Description of 4n halo nuclei
and their decay
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Introduction

Non-relativistic Collisions How to take care of the boundary condition?
* In configuration space wave v' Conceptual difficulties to uncouple
functions extend to infinity! different particle channel, to constrain

. | inol | toti assymptotes of the solutions in all
nereasingly compiex asymptotic directions and thus get unique (physical)

behaviour for A>2 systemsl! solution to the Schrodinger eq.

(%

® * ltis ok, as long as there is single
particle channel (elastic plus

®: target/projectile excitations)

* Mathematically lll-conditioned
problem when several particle
channels are open

6

v' Faddeev-Yakubovsky equations efficiently
separates asymptotes of the binary
channels

L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960). [Sov. Phys. JETP 12, 1014(1961)].
O. A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967).
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Faddeev-Yakubovski eq. (5-body example)

Ti2.3

(E— Hp — Vi2) Kilz,s = Vip ("Cfs,e + J'633,1 + K734+ }ng,4+}6r‘l’3,4 + }C%S,ri
+T13.4 + T23 4
+HP3 + His + Sis + Soy + Fis + Fos
(E—Ho—Vio)Hls = Via (Hi] +"C34,1 + }Céai,ﬁ + K§4,1+K§4,2
+T34,1 + Ta4,2)
(FE—Ho—Vi2)Tios = Via(Tiz2+ 753 1
+HS + Has + S5+ Sas + Fis + Fa3)
(E—Ho—Vi12)Sis = Via(Fii +5§§’ + 335?
FFS 4 F
+HAE +H
(E—Ho—Vig) Fis = Via(Sii+ "'634,5 + K%a,ﬁ + T34,5)
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Faddeev-Yakubovski eq. (5-body example)

4

Kias
Merits:
v" Handling of symmetries
v" Boundary conditions for binary channels  Problem  Number eq. Number eq.  First

. . (identical (different solution
v Reduction to subsystems, teir full control particles) particles)  (Year)
v" Multipile ways to handle problem of A=2 1 1
resonant states (scattering, CS, ACCC..) A=3 ! 3 1973

A=4 2 18 1984
Price A=5 5 180 2015
v : : . CUAS T T T T T T T 700 T T T T T T
Overcomplexity with A!l AN T A NI - 1)

i (n/z)N.) }' JN-1
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String Theorists Accidentally Find a New
Formula for Pi

Two physicists have come across infinitely many novel equations for pi while

trying to develop a unifying theory of the fundamental forces

String Theory Unravels New Pi Formula: A
Quantum Leap in Mathematics

BY INDIAN INSTITUTE OF SCIENCE (1ISC) ~ JUNE20,2024 ) 1COMMENT ( 5 MINS READ

STRING
THEORY,

la physique des particules. C'est pourquoi se lancer dans la théorie des corde
une entrée facile pour un étudiant, les mathématiques
—v

string Theorists Have Calculated the Value of Pi

’D Sabine Hossentelder & . @
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v 19 2404879675441 3.1415926537
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Complicate structure of He isotopes
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Complicate structure of He isotopes

“He-n atypical case:
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Struggles with a model

* There exist several 2-body models for a-n interaction

* Major difference how to account for repulsion produced by Pauli 4He(0+)
principle, leading to repulsive S-wave 0
* Local pot: J.M. Bang and C. Gignoux, Nucl. Phys. A313, 119 (1979) — produces a deep
V(r) = VCT_R (L) 4 VS?_R : (6 parameters)
[1+exp(a—cc)] r o dr [1+eXp(Tso)] _0) B2} |
°He(0")
Spurious S-wave state: -9.84 MeV - +o0
T T S ——
8He(01)
p E (MeV)
1Py 0 O o O v

oXe)
1p;, 0000 ©00O0O

1S, o @ o0
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Struggles with a model

* There exist several 2-body models for a-n interaction

principle, leading to repulsive S-wave

S-wave state; 6 parameters

Local pot: J.M. Bang and C. Gignoux, Nucl. Phys. A313, 119 (1979) — produces a deep

KKNN: H. Kanada et al., PTP 61, 1327(1979); In S-wave a 2S; HO state is eliminated (OCI\/I}O_973

Major difference how to account for repulsion produced by Pauli

*He(01)

* Fish-bone: E. Smith, R. Woodhouse, and Z.Py, Phys. Rev. C 86, 067001(2012) ; 6He(0+)
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Struggles with a model

* There exist several 2-body models for a-n interaction
* Major difference how to account for repulsion produced by Pauli ~___________

.. . . 1 .
principle, leading to repulsive S-wave 4He(OJ’) | .
1
Bang/Gignoux Repulsive S wave Not bound
_0.973 s
Excluding S wave -0.199 6]—[3(()"‘)
KKNN OCM -0.755*
Papp Fish-bone -0.171
Exp. -0.973
Av18 for nn interaction 11 |beccccooaoce
JM. Bang and C. Gignoux, Nucl. Phys. A313, 119 (1979) 8He (0+)
H. Kanada et al., PTP 61, 1327(1979); *less accurate description of Nou data
E. Smith, R. Woodhouse, and Z. Papp, Phys. Rev. C 86, 067001(2012)
E (MeV)
v
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Struggles with a model

* There exist several 2-body models for a-n interaction
* Major difference how to account for repulsion produced by Pauli |
principle, leading to repulsive S-wave 4He(OJ’) : i

 Conventional way to improve description of He-isotopes introduce [ 7777

T (a-n-n) 3-body force, but...

E. Garrido, D.V. Fedorov , and A.S. Jensen, Eur. Phys. J. A 25, 365-378 (2006973 [~~~ =~
°He(0*
M.D. Higgins, C. H. Greene, Phys. Rev. C 111, 014001 (2025) e( )

RESONANCES AND COLLISIONAL PROPERTIES OF ...

TABLE III. Parameters for the spin-dependent three-body
interaction between the “He —nn triad. Note that 7,'' = 1/ /& and

= 1/ B,

2 N Singlet interaction 3.1 F-- -8 _______
Properties of "He(0™) state - Vi [Mev] o [fm] pyT He(01)
m=1 —20.8792 247917 7.66667
m=2 12.0000 4.50000 7.00000
KKNN 0.755 2.73 1.89 Triplet interaction
- Vil [MeV] r, 11 [fim] ro1) [fim] E (MeV)
Exp. 0973  29(1) 188 !
m=1 ~5.08000 2.50000 £.00000
S.C. Pieper et al., Phys. Rev. C 64, 014001(2001)
1S, o @ o0
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Struggles with a model

There exist several 2-body models for a-n interaction
* Major difference hox to account for repulsion produced by Pauli

____________

principle, leading to repulsive S-wave 4He(OJ’) : :
1
* Nevertheless. when combined with realistic nn interactions,
_0.973 .........6.. .................
| He(01)
— 2P3 - - .
100- T isotopes introduce
orce, but...
1sen, Eur. Phys. J. A 25, 365—378 (2005)
- 50 - = I 7. C 111, 014001 (2025)
@) — 2P1 : ’ e T [ PSSR
) : states, simple Yukawa 8He(01)
©
A 0 -
Ze)
S _ E (MeV)
— This work === 231 v
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Struggles with a model

How to resolve underbinding problem in a-n-n models? 0
* Ease projection of the deep (a-n) spurious states
In OCM deep states are projected to E(c-n)=+00 T
e — 3
. . 6
Energies relativeto ~He (07) -10.7 -------3-1-_;---2 H
threshold! VS +
Model E(®He(2%)) E(E("He(3/27)) E(BHe(0")
oae JSTR> M ey MeV MeV
®He(0%)
KKNN 2.71 0.91-0.09i 0.315(5)-0.035(1)i  -2.98
Papp 2.88 0.82-0.10i 0.35(1)-0.041(1)i  -2.96 8.3 ‘He
.......................... 6
Cliff 0.99-0.07(1)i  0.512-0.088i 2.5 -29.3 He
314 f--------- 8
EXp. 2.9(1)* 0.824-0.06(1)i 0.445-0.075(10)i  -3.11 i He
1 parameter is adjusted to reproduce ®He(0*) binding energy RS o LA )




Calculation of 4n energy distribution
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11-14Be case

Models
v 10Be-n interaction is a single Gaussian 3 sy
potential with OCM, parameters adjusted - _
to reproduce ''Be states
10Be (04 .
Vo (r, 1) = —Voexp(=Ar2 )8(r,7') + oo ip 0 (1) >< pOH ()| VI ———
g 1/2+ 1
@ 2+ +
s i —=——— 5/2 i
A 99.0067 0.3547 1/2~ state reproduced — 0t
3/2~ reproduced by shifting
B 59.5114  0.13 1/27,3/2" states -3 0+ 7
reproduced by shifting a deep E—
state
i N 1
Capel pot* * * 1/2% deep state removed 0
3/2- deep state shifted | | | |
;:)/:)/Sod—Saxon potential from P.Capel et al., Phys. Rev C 70, 064605 -6 11p, 12, 13p, lip,
N ) oo 1P

v' 10Be-n-n Hyperradial interaction adjusteds ®®®@ @ ® OO 1P3

to reproduce 1?Be states
o0 e o 15,
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11-14Be case

Model . VE(13Be(5/2+)) . VE(“Be(0+)) 3
e e 3 ,2_
A (this work) -5.05 - _5/2% i
B (this work) -1.84(1)-0.14(1)i  -4.84 1086 (0+]
-1 1/2—
Capel et al. -3.92 -4.68 Je
| s | o
Exp. -1.61-0.2(1)i -5.01 % I 2 5/2+ |
— 0+
L
*Wood-Saxon potential from P.Capel et al., Phys. Rev -3 o+ 7
C 70, 064605 (2004)
- 0+ 9
-+ Capel pot. | | | |
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n P

000@ 0000
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Conclusions

Neutron-halo states ave ideal testground for cluster methods anod
phenomena related with Paull excluston principle

very striking dynamical phenomenn was observed by Duer et al.,
where sharp low-energy peak appears waturally without any
underlying “n resonant state

The lfe% L 8)q>LaLVLLV\,@ this Phﬁwomewa Lles e understanding
structure of EHe nucleus

| am trying to construct A+4n model able to sucesstuly describe
4w halos and thelr eventual decay emitting 4n

it appears that Uf initlal state contains weakly bound and
peripheral 4w halo - presence of nn corelations Leads to sharp Low
energy peak structures in total 4n energy distribution, without
presence of underlying *n resonant state.



