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Neural quantum states (NQS) & conventional variational wave functions 

Various interactions explored in this work  

Preliminary results on medium-mass nuclei 

Future directions 

OUTLINE
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Variational principle:             

Monte Carlo integration:             
 

                    

Simulate  nucleons with spatial, spin, and isospin degrees of freedom             
                                                                                                                              
                                                                                                                                

⟨E⟩ ≡
⟨Ψ | Ĥ |Ψ⟩

⟨Ψ |Ψ⟩
≥ E0

⟨E⟩ =
∫ dX Ψ*(X )Ĥ Ψ(X )
∫ dX Ψ*(X )Ψ(X )

≈
1
Ns

Ns

∑
n=1

1
Ψ(Xn)

Ĥ Ψ(Xn), where Xn ∼ |Ψ(X ) |2

A X = {xi}A
i=1

xi = (ri, sz
i , tz

i )
i = 1, 2, . . . , A

VARIATIONAL MONTE CARLO
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Evaluating the wave function involves storing and manipulating a very long vector of spin-isospin 
amplitudes 

VMC can handle “hard” interactions, but we pay the price elsewhere 

Always fine tuned with Green’s function Monte Carlo (GFMC)

CONVENTIONAL ANSÄTZE FOR NUCLEI
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|Ψ⟩ = ̂F |Φ⟩

antisymmetric 
long-range behavior, quantum numbers 

e.g. Slater determinants, Pfaffians

symmetric 
short-range correlations 

e.g.  ̂F = ̂S∑
i<j

̂Fij
̂S ∑
i<j<k

(1 + ̂Fijk)

  elements!4A → (A
Z) ( A

N↑) ∼
4A

A



Percent-level 
accuracy for 
energies and radii 

Local 
phenomenological 
and chiral 
interactions used 
here 

Typically limited to 
 due to 

exponential scaling
A ≲ 12

ACCURACY OF VMC + GFMC
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FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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Similar idea as before, but parameterize by many feedforward neural networks… 

NEURAL QUANTUM STATES
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Ψ(X ) = F(X )Φ(X )

antisymmetricsymmetric 

very flexible mappings between two spaces 
fast to evaluate 
easy to differentiate

G. Carleo and M. Troyer, Science 355, 6325 (2017).



 
 
                                                             

Symmetric part:        (positive definite) F(X ) = eJ(X)

NEURAL QUANTUM STATES
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Ψ(X ) = F(X )Φ(X )

antisymmetricsymmetric 

Zaheer et al., arXiv:1703.06114 (2017)

f ({xi}A
i=1)ρϕ

ϕ(x1)

ϕ(xA)

⋱

x1

xA

⋱

pool J(X )



 
 
                                                             

Antisymmetric part:      often based on a Slater determinant 

NEURAL QUANTUM STATES

Ψ(X ) = F(X )Φ(X )

antisymmetricsymmetric 

Φ(X ) = det

ϕ1(x1) ϕ1(x2) ⋯ ϕ1(xA)
ϕ2(x1) ϕ2(x2) ⋯ ϕ2(xA)

⋮ ⋮ ⋱ ⋮
ϕA(x1) ϕA(x2) ⋯ ϕA(xA)

 independent neural networks 
or one with  different outputs
A

A



 
 
                                                             

Antisymmetric part:      we use one based on a Pfaffian 

NEURAL QUANTUM STATES

Ψ(X ) = F(X )Φ(X )

antisymmetricsymmetric 

Φ(X ) = det

ϕ1(x1) ϕ1(x2) ⋯ ϕ1(xA)
ϕ2(x1) ϕ2(x2) ⋯ ϕ2(xA)

⋮ ⋮ ⋱ ⋮
ϕA(x1) ϕA(x2) ⋯ ϕA(xA)

Φ(X ) = pf

0 ϕ(x1, x2) ⋯ ϕ(x1, xA)
−ϕ(x1, x2) 0 ⋯ ϕ(x2, xA)

⋮ ⋮ ⋱ ⋮
−ϕ(x1, xA) −ϕ(x2, xA) ⋯ 0

 independent neural networks 
or one with  different outputs
A

A
One neural network parameterizing the pairing orbital

JK et al., Commun. Phys. 7, 148 (2024).



First designed neural Pfaffian while studying the unitary Fermi gas 
 

Divergent two-body scattering length  produces two-body state exactly at threshold 

 
No intrinsic interaction length scale set by potential! 

Ideal testbed for wave function flexibility, optimization, numerical stability 

Low-energy NN s-wave interactions are near unitarity

|a | → ∞

UNITARITY

JK et al., Commun. Phys. 7, 148 (2024).
G. Pescia, JK, et al., PRB 110, 035108 (2024).



Two wildly different potentials tuned to unitarity should give identical results! 

UNITARITY
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SHORT-RANGE CORRELATIONS
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Recently added ability to solve 
two-body problem on-the-fly to 
assist short-range stability

Two-gaussian potential:  
repulsive core, attractive tail, tuned to unitarity 



Slater determinant is a special case of a Pfaffian    can capture different phases with one ansatz 

Spin-isospin dependent pairing orbitals without explicit coding 

Number of trainable parameters is independent of system size 

Odd and even systems share a pairing orbital 

No reliance on shell closures or explicit many-body basis, works directly in continuous space 

Scales the same as a determinant

→

NEURAL PFAFFIAN

JK et al., Commun. Phys. 7, 148 (2024).
Not discussed: the graph neural network we use to 
build the bulk of our correlations (see refs) 

G. Pescia, JK, et al., PRB 110, 035108 (2024).



UNITARY FERMI GAS 
(N=66)
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PRELIMINARY 

(OUTDATED)Fixed-node diffusion Monte Carlo:  

 

In principle, gives the exact ground state 

In practice, need the fixed-node 
approximation to control the fermionic sign 
problem 
                   
 

Newer calculations with even better NQS 
currently running

lim
τ→∞ (∑

i

cie−τ(Ei−ET ) |Ψi⟩) ∝ |Ψ0⟩

EVMC ≳ EDMC ≳ E0



Unitary Fermi gas: 

Maximally nonperturbative and scale free 

Correlations everywhere, pairing 

Numerical unstable, high-variance local energies 

Good stress test of numerics, optimization, and wave function flexibility 

Nuclear systems: 

Strong coupling between spin, isospin, spatial degrees of freedom 

Many operators, many competing channels 

Three-body forces

UNITARY LIMIT  PHYSICAL POINT→
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Key questions:


Which aspects of nuclear structure are governed by 
low-energy physics? 


Which require resolving pion dynamics and short-
distance details?


How sensitive are bulk observables to physics above 
the pion scale? 


How much of nuclear binding is explained by near-
unitary NN physics?


This work:


Use the simplest LO pionless EFT Hamiltonians


Treat them as a probe of universality, not a convergent 
microscopic theory

HAMILTONIANS

16 Figure: R. B. Wiringa et al., PRC 89, 024305 (2014) 



NUCLEAR MATTER
This simple LO pionless EFT 
Hamiltonian compared to pionfull 
Hamiltonians at low densities 
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B. Fore, JK, et al., PRR 5, 033062 (2023).
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nB = 0.08 fm−3

Symmetric 
Nuclear 
Matter
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nB = 0.04 fm−3

Symmetric 
Nuclear 
Matter



20
nB = 0.01 fm−3

Symmetric 
Nuclear 
Matter
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nB = 0.001 fm−3

Symmetric 
Nuclear 
Matter



SYMMETRIC NUCLEAR MATTER
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Clustering at 
low densities?

B. Fore, JK, et al. Commun. Phys. 8, 108 (2025).



COMPOSITION OF NEUTRON STAR CRUSTS

23B. Fore, JK, et al., Commun. Phys. 8, 108 (2025). 

Assume rates of beta 
decay and inverse beta 
decay are equal: 
                           

 
 

 
 

 

Assume charge neutrality:      

 

NQS agrees better with 
phenomenological Skryme 
models than AFDMC

n → p + e− + ν̄e

p + e− → n + νe

μn = μp + μe

np = ne



PRELIM
INARY

B. Fore, JK, et al., in prep.

Different LO pionless EFT 
Hamiltonians

RESULTS: MEDIUM-MASS NUCLEI



PRELIM
INARY

B. Fore, JK, et al., in prep.

Our baseline  
(same interaction we used for 
dilute nuclear matter) 

R. Schiavilla et al.,  
PRC 103, 054003 (2021). 

LECs: , ,  

Gaussian regulators: 
 

 
 

 

Three-body contact involves 
two pair distances  

Fit to: 

▪  scattering lengths and 
effective ranges in 

 

▪ triton binding energy 

C01 C10 cE

R0 ≈ 1.55 fm
R1 ≈ 1.83 fm
R3 = 1.1 fm

np

S /T = 0/1, 1/0

RESULTS: MEDIUM-MASS NUCLEI



PRELIM
INARY

B. Fore, JK, et al., in prep.

Add CD and CA terms at LO to 
the 2-body interaction for 

 

Fit different 3-body interactions by 
hand using NQS calculations of 
He-4 and O-16 

“Linear” 

“Triangle” 

Gaussian regulators: 
          
      

Two additional LECs: ,  
 
All two-body LECs fit to low-
energy phase shifts up to 5 MeV 

 - Nijmegen 
 - Argonne 18

S /T = 0/1

R0 = 1.537 fm
R1 = 1.813 fm

CCD CCA

np, pp
nn v

RESULTS: MEDIUM-MASS NUCLEI



RESULTS: MEDIUM-MASS NUCLEI

PRELIM
INARY

B. Fore, JK, et al., in prep.

Add S/T = 0/0, 1/1 to model “o” 
 
Fit different 3-body interactions by 
hand using NQS calculations of 
He-4 and O-16 

M. Gattobigio et al., 
PRC 100, 034004 (2019). 

Fit to:  

▪ s-wave scattering lengths and 
effective ranges 

▪ triton binding energy 

▪  and  tuned to AV14 
phase shifts for p-wave sector 

 fixed, smaller  used for 
“weak” and larger for “strong” 

C00 C11

C00 C11



RESULTS: MEDIUM-MASS NUCLEI

PRELIMINARY

B. Fore, JK, et al., in prep.



Uncertainty quantification:


All error bars reported here are statistical errors not model uncertainties


Reduce uncertainties from many-body method as much as possible, push all uncertainties to Hamiltonian


Construct reduced order models using trained NQS as basis states


Ni-58 calculations required 9,000 GPU hours    small generalized eigenvalue problem 


Excited states:


Newly developed Grassmann VMC developed in the NQS community


Evolve a subspace of NQS as one variational object


Plus everything that has already been done with conventional variational states…

∼ →

FUTURE DIRECTIONS

29

D. Pfau et al., Science 385, 6711 (2024). 
Hendry et al., arXiv:2507.10287 (2025). 
Kahn et al., arXiv:2507.08930 (2025). 

R. Curry, et al., arXiv:2510.15860 (2025).



CONCLUSION

30

Alessandro Lovato 
 
 
Bryce Fore 
Anthony Tropiano 

Stefano Gandolfi 

Morten Hjorth-Jensen 

Giuseppe Carleo 
Gabriel Pescia 

Jannes Nys

NQS provide a flexible framework for describing strongly 
correlated quantum systems, applicable to both finite 
nuclei and infinite matter, and capable of capturing 
emergence of different phases. 

High-accuracy energies and radii can be achieved for 
, far beyond the reach of conventional VMC. 

Initial calculations with extremely simple pionless EFT 
Hamiltonians suggest that aspects of low-energy physics 
persist in medium-mass nuclei, but rigorous uncertainty 
quantification is imperative. 

                      Thank you!

A ≤ 58



Minimum-image convention 

For nuclear matter, we also sum the interaction over nearby boxes 

Periodic separation vectors:              

Periodic distances:                            

rij = ri − rj ↦ r̃ij = (cos ( 2π
L

rij), sin ( 2π
L

rij))

rij = ∥rij∥ ↦ r̃ij = sin ( π
L

rij)

PERIODIC BOUNDARY CONDITIONS

31



For the unpolarized system: 

                                                       

                                                     

Not necessary, but can help the NQS train with fewer iterations 

Symmetries can be added or removed at will

ΨP(R, S) = Ψ(R, S) + Ψ(−R, S)

ΨPT(R, S) = ΨP(R, S) + (−1)N/2ΨP(R, − S)

PARITY AND TIME-REVERSAL

32



In August 2024, Pfau et al. showed that using a determinant of many-body states could be 
used to find the low-lying states of atoms and molecules. 

In July 2025, two articles simultaneously formalized the idea in terms of Grassmannian 
geometry. Benchmarked on 2D Heisenberg model and transverse field Ising model.  

Grassmannian  = set of all -dimensional linear subspaces of a Hilbert space  

Each “point” is a whole subspace 
Smooth differentiable manifold, natural metric, symplectic structure 
Many representations to exploit 

GrM(ℋ) M ℋ

GRASSMANN VMC

D. Pfau et al., Science 385, 6711 (2024). Hendry et al., arXiv:2507.10287 (2025). Kahn et al., arXiv:2507.08930 (2025). 



Ordered basis     

Matrix representation    

Wedge-product representation         

Operator expectation value becomes a matrix: 

                                       

Ψ = (ψ1, ψ2, . . . , ψM)

|Ψ]] = [ |ψ1⟩, |ψ2⟩, . . . , |ψM⟩]T

|Ψ⟩⟩ = 𝒜̂ |Ψ]] ⟹ Ψ(X ) = ⟨⟨X |Ψ⟩⟩ ∝ det[ψi(xj)]

⟨ψ | Ĥ |ψ⟩
⟨ψ |ψ⟩

⟹ [[Ψ |Ψ]]−1[[Ψ | ℍ̂ |Ψ]]

GRASSMANN VMC

D. Pfau et al., Science 385, 6711 (2024). Hendry et al., arXiv:2507.10287 (2025). Kahn et al., arXiv:2507.08930 (2025). 



EXAMPLE: Gr1(ℝ3)

1d subspaces Normalize and select  z > 0 Real projective plane  RP2



PIONLESS EFT (INSPIRED) HAMILTONIAN

36

A low-energy EFT of QCD with only nucleons as degrees of freedom 

Appropriate when momenta are well below the pion mass, or for nuclear matter up to ∼ n0 /2

• NN potential: fit to np scattering lengths and 
effective radii and the deuteron binding energy 

<latexit sha1_base64="EP4nzi5itThDhdF3lB9wOXPIgA8="></latexit>

v
CI
ij =

4X

p=1

v
p(rij)O

p
ij ,

• 3NF adjusted to reproduce the 3H 
binding energy.

<latexit sha1_base64="7DvVbWucIpMk+AiKnTjxiiRIrBk="></latexit>

Vijk = c̃E
X

cyc

e�(r2ij+r2jk)/R
2
3

R. Schiavilla, et al., PRC 103, 054003(2021)

<latexit sha1_base64="dapbZ8cagwIpAqTmb3y/314QPUo="></latexit>

O
p=1,4
ij = (1, ⌧ij ,�ij ,�ij⌧ij)

ĤLO = − ∑
i

∇2
i

2mi
+ ∑

i<j

vij + ∑
i<j<k

Vijk



VARIATIONAL MONTE CARLO
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Based on the variational principle: 

                                                

Use Monte Carlo integration to handle the high-dimensional integrals: 

                      

E(θ) =
⟨Ψθ | Ĥ |Ψθ⟩

⟨Ψθ |Ψθ⟩
⟹ min

θ
E(θ) ≥ E0

⟨Ψθ | Ĥ |Ψθ⟩
⟨Ψθ |Ψθ⟩

=
∫ dX⟨Ψθ |X⟩⟨X | Ĥ |Ψθ⟩

⟨Ψθ |Ψθ⟩
=

∫ dX |Ψθ(X ) |2 1
Ψθ(X) Ĥ Ψθ(X )

⟨Ψθ |Ψθ⟩

= ∫ dXP(X )Eθ(X ) ≈ 𝔼X∼P(X)Eθ(X )

⟨X |Ψθ⟩
⟨X |Ψθ⟩ P(X ) Eθ(X )



Take the gradient of the energy w.r.t. variational parameters: 
 
 

                                     

Update the parameters using SGD:          

First-order optimization is fine for small systems, but when our NQS are compact, we can do better…

∇θ E(θ) = 2 ( ⟨Ψθ | Ĥ |∇θΨθ⟩
⟨Ψθ |Ψθ⟩

− E(θ)
⟨Ψθ |∇θΨθ⟩

⟨Ψθ |Ψθ⟩ )

θ ↦ θ − η∇θ E(θ)

OPTIMIZATION

38



Precondition the gradient with the quantum geometric tensor:          

                                               

θ ↦ θ − ηS−1 ∇θ E(θ)

Sij =
⟨∂iΨθ |∂jΨθ⟩

⟨Ψθ | Ψθ⟩
−

⟨∂iΨθ |Ψθ⟩⟨Ψθ |∂jΨθ⟩
⟨Ψθ | Ψθ⟩

STOCHASTIC RECONFIGURATION

39

 – spaceθ Ψθ1
(X ) θ1

 θ2

Ψθ2
(X )
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|Ψ |2 Ψ +
−

+

Based on variational principle 

 

Can compute any  even when 

⟨Ψθ | Ĥ |Ψθ⟩
⟨Ψθ |Ψθ⟩

≥ E0

⟨Ô⟩ [Ô, Ĥ ] ≠ 0

Based on imaginary-time projection 

 

Biased estimates of  when 

lim
τ→∞

e−Ĥτ/ℏ Ψ(0) ∝ Ψ0

⟨Ô⟩ [Ô, Ĥ ] ≠ 0

Variational Monte Carlo 
• Optimize explicit trial wave function 
• Accuracy limited by quality of trial 
• No sign problem! Diffusion Monte Carlo 

• Wave function is a distribution of configurations 
• Variational (strict upper bound) 
• Sign problem controlled by fixed-node approximation 

Auxiliary-Field Quantum Monte Carlo 

• Wave function is a distribution of mean-fields 
• Sign problem controlled by constrained-path approximation 
• Not variational when constrained 

Neural Quantum States 
• Use artificial neural networks to write  

a flexible trial wave function 



Variational wave functions based on artificial neural networks 

Ab initio:    Solve the Schrödinger equation starting from assumed Hamiltonian  

What is the input to the network?          Many-body configurations   

What is the output of the network?        The amplitude  

How do you train the network?              Gradient descent (or stochastic reconfiguration)

Ĥ

X = {xi}N
i=1

Ψ(X )

NEURAL QUANTUM STATES

41 G. Carleo and M. Troyer, Science 355, 6325 (2017).

Sample  from X |Ψ(X ) |2 Compute  and ⟨E⟩ ∇θ⟨E⟩ Update parameters θ



SCALING
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FIXED-NODE DIFFUSION MONTE CARLO
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True ground state wave function



FIXED-NODE DIFFUSION MONTE CARLO
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True ground state wave function

Nodes from VMC calculation



FIXED-NODE DIFFUSION MONTE CARLO
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True ground state wave function

Nodes from VMC calculation

MC walkers 
before evolution 



FIXED-NODE DIFFUSION MONTE CARLO
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True ground state wave function

Nodes from VMC calculation

MC walkers  
after evolution 



FEEDFORWARD NEURAL NETWORKS

47

Inspired by the structure of the brain 

Nodes are organized into layers, connections between neighboring layers 

Compose affine transformations with nonlinear activation functions 

Universal approximation theorem: An FFNN with one hidden layer and 
enough hidden neurons can approximate any continuous function on a 
compact domain, to any desired accuracy.  

Backpropagation: Method for computing the gradient of an FFNN  
using the chain rule.

highly optimized, trainable simple, fast, fixed



BUILDING BLOCKS

48 * for the neural networks in this talk…

*

Linear transformations Translations Activation functions

Applied element-
wise, need to be fast 
and nonlinear

Pooling operations Concatenation operations



BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange 

                                                        

Use a permutation-invariant Deep Set for the symmetric part: 

                                                      

Ψ(X ) = eJ(X)Φ(X )

J(X ) = ρ (pool ({ϕ(xi)}N
i=1))

49

antisymmetricsymmetric

 X = {xi}N
i=1

xi = (ri, sz
i )



EMBEDDINGS

50

Learned mapping of inputs to a vector space (usually lower 
dimensional) 

Correlations can be easier to disentangle by temporarily 
mapping to a higher dimensional space

Queen
King

Woman
Man

Royal



GRAPH NEURAL NETWORKS

Generalize convolutional neural networks by extending local neighborhood aggregation from regular grids 
to arbitrary graph structures 

51

How will my friend’s decision to attend my party be influenced 
by our friends?  

Nodes = people (availability, location, age, job, etc…) 

Edges = relationships (closeness, communication 
frequency, duration of friendship, shared interests…) 

Graph neural networks preserve the structure of the graph 

Permutation equivariance



Generalize convolutional neural networks by extending local neighborhood aggregation from regular grids 
to arbitrary graph structures 

GRAPH NEURAL NETWORKS

52

How will a particle’s state be influenced by the other particles? 

Nodes = particles (spatial coordinates, spin, isospin…) 

Edges = relationships (distance, separation vector, spin/
isospin alignment, …) 

Graph neural networks preserve the structure of the graph 

Permutation equivariance



Iteratively builds local correlations by passing “messages” along edges 

Used to find better representations of one- and two-body features of quantum system 

New embeddings are used in place of the raw features 

MESSAGE-PASSING NEURAL NETWORKS

53

Input graph Output graphUpdate edges Update nodes

hi ∈ ℝL1

hij ∈ ℝL2



MESSAGE-PASSING NEURAL NETWORKS
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for  : 

 

 

 

 

        

h(0)
i = xi = (ri, sz

i , tz
i )

h(0)
ij = xij = (rij, ∥rij∥, sz

i , sz
j , tz

i , tz
j )

t = 1, . . . , T

m(t)
ij = Mt (h(t−1)

i , h(t−1)
j , h(t−1)

ij )
h(t)

ij = (xij, Gt (h(t−1)
ij , m(t)

ij ))
m(t)

i = pool ({m(t)
ij | j ≠ i})

h(t)
i = (xi, Ft (h(t−1)

i , m(t)
i ))



MESSAGE-PASSING NEURAL NETWORKS
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for  : 

 

 

 

 

        

h(0)
i = xi = (ri, sz

i , tz
i )

h(0)
ij = xij = (rij, ∥rij∥, sz

i , sz
j , tz

i , tz
j )

t = 1, . . . , T

m(t)
ij = Mt (h(t−1)

i , h(t−1)
j , h(t−1)

ij )
h(t)

ij = (xij, Gt (h(t−1)
ij , m(t)

ij ))
m(t)

i = pool ({m(t)
ij | j ≠ i})

h(t)
i = (xi, Ft (h(t−1)

i , m(t)
i ))



MESSAGE-PASSING NEURAL NETWORKS
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Gt  

 

for  : 

 

 

 

 

        

h(0)
i = xi = (ri, sz

i , tz
i )

h(0)
ij = xij = (rij, ∥rij∥, sz

i , sz
j , tz

i , tz
j )

t = 1, . . . , T

m(t)
ij = Mt (h(t−1)

i , h(t−1)
j , h(t−1)

ij )
h(t)

ij = (xij, Gt (h(t−1)
ij , m(t)

ij ))
m(t)

i = pool ({m(t)
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BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange 

                                                        

Use a permutation-invariant Deep Set for the symmetric part: 

                                                       

Use a permutation-equivariant graph neural network to find a higher-dimensional embedding: 

Ψ(X ) = eJ(X)Φ(X )

J(X ) = ρ (pool ({ϕ(xi)}N
i=1))

antisymmetricsymmetric

 X = {xi}N
i=1

xi = (ri, sz
i )

xi

xij

hi ∈ ℝL1

hij ∈ ℝL2
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ATTENTION MECHANISMS

First developed for natural language processing 

Scores the relevance of each feature w.r.t. the context, then uses those scores to weight the features 

One of the key elements of transformer architectures 

Example: What’s the meaning of the word bank? 
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ATTENTION MECHANISMS

Query: What information am looking for? (question)             

Key: How should I recognize the information? (label)            

Value: What is the information I actually retrieve? (content)  

             

Q = XWQ

K = XWK

V = XWV

Attention(Q, K, V) = softmax ( QKT

dk ) V

78 A. Vaswani et al., arXiv:1706.03762 (2017).



HOMOGENEOUS ELECTRON GAS

Classic benchmark system 

Many-body methods begin to struggle at low densities, 
where correlations from the long-range Coulomb 
interaction dominate     Wigner crystal 

In this work, we developed a message-passing neural 
network with an attention mechanism 

Far fewer trainable parameters than other NQS 

Scales easily to larger systems 

“Pays attention” to relevant features based on 
neighboring particles 

⟹

79G. Pescia, JK, et al., PRB 110, 035108 (2024).                                                                Yen-Chen Tsui, Princeton University.   
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Smaller NQS can use 
stochastic reconfiguration 
(2nd order optimization)
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80 G. Pescia, JK, et al., PRB 110, 035108 (2024). 
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Efficiency allowed calculations of  in continuous space – largest system tackled by NQS 

Evidence of Wigner crystallization appears between  

N = 128

rs = 50 − 110

81 G. Pescia, JK, et al., PRB 110, 035108 (2024). 
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BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange 

                                                        

The antisymmetric part is entirely responsible for the nodal structure of the wave function

Ψ(X ) = eJ(X)Φ(X )

82

antisymmetricsymmetric

 X = {xi}N
i=1

xi = (ri, sz
i )



ANTISYMMETRY

Antisymmetry under particle exchange:      

Mean-field approximation:    Particles assumed to be independent, subject to an average field 

                                                 Ground state wave function is an antisymmetrized product of  
                                                  single-particle states 

               

Φ( . . . , xi, . . . , xj, . . . ) = − Φ( . . . , xj, . . . , xi, . . . )

∑
i< j

vij + ∑
i< j<k

Vijk ↦ ∑
i

ui
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ANTISYMMETRY

                      

Slater determinant:    More efficient way of antisymmetrizing a product of single-particle orbitals 

Φ(X ) = 𝒜̂ [ϕ1(x1)⋯ϕN(xN)] =
1

N ! ∑
σ∈SN

sgn(σ)ϕσ(1)(x1)⋯ϕσ(N )(xN)
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Scales as 𝒪(N !)

Scales as 𝒪(N3)

Φ(X) = det

ϕ1(x1) ϕ1(x2) ⋯ ϕ1(xN)
ϕ2(x1) ϕ2(x2) ⋯ ϕ2(xN)

⋮ ⋮ ⋱ ⋮
ϕN(x1) ϕN(x2) ⋯ ϕN(xN)



The antisymmetric part of a NQS is usually based on a Slater determinant: 

This is insufficient for strongly-correlated fermions…

NEURAL SLATER DETERMINANTS

85

Φ(X) = det

ϕ1(x1) ϕ1(x2) ⋯ ϕ1(xN)
ϕ2(x1) ϕ2(x2) ⋯ ϕ2(xN)

⋮ ⋮ ⋱ ⋮
ϕN(x1) ϕN(x2) ⋯ ϕN(xN)

Replace with neural networks



Characterized by strong, attractive, short-ranged interactions 

Can be experimentally measured and manipulated with high accuracy 

Ideal testbed for developing a flexible NQS capable of capturing superfluidity 

ULTRACOLD FERMI GASES

86

Weakly repulsive superfluid

UnitaryBCS BEC
1/kFa

0
Weakly attractive Strongly interacting 
−∞ +∞

JK et al., Commun. Phys. 7, 148 (2024).



Simplest and most general way to build an antisymmetrized product of pairing orbitals 

For a special choice of , this is equivalent to a Slater determinant! ϕ

NEURAL PFAFFIAN

87

Φ(X ) = pf

0 ϕ(x1, x2) ⋯ ϕ(x1, xN)
−ϕ(x1, x2) 0 ⋯ ϕ(x2, xN)

⋮ ⋮ ⋱ ⋮
−ϕ(x1, xN) −ϕ(x2, xN) ⋯ 0

Only one neural network 
 

ϕ(xi, xj) = ν(xi, xj) − ν(xj, xi)

JK et al., Commun. Phys. 7, 148 (2024).



NEURAL PFAFFIAN

88

Neural Pfaffian performs significantly 
better than diffusion Monte Carlo with 

BCS nodal surface

JK et al., Commun. Phys. 7, 148 (2024).

Neural Slater determinant is not 
sufficient for strongly paired system



NEURAL PFAFFIAN

89

Results are consistent throughout the 
BCS-BEC crossover region

JK et al., Commun. Phys. 7, 148 (2024).



NEURAL PFAFFIAN

90

The number of trainable parameters 
does not depend on particle number

JK et al., Commun. Phys. 7, 148 (2024).

Transfer learning can be exploited to 
reach larger systems faster


