LO

N3LO

→ we provide the EOS of nuclear matter in β -equilibrium with quantified chiral uncertainties
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EOS application
Neutron star crust - with Luis Hoff

■ extending the EOS distribution to a lower density regime

challenge: ■ not only homogeneous matter anymore
■ combining matter results with further conditions

method:
■ providing P and µ by GP-2D
■ taking the limits of the 68% bands
■ create continuous low density extension

■ phase coexistence allowing proton drip in all scenarios
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EOS application
Observation inference - together with Melissa Mendes and Isak Svensson

■ integration of the EOS bands in an inference framework to compare with observations

EOS model: combined chiral EFT constraints with crust and high density extensions (PP, CS)
observations: pulsar mass measurements, NICER, and LIGO/Virgo

■ create EOS samples from EFT band
■ ensure the pressure to never decrease

→ posterior samples
for the EOS in the
mass-radius plane
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Summary and outlook

■ extension of the GP uncertainty quantification to finite x

■ accessing β -equilibrium and propagating uncertainties to other
thermodynamic quantities
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■ application to crust extension and incorporation in astrophysical
inference framework

■ extend the GP to finite temperature results

■ consider further sources of uncertainties
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