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OUTLINE

Neural quantum states (NQS) & conventional variational wave functions
Various interactions explored in this work
Preliminary results on medium-mass nuclei

Future directions




VARIATIONAL MONTE CARLO

SALILIN

Variational principle: (E) = Wy, > 0

Monte Carlo integration:

[ax T*(X)H‘P(X) 1 & ,
(E) = ~ ¥ X) |
[dX P*(X)P(X) il 0:¢
Simulate A nucleons with spatial, spin, and isospin degrees of freedom X = {Xi}f‘:1
X; = (1, s5 1)
i=1,2,...,A




CONVENTIONAL ANSATZE FOR NUCLEI
| W) = F| D)

symmetric

short-range correlations antisymmetric
long-range behavior, quantum numbers

e.g. Slater determinants, Pfaffians

eg. F= SZFU SZ(I"‘Fijk) A A YA
i<j i<j<k 47 = ~ — elements!
Z)J\N, ] A

Evaluating the wave function involves storing and manipulating a very long vector of spin-isospin
amplitudes

VMC can handle “hard” interactions, but we pay the price elsewhere

Always fine tuned with Green’s function Monte Carlo (GFMC)
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ACCURACY OF VMC + GFMC
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G. Carleo and M. Troyer, Science 355, 6325 (2017).

NEURAL QUANTUM STATES

P(X) = F(X)®(X)

symmetric -/

Similar idea as before, but parameterize by many feedforward neural networks...

antisymmetric

very flexible mappings between two spaces
fast to evaluate
easy to differentiate




NEURAL QUANTUM STATES

|ﬂ|_><

P(X) = F(X)®(X)

symmetric —/ L antisymmetric

Symmetric part:  F(X) = /% (positive definite)

]

b(x,)

I p(xy)

L=

pool — —

— J(X)

Zaheer et al., arXiv:1703.06114 (2017)



NEURAL QUANTUM STATES

P(X) = FX)DX)
symmetric _/ L antisymmetric

Antisymmetric part:  often based on a Slater determinant

N

d (X)) P(Xy) - Py(xy)]
¢2(X1) ¢2(X2) ¢2(XA)

O(X) = det

| PaXy) Pa(xp) o Pa(xy) |

A independent neural networks
\ or one with A different outputs /




NEURAL QUANTUM STATES

Antisymmetric part:

P(X) = F(X)®(X)

symmetric —/ L antisymmetric

-~

O(X) = det

(h1(x) ¢y(xy)
Dr(X1)  hy(xy)

| Pa(X1)  Pa(xr)

A independent neural networks
\ or one with A different outputs /

N

7 1(XA)_
hy(Xy)

¢A(.XA)_

we use one based on a Pfaffian

~

®(X) = pf

\_

One neural network parameterizing the pairing orbital

JK et al., Commun. Phys. 7, 148 (2024).

[ 0 dX,Xy) o ¢(X1’XA)_
—(X1,X,) 0 e (X5, Xy)
|—)(X1.Xy) —(Xp,Xy) 0 |

~
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UNITARITY

First designed neural Pfaffian while studying the unitary Fermi gas

Divergent two-body scattering length |a| — oo produces two-body state exactly at threshold

No intrinsic interaction length scale set by potential!

Ideal testbed for wave function flexibility, optimization, numerical stability

Low-energy NN s-wave interactions are near unitarity

JK et al., Commun. Phys. 7, 148 (2024).
G. Pescia, JK, et al., PRB 110, 035108 (2024).




UNITARITY

Two wildly different potentials tuned to unitarity should give identical results!

Poschl-Teller (PT) Two Gaussians (2G)
T
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SHORT-RANGE CORRELATIONS

DMC-BCS (PT)
VMC-NQS (PT)
VMC-NQS (PT), with exact two-body
VMC-NQS (2G), with exact two-body

pe - e o

0.1 0.2 0.3

Recently added ability to solve kF Te

two-body problem on-the-fly to
assist short-range stability

0.4

Two-gaussian potential:
repulsive core, attractive tail, tuned to unitarity
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NEURAL PFAFFIAN

Slater determinant is a special case of a Pfaffian — can capture different phases with one ansatz
Spin-isospin dependent pairing orbitals without explicit coding

Number of trainable parameters is independent of system size

Odd and even systems share a pairing orbital

No reliance on shell closures or explicit many-body basis, works directly in continuous space

Scales the same as a determinant

Not discussed: the graph neural network we use to
build the bulk of our correlations (see refs) JK et al., Commun. Phys. 7, 148 (2024).
G. Pescia, JK, et al., PRB 110, 035108 (2024,).




UNITARY FERMI GAS "

N=66 0.46—!__ e
oo T T G RELIMINARY

Fixed-node diffusion Monte Carlo: - (OUTDATED)
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In principle, gives the exact ground state 0.36 -
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UNITARY LIMIT — PHYSICAL POINT

Unitary Fermi gas:

Maximally nonperturbative and scale free

Correlations everywhere, pairing

Numerical unstable, high-variance local energies

Good stress test of numerics, optimization, and wave function flexibility
Nuclear systems:

Strong coupling between spin, isospin, spatial degrees of freedom

Many operators, many competing channels

Three-body forces

15



HAMILTONIANS

Key questions:

Which aspects of nuclear structure are governed by I0]3 i
low-energy physics? SRal
Which require resolving pion dynamics and short- 4H
distance details? 5 €
H
How sensitive are bulk observables to physics above 1035.
the pion scale? - %
E 01
How much of nuclear binding is explained by near- ,‘: I
. . ,) :M‘
unitary NN physics® . 10°1L
Q L bs
. 10-3 L
This work: 0 1 2 3 4 5
-1
Use the simplest LO pionless EFT Hamiltonians k (fm )

Treat them as a probe of universality, not a convergent
microscopic theory

16 Figure: R. B. Wiringa et al., PRC 89, 024305 (2014)



NUCLEAR MATTER

This simple LO pionless EFT
e JEFT model o Hamiltonian compared to pionfull
Hamiltonians at low densities
1nd = EFT model a
=10 7
s - m-full
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17 B. Fore, JK, et al., PRR 5, 033062 (2023).
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SYMMETRIC NUCLEAR MATTER

Clustering at
low densities? —14-

0.00 0.02 0.04 0.06 0.08
ng (fm=3)

22 B. Fore, JK, et al. Commun. Phys. 8, 108 (2025).




COMPOSITION OF NEUTRON STAR CRUSTS

Assume rates of beta
decay and inverse beta 0.150 -

decay are equal: - i ¥ NQS; A=14
_ - 0.125 - 0.03 ¢ NQS; A=28
n—opte ti 0.021 = 4 NQS; A=42
pte > n+u, g 0.100 - ol 4 AFDMC; A=28
© —— SLy4 EOS
W= ~e |
Hp = Hp T K, S 0.075 ~=== Non interacting matter
Assume charge neutrality: ,_?_ 0.030 -
n,=n, 0.025 -
NQS agrees better with 0.000 | T TS IR Sy o ST
phenomenological Skryme — . vt ' —r —
models than AFDMC 1072 10 © 10

Baryon density (fm=")
B. Fore, JK, et al.,, Commun. Phys. 8, 108 (2025). 23




B. Fore, JK, et al., in prep.

RESULTS: MEDIUM-MASS NUCLEI
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RESULTS: MEDIUM-MASS NUCLEI
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Our baseline
(same interaction we used for
dilute nuclear matter)

R. Schiavilla et al.,
PRC 103, 054003 (2021).

LECs: Cyy, Cg, Cg

Gaussian regulators:

—

Three-body contact involves
two pair distances

Ry~ 1.55 fm
R, ~ 1.83 fm

Fit to:
= np scattering lengths and

effective ranges in
S/T =0/1, 1/0

= triton binding energy



B. Fore, JK, et al., in prep.

RESULTS: MEDIUM-MASS NUCLEI

Add CD and CAterms at LO to
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RESULTS: MEDIUM-MASS NUCLEI
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B. Fore, JK, et al., in prep.

Add S/T = 0/0, 1/1 to model “0”
Fit different 3-body interactions by
hand using NQS calculations of
He-4 and O-16

M. Gattobigio et al.,
PRC 100, 034004 (2019).

Fit to:

= s-wave scattering lengths and
effective ranges

= triton binding energy

» Cyp and C; tuned to AV14
phase shifts for p-wave sector

Cy fixed, smaller C;; used for
‘weak” and larger for “strong”



RESULTS: MEDIUM-MASS NUCLEI

B. Fore, JK, et al., in prep.
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FUTURE DIRECTIONS

) o R. Curry, et al., arXiv:2510.15860 (2025).
Uncertainty quantification:
All error bars reported here are statistical errors not model uncertainties
Reduce uncertainties from many-body method as much as possible, push all uncertainties to Hamiltonian

Construct reduced order models using trained NQS as basis states

Ni-58 calculations required ~9,000 GPU hours — small generalized eigenvalue problem

Excited states:
D. Pfau et al., Science 385, 6711 (2024).

Hendry et al., arXiv:2507.10287 (2025).
Evolve a subspace of NQS as one variational object Kahn et al., arXiv:2507.08930 (2025).

Newly developed Grassmann VMC developed in the NQS community

Plus everything that has already been done with conventional variational states...

29



CONCLUSION

NQS provide a flexible framework for describing strongly
correlated quantum systems, applicable to both finite
nuclei and infinite matter, and capable of capturing
emergence of different phases.

High-accuracy energies and radii can be achieved for
A < 58, far beyond the reach of conventional VMC.

Initial calculations with extremely simple pionless EFT
Hamiltonians suggest that aspects of low-energy physics
persist in medium-mass nuclei, but rigorous uncertainty
quantification is imperative.

lhant %oa,./
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PERIODIC BOUNDARY CONDITIONS

Minimum-image convention

For nuclear matter, we also sum the interaction over nearby boxes

. . . 27 , 2
Periodic separation vectors: r;,=r,—r, = TI;=| COSs Trl-j , SIn Trij

. (T
sin zrij

Periodic distances: ry = Ir || = ?l.j =

31




PARITY AND TIME-REVERSAL

For the unpolarized system:

PYP(R,S) =¥(R,S)+¥(-R,S)

PPT(R,S) = PP(R,S) + (—DN?WP(R, — S)

Not necessary, but can help the NQS train with fewer iterations

Symmetries can be added or removed at will

32




GRASSMANN VMC

In August 2024, Pfau et al. showed that using a determinant of many-body states could be
used to find the low-lying states of atoms and molecules.

In July 2025, two articles simultaneously formalized the idea in terms of Grassmannian
geometry. Benchmarked on 2D Heisenberg model and transverse field Ising model.

Grassmannian Gr,,/(#°) = set of all M-dimensional linear subspaces of a Hilbert space #
Each “point” is a whole subspace

Smooth differentiable manifold, natural metric, symplectic structure
Many representations to exploit

D. Pfau et al., Science 385, 6711 (2024). Hendry et al., arXiv:2507.10287 (2025). Kahn et al., arXiv:2507.08930 (2025).




GRASSMANN VMC

Ordered basis W = (w1, ¥, ..., ¥y)

Matrix representation |W]1] = [|yy), |w), - -, |l//M)]T

Wedge-product representation |W)) = d|P]] = YX)= (X)) o det[yy(x)]

Operator expectation value becomes a matrix:

A

(w|H|y)

= [[¥|¥]]"'[[¥|H]¥]]
(v |w)

D. Pfau et al., Science 385, 6711 (2024).  Hendry et al., arXiv:2507.10287 (2025). Kahn et al., arXiv:2507.08930 (2025).




EXAMPLE: Gr(R?)

C 2
1d subspaces Normalize and select z > 0 Real projective plane RP




PIONLESS EFT (INSPIRED) HAMILTONIAN

A low-energy EFT of QCD with only nucleons as degrees of freedom

Appropriate when momenta are well below the pion mass, or for nuclear matter up to ~ n,/2

ﬁLO=—Z—+Z + )

i<j i<j<k
* NN potential: fit to np scattering lengths and * 3NF adjusted to reproduce the 3H
effective radii and the deuteron binding energy binding energy.
4
CI

Vi = Z (TU)OZ , B 2 1.2 \/R2
p=1 Vijk = CE Z e~ (rigtrin) /B

=14 cyc

ij " = (1, 7,045,040 Tij)

36 R. Schiavilla, et al., PRC 103, 054003(2021)



VARIATIONAL MONTE CARLO

Based on the variational principle:

A

E©) = (Fol #|Fy) —  minE@©) > E,
(Pyl|Py) 0

Use Monte Carlo integration to handle the high-dimensional integrals:

(XY
(X |Wy) ho EyX)

(Bl HIWy)  [aX(e X)X A%, (JaXICO s H YX)

(Wol ¥o) (Wol¥p) (Pol ¥p)

= [dX PX)EHX) = Ex pxyEe(X)

37



OPTIMIZATION

Take the gradient of the energy w.r.t. variational parameters:

E(0)
(ol Pp) (ol ¥o)

V,E0) =2 < (WP H|Vg'¥y) B (Wyl Vo¥p) )

Update the parameters using SGD: 0— 0—-nV,yE@O)

First-order optimization is fine for small systems, but when our NQS are compact, we can do better...

38




STOCHASTIC RECONFIGURATION

A
0 - space o U “v‘ Yy, (X)

< >
6 A ‘ ¥, (X)
\ 4

v 6

Precondition the gradient with the quantum geometric tensor: 0+ 60—nS! VoE(O)

_(0%[0/¥p)  (9;¥y|¥g)(¥yl0;'¥p)
T (Wl W) (Fol ¥p)
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/‘\J\

2 +
|| AN B8R Neural Quantum States ¥ +
/ \
. o ® Use artificial neural networks to write
a flexible trial wave function

Variational Monte Carlo
e Qptimize explicit trial wave function

-—--------------------------~

e Accuracy limited by quality of trial .
e No sign problem! egr s
0 SIgNPro Diffusion Monte Carlo :
Based on variational principle e Wave funct|0n.|s a distribution of configurations :
. e Variational (strict upper bound) I
(Wl H[¥y) > E, * Sign problem controlled by fixed-node approximation :
<lP€) | lP0> 1
A A A 1
Can compute any (O) evenwhen [O, H] # 0 ' . .

. Auxiliary-Field Quantum Monte Carlo :
I e Wave function is a distribution of mean-fields :

I : : o
Based on imaginary-time projection I e Sign pr.ob.Iem controlled by c.onstramed-path approximation :
. '  Not variational when constrained .
lim e~ 77" P(0) « ¥, . .
T—>0 ‘ '

B|a5edest|mat650f<O>When[é,]:]]#0 ~----------------------------"
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NEURAL QUANTUM STATES

Variational wave functions based on artificial neural networks

Ab initio:  Solve the Schrodinger equation starting from assumed Hamiltonian H

What is the input to the network? Many-body configurations X = {Xi}f.il

What is the output of the network? The amplitude W(X)

How do you train the network? Gradient descent (or stochastic reconfiguration)

Sample X from |‘P(X)|2 + Compute (E) and V(E) —* Update parameters 6

 SE—

41 G. Carleo and M. Troyer, Science 355, 6325 (2017).




SCALING

10" 5

Time / sample (ms)

10_1;

|deal scaling \.\._.

Time Total

Time Walk \
Time Observables

Time Optimization

50 100 200 400
#GPUs
42




FIXED-NODE DIFFUSION MONTE CARLO

True ground state wave function

43




FIXED-NODE DIFFUSION MONTE CARLO

Nodes from VMC calculation

True ground state wave function

44




FIXED-NODE DIFFUSION MONTE CARLO

Nodes from VMC calculation

\" |
‘Ir Vi

/e MC walkers
before evolution

>

True ground state wave function
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FIXED-NODE DIFFUSION MONTE CARLO

Nodes from VMC calculation

>

MC walkers
after evolution

True ground state wave function

46



FEEDFORWARD NEURAL NETWORKS

Inspired by the structure of the brain
Nodes are organized into layers, connections between neighboring layers

Compose affine transformations with nonlinear activation functions

highly optimized, trainable simple, fast, fixed

Universal approximation theorem: An FFNN with one hidden layer and
enough hidden neurons can approximate any continuous function on a
compact domain, to any desired accuracy.

Backpropagation: Method for computing the gradient of an FFNN
using the chain rule.

47
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BUILDING BLOCKS’
4 1\ (= hYS A

- N —/D

\ Linear transformations J \ Translations J \ Activation functionSv>
/ \ ( \ Applied element-

wise, need to be fast
D:!::]; ];:I and nonlinear

\ Pooling operations J \Concatenation operations/

48 * for the neural networks in this talk...




BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange

P(X) = e/ OPX)
/ X = {Xi}ﬁ'\;l
\ X; = (r;, SZZ)
symmetric antisymmetric

Use a permutation-invariant Deep Set for the symmetric part:

100) = p (pool (16)17,) )

49




EMBEDDINGS

Learned mapping of inputs to a vector space (usually lower
dimensional)

Correlations can be easier to disentangle by temporarily

King

Queen
Royal

Woman
Man

A

mapping to a higher dimensional space




GRAPH NEURAL NETWORKS

Generalize convolutional neural networks by extending local neighborhood aggregation from regular grids
to arbitrary graph structures

How will my friend’s decision to attend my party be influenced
by our friends?

ﬁ Nodes = people (availability, location, age, job, etc...)

Edges = relationships (closeness, communication
frequency, duration of friendship, shared interests...)

ﬁ ﬁ Graph neural networks preserve the structure of the graph

Permutation equivariance

51



GRAPH NEURAL NETWORKS

Generalize convolutional neural networks by extending local neighborhood aggregation from regular grids

to arbitrary graph structures

A

How will a particle’s state be influenced by the other particles?
Nodes = particles (spatial coordinates, spin, isospin...)
Edges = relationships (distance, separation vector, spin/
isospin alignment, ...)

Graph neural networks preserve the structure of the graph

Permutation equivariance

52



MESSAGE-PASSING NEURAL NETWORKS

Iteratively builds local correlations by passing “messages” along edges
Used to find better representations of one- and two-body features of quantum system

New embeddings are used in place of the raw features

e dpe gt

Input graph Update edges Update nodes Output graph

h; € R™
|

%

h, € Rk

53



MESSAGE-PASSING NEURAL NETWORKS

fort =1, ..., T:

m® = M, (h(."l), h¢-, h<.’f—1>>
Yy l J Yy

h® — (X G <h(r—1> m(z)))
ij i e\
m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))
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MESSAGE-PASSING NEURAL NETWORKS

M, hgo) =X; = (r;, 55 t7)

A R |

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1, ..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

G, h® = x; = (r;, 57, 1)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1,..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

() —
h™ =x; = (r; s, 1Y)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1, ..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

0 _ v —
hl. =Xx; = (r,, siz, tl.z)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1,..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

() —
h™ =x; = (r; s, 1Y)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1, ..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

0 _ v —
hl. =Xx; = (r,, siz, tl.z)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1,..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

() —
h™ =x; = (r; s, 1Y)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1, ..., T:

m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))




MESSAGE-PASSING NEURAL NETWORKS

pool

62

() —
h™ =x; = (r; s, 1Y)

0
hY = x; = (s gl 57, 7, 17, 1)

fort =1, ..., T:

m® = M, (h(."l), h¢-, h<.’f—1>>
Yy l J Yy

h® — (X G <h(r—1> m(r)))
ij i e\




MESSAGE-PASSING NEURAL NETWORKS
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() —
h™ =x; = (r; s, 1Y)

0
hgj ) — X; = (rl.j, ||rl.j||, sl.z, sjz, tl.z, tjz)

fort =1, ..., T:

m® = M, (h(."l), h¢-", h<.'f—1>>
Yy l J Yy

h® — (X G (h(r—l) m(r)))
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MESSAGE-PASSING NEURAL NETWORKS

hl(.o) =X; = (¥, 57, 1))
hY = x; = (s gl 57, 7, 17, 1)
fortr=1,..., T:
m® <M, (=D, 1D, n=D)
ij i J Y
h® = (x h¢-b m(’)>>
ij ij ijooC

m{? = pool ((m|] # 1} )

- (o)
i L i >

69




MESSAGE-PASSING NEURAL NETWORKS

0 _ « _— 7 42
hO = x, = (r, 55, 1)
0) — —
hf]) = Xij - (rl:]" ”rl:]'”’ Siz’ sz’ tlz’ l:]Z)
forr=1,...,T:

m? = M, (h{~), hi-D, ho-D)
Yy l J Yy

h® — (X G (h(r—n m(r)))
ij i 2\
m{? = pool ((m|] # 1} )

ho = (x F, (h(."l), m@))
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BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange

P(X) = e/ OPX)
/ X = {Xi}f'\;l
\ X; = (r;, SZZ)
symmetric antisymmetric

Use a permutation-invariant Deep Set for the symmetric part:
J(X) = p (pool ({px)1,) )

Use a permutation-equivariant graph neural network to find a higher-dimensional embedding:
h, € R

X; E
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ATTENTION MECHANISMS

First developed for natural language processing
Scores the relevance of each feature w.r.t. the context, then uses those scores to weight the features

One of the key elements of transformer architectures

Example: What’s the meaning of the word bank?
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It depends on the context!
She withdrew money from the bank.

He watched the sunset from the river bank.
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ATTENTION MECHANISMS

First developed for natural language processing
Scores the relevance of each feature w.r.t. the context, then uses those scores to weight the features

One of the key elements of transformer architectures

Example: What’s the meaning of the word bank?
They decided to meet at the bank.

It depends on the context! .@.

She withdrew money from the bank.

P N

He watched the sunset from the river bank.

77 A. Vaswani et al., arXiv:1706.03762 (2017).



ATTENTION MECHANISMS

Query: What information am looking for? (question) 0= XW,

Key: How should | recognize the information? (label) K=XWg

Value: What is the information | actually retrieve? (content) V = XW,,

Mask (opt.)

. OKT
Attention(Q, K, V) = softmax \/7 %
k

Q K V

78 A. Vaswani et al., arXiv:1706.03762 (2017).




HOMOGENEOUS ELECTRON GAS

T

Classic benchmark system

e
Many-body methods begin to struggle at low densities, o ‘ & a |
where correlations from the long-range Coulomb

interaction dominate =—— Wigner crystal

In this work, we developed a message-passing neural
network with an attention mechanism

Far fewer trainable parameters than other NQS
Scales easily to larger systems

“Pays attention” to relevant features based on
neighboring particles

G. Pescia, JK, et al., PRB 110, 035708 (2024). 79 Yen-Chen Tsui, Princeton University.
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80 G. Pescia, JK, et al., PRB 110, 035108 (2024).




Efficiency allowed calculations of N = 128 in continuous space — largest system tackled by NQS

Evidence of Wigner crystallization appears between r, = 50 — 110

T1G11] E— g oo

______________

~—
N

—————————————————————————————————————————————

025} e =0
| i . —— BCC Wigner ! | P
0 1 2 3 4 0 1 2 |K|3 4 5

81 G. Pescia, JK, et al., PRB 110, 035108 (2024).




BUILDING A NEURAL QUANTUM STATE

Fermionic wave functions need to be antisymmetric w.r.t. particle exchange

P(X) = e/ OPX)

X = {Xi}f.\;
/ \ x; = (r;, sf;

symmetric antisymmetric

The antisymmetric part is entirely responsible for the nodal structure of the wave function




ANTISYMMETRY

Antisymmetry under particle exchange:  ®(..., X;, ..., X;, ...) ces Xy oal)

Mean-field approximation: Particles assumed to be independent, subject to an average field

Ground state wave function is an antisymmetrized product of
single-particle states

A
0

Z‘G’j‘" z Vi "’Zui

i<j i<j<k

4 .
. S
. \
. )
.
4 :
'
E '
L "
5 ’
L ’
v ’
.
.
" -50
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ANTISYMMETRY

/—\ Scales as O(N'!)
1
!

O(X) = o [¢1(X1)“'¢N(XN)] = N1 Z s80(0)P,(1)(X1) Do) (Xy)

" 6ESy

Slater determinant: More efficient way of antisymmetrizing a product of single-particle orbitals

A

=)

[ hi(x) D) - P(xy) |

Dx) = det | P20 A0l

| Ov(XD) Py(Xp) - (X))

)

Scales as O(N?) _50
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NEURAL SLATER DETERMINANTS

The antisymmetric part of a NQS is usually based on a Slater determinant:

hi(x) Pi(xy) e qbl(xN)?

Replace with neural networks

d(X) = det ¢2(.X1) sz(.xz) ¢2(:XN)

_¢N(X1) Pn(Xy) - qu(XN)_

This is insufficient for strongly-correlated fermions...

85




ULTRACOLD FERMI GASES

Characterized by strong, attractive, short-ranged interactions
Can be experimentally measured and manipulated with high accuracy

Ideal testbed for developing a flexible NQS capable of capturing superfluidity

".» o ',:t‘:""\::\‘ :., -‘I\.-'- ” ‘-‘
QR0 @ 0.0 \
.__‘, .-
BCS Unitary BEC
< = > 1/kpa
—00 +00
Weakly attractive Strongly irgteracting Weakly repulsive superfluid

86 JK et al., Commun. Phys. 7, 148 (2024).



NEURAL PFAFFIAN

Simplest and most general way to build an antisymmetrized product of pairing orbitals

0 DX, X)) o (X, Xy) ]
—P(x1,X,) 0 e (Xp, Xy) r\

Only one neural network

O(X) = pf

__¢(X1’ Xy) —¢(Xp,Xy) o 0 P(x; X)) = v(x;, X)) — v(X;, X;)

For a special choice of ¢, this is equivalent to a Slater determinant!

87 JK et al., Commun. Phys. 7, 148 (2024).



NEURAL PFAFFIAN

=== DMC-PW —l— SJ-PW
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f r . BCS nodal surface
| 2 5
MPNN Depth T

88 JK et al., Commun. Phys. 7, 148 (2024).




NEURAL PFAFFIAN
1.0

—&— DMC-BCS

—1.54
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Laky JK et al., Commun. Phys. 7, 148 (2024).




NEURAL PFAFFIAN
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The number of trainable parameters
does not depend on particle number

Transfer learning can be exploited to
reach larger systems faster

JK et al., Commun. Phys. 7, 148 (2024).



