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Correlation functions

correlations between particle momenta can be measured in heavy-ion collisions
(femtoscopy) Lisa, Pratt, Soltz, Wiedemann, ARNPS 55 (2005), Fabbietti, Mantovani Sarti, Vazquez
Doce, ARNPS 71 (2021)

pratical definition of correlation: C(k1, k2) =
P(k1,k2)

P(k1)P(k2)
with probability distributions P
have an imprint of creation process and of final-state interactions
➔ if the source is approximately known, we can use it to study the interaction

theoretical counterpart:
C(k1, k2) =

cNN
N

∑
m1,m2

∫
dr1

∫
dr2S1(r1)S1(r2)|Ψm1,m2(k1r1, k2r2)|2

with single-particle source function S1 and wave function Ψ
integrating out the center-of-mass dependence yields the Koonin-Pratt formula:
C(k) = cNN

N
∑

m1,m2

∫
drS(r)|Ψm1,m2,k(r)|

2

averaging over the angle of k yields:
C(k) = cNN

4πN
∑

m1,m2

∫
dΩk

〈
Ψm1,m2,k

∣∣S(r)∣∣Ψm1,m2,k
〉
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Correlation functions II

typically evaluated in partial-wave basis with truncations
➔ truncation parameters jmax,int and jmax,free

C(k) = cNN

4πN
∑

0≤j≤jmax,int

∑
l,s,t,l′

wj

∫
dr r2S(r)

∣∣∣Ψ(l′)
k;(l,s,)j,t,mt

(r)
∣∣∣2

+
cNN

4πN
∑

jmax,int<j≤jmax,free

∑
l,s,t

wj

∫
dr r2S(r)

∣∣∣Ψ(free)
k;(l,s,)j,t,mt

(r)
∣∣∣2

source function is typically Gaussian: S(r) =
(
4πρ2)−3/2 e−r2/(4ρ2)

Ψ
(l′)
k;(l,s,)j,t,mt

(r) is obtained by solving the coupled-channel Schrödinger equation
nuclear tensor force couples spin-1 channels with l = l− = j− 1 and l = l+ = j+ 1(
∂2
r − l̂(̂l+1)

r2 + k2
)

uk;α(r)− 2µVα(r)uk;α(r) = 0 with α = {s, j, t,mt}

boundary condition: jl or Fl as incoming wave in partial-wave l

u(l)k;α(r) =

u(l)k;l−,α
(r)

u(l)k;l+,α
(r)

 →

δl,l− j̃l(kr) + T(l,l−)

k;α h̃+l− (kr)

δl,l+ j̃l(kr) + T(l,l+)
k;α h̃+l+ (kr)



January 21, 2026 | Nuclear Physics Institute, Czech Academy of Sciences | M. Göbel | 3



Correlation functions II

typically evaluated in partial-wave basis with truncations
➔ truncation parameters jmax,int and jmax,free

C(k) = cNN

4πN
∑

0≤j≤jmax,int

∑
l,s,t,l′

wj

∫
dr r2S(r)

∣∣∣Ψ(l′)
k;(l,s,)j,t,mt

(r)
∣∣∣2

+
cNN

4πN
∑

jmax,int<j≤jmax,free

∑
l,s,t

wj

∫
dr r2S(r)

∣∣∣Ψ(free)
k;(l,s,)j,t,mt

(r)
∣∣∣2

source function is typically Gaussian: S(r) =
(
4πρ2)−3/2 e−r2/(4ρ2)

Ψ
(l′)
k;(l,s,)j,t,mt

(r) is obtained by solving the coupled-channel Schrödinger equation
nuclear tensor force couples spin-1 channels with l = l− = j− 1 and l = l+ = j+ 1(
∂2
r − l̂(̂l+1)

r2 + k2
)

uk;α(r)− 2µVα(r)uk;α(r) = 0 with α = {s, j, t,mt}

boundary condition: jl or Fl as incoming wave in partial-wave l

u(l)k;α(r) =

u(l)k;l−,α
(r)

u(l)k;l+,α
(r)

 →

δl,l− j̃l(kr) + T(l,l−)

k;α h̃+l− (kr)

δl,l+ j̃l(kr) + T(l,l+)
k;α h̃+l+ (kr)


January 21, 2026 | Nuclear Physics Institute, Czech Academy of Sciences | M. Göbel | 3



Nucleon-nucleon interactions

Argonne V18 (AV18) Wirigna, Stoks, Schiavilla, PRC 51 (1995)
long-range part given by one-pion exchange
short-range part is phenomenological (terms: central, tensor, spin-orbit, quadratic
spin-orbit, L2)
fitted to phase shift data up to Tlab = 350 MeV

Norfolk interactions Piarulli et al., PRC 94 (2016)
following the chiral EFT approach

– consistent with chiral symmetry
– power counting determines which terms are present

N3LO
local formulation, ∆ excitations included
versions differing in fit region

– NV2-I: Tlab ≤ 125 MeV
– NV2-II: Tlab ≤ 200 MeV

versions differing in regulation scale
– a: RS =0.8 fm, RL =1.2 fm
– b: RS =0.7 fm, RL =1.0 fm
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Composition of correlation functions

pp correlation function as an example for the composition of correlation functions

C(k) = cNN
4πN

∑
0≤j≤jmax,int

∑
l,s
∑

l′
∫
dr r2S(r)

∣∣∣Ψ(l′)
k;(l,s),j,t(r)

∣∣∣2
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9

at low k dominated by lowest partial waves
peak almost entirely given by j = 0 contribution (mostly s-wave)
to get C(k) = 1 for k → ∞: the larger the k, the more partial waves are necessary
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Composition of correlation functions
Difference between free and interacting contributions

single components of the pp correlation function of specific j

Cj(k) = cNN
4πN

∑
l,s
∑

l′
∫
dr r2S(r)

∣∣∣Ψ(l′)
k;(l,s),j,t(r)

∣∣∣2
free contribution (dashed line) vs. interacting contribution (solid line)
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j
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the s-wave component displays largest difference
the biggest deviation moves with higher j to higher k
(interplay of centrifugal barrier (almost free at low k) and being almost free at
high k)
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Convergence in the partial waves

0 100 200 300 400 500
k [MeV]

7

6

5

4

3

2

1

0

1

re
l. 

de
v. 

[%
]

pp
jmax, free = 35

= 1.249 fm
ref. jmax, int = 7

jmax, int = 1
NV2-IIa
NV2-IIb
AV18

jmax, int = 3
NV2-IIa
NV2-IIb
AV18

jmax, int = 5
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using jmax,int = 5 results in convergence better than 1 % for k < 500 MeV
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Influence of the coupling between different channels

effect of coupling often neglected ➔ quantification important
quantify effect in terms of relative deviation (Ccpld.(k)/Cuncpld.(k)− 1) in %
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effect of coupling due to the tensor force is much larger for np than for nn and pp
antisymmetrization condition: (−1)l+s+t = −1
lowest coupled channels for nn and pp: 3P2-3F2
lowest coupled channels for np: 3S1-3D1
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Correlation functions for different source radii ρ

pp collisions lead to smaller source radii compared to, e.g., Pb-Pb collisions
pp @

√
s = 13 TeV: ρ = 1.249 fm Acharya et al., PLB 805 (2020)

Pb-Pb @
√
sNN = 2.76 TeV: ρ ≈ 4 fm (depends also on selected mT) Adam et al., PRC

92 (2015)
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less pronounced peak
smaller “dip” at intermediate k
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Sensitivity to the NN interaction
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sensitivity of up to 5.9 % for nn
sensitivity of up to 1.8 % for np, 1.4 % for pp
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Sensitivity to the NN interaction
Source-radius-dependence

0 100 200 300 400 500
k [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
l. 

de
v.

 o
f C

(k
) [

%
] np

jmax, int = 8
jmax, free = 35

NV2-IIa <-> AV18
= 1.0 fm
= 1.249 fm
= 2.0 fm

NV2-IIb <-> AV18
= 1.0 fm
= 1.249 fm
= 2.0 fm

the larger the source radius, the smaller the sensitivity
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Sensitivity on the interaction
Connection to phase shifts

compare NV2-I and NV2-II interactions
NV2-I: fitted phase shifts up to Tlab = 125 MeV ↔ k ≈ 242 MeV
NV2-II: fitted phase shifts up to Tlab = 200 MeV ↔ k ≈ 307 MeV
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in regions where phase shifts are reproduced better the correlation functions are
more similar

➔ correlation functions and phase shifts seem to capture similar information
"unphysical" off-shell behavior might be also captured, but this illustrates the strong
connection to the phase shifts
C(k) might be especially useful in systems with scarce scattering data
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Simplified approaches for calculating correlation functions
Gaussian representation

one might want to infer effective-range-expansion parameters directly from C(k)
simplified approaches are useful for this purpose
one approach: Gaussian representation
local Gaussian potential: V(r) = VGe−(r/rG)

2
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Gaussian parameterization has an accuracy of about 3 % in the peak region
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Simplified approaches for calculating correlation functions
Lednický-Lyuboshitz approach

idea

use asymptotic wave function over complete range of r to calculate C(k) Lednický,
PPN 40 (2009)

asymptotic wave function determined by scattering amplitude

correlation function as sum of spin singlet (S) and spin triplet (T) contribution

C(k) = 1
4

∫
dr S(r)

∣∣∣Ψ(S)
−k(r) + Ψ

(S)
+k(r)

∣∣∣2 + 3
4

∫
dr S(r)

∣∣∣Ψ(T)
−k(r)−Ψ

(T)
+k (r)

∣∣∣2
Ψ

(i)
−k(r) = eiδc

√
Ac(η)

[
e−ikrF(−iη, 1, iξ) + δi,Sfc,0(k)G̃0(kr, η)/r

]
confluent hypergeometric function F (stems from sum over Fl)
G̃l =

√
Ac(η) (Fl + iGl), a combination of Coulomb wave functions

remarks

takes all free waves into account
extension beyond s-wave due to divergence structure of Gl problematic
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Simplified approaches for calculating correlation functions
Lednický-Lyuboshitz approach II

comparison of pp correlation function based on AV18 and based on LL approach
(using corresponding ERE parameters)
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= 1.249 fm
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for smaller source radii LL approach works not so well
(about 40 % dev. in peak region for ρ = 2 fm, about 20 % dev. for ρ = 3 fm)
similar findings were reported for pd system Rzesa, Stefaniak, Pratt, PRC 111 (2025)
possible fix: use regularized Gl: Gl → Gl

(
1− e−γr)

works quite well for γ = 1.0 fm−1

has scale dependence, Gaussian parameterization might be the better approach
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Conclusion & Outlook

Conclusion

detailed study of NN correlations based on different interactions (also chiral ints.)
studied convergence behavior in detail ➔ important for accurate results
correlation functions are sensitive to nuclear interactions, captures similar
information as phase shift
➔ especially important in sectors with scarce scattering data
benchmarked more approximate, effective approaches such as
Lednický-Lyuboshitz approach or Gaussian representation

Outlook

study hyperon-nucleon correlation function
calculation of Λd correlation function using hyperspherical harmonics formalism
(Λ + p+ n)
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Part II

E1 strength distributions
following Coulomb dissociation

&
finite-range interactions

in collaboration with H.-W. Hammer and D. R. Phillips
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6He in Halo EFT

E1 strength distribution dB(E1)/dE is an interesting and experimentally well
accessible observable
dB(E1)/dE of 6He has also in theory been extensively investigated

often in cluster models , e.g., Cobis et al., PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002),
Grigorenko et al., PRC 102 (2020)

recently also in cluster E(F)Ts Bertulani, PRC 108 (2023), Pinilla et al., PRC 112 (2025)

calculate dB(E1)/dE of 6He in Halo EFT
EFT for halo nuclei Hammer et al., JPG 44 (2017)

α core and two neutrons as degrees of freedom
two-body interactions parameterized in terms of effective-range expansion (ERE)
parameters
three-body interaction for renormalizing three-body system
systematic improvability and uncertainty estimates

three-body dynamics are described in terms of Faddeev equations
three-body wave functions can afterwards be assembled from Faddeev amplitudes

speciality: use finite-range interactions, wherever more than one ERE parameter
needs to be fitted
➔ avoids difficulties with energy-dependent interactions
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Leading-order results
(preliminary)

compare zero-range (ZR) and finite-range (FR) results for different cutoffs Λ
Λ1 = 500 MeV, Λ2 = 750 MeV, Λ3 = 1000 MeV

left: dB(E1)/dE itself; right: shape of dB(E1)/dE
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➔ zero-range (ZR) approach has convergence issue in Λ, related to V(E)
➔ finite-range (FR) approach is convergent
➔ results for the shape agree
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Going to NLO

inclusion of the different NLO effects in the finite-range approach
(2S1/2 nc int., r0-term of 1S0 nn int., (UT of 2P3/2 nc int. in FR already LO))
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NLO

➔ NLO corrections have the expected size
➔ NLO correction from 2S1/2 nc int. much stronger than from nn r0 term
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Final-state interactions and partial waves

calc. FSI via Møller operator: e.g. nn FSI:
c⟨p, q; Ωc|Ωnn = c⟨p, q; Ωc|+ c⟨p, q; Ωc| tnn(Ep)G0(Ep)

also apply multiple FSIs by using products of Møller
operators: e.g. ΩnnΩnc;1,3/2 Göbel, Acharya, Hammer, Phillips, PRC 107

(2023)

a priori the matrix element of the ti acting in the jk
subsystem is known for i (= Si) as spectator
i⟨p, q; Ω|ti(E3)|p′, q′; Ω′⟩i

➔ recoupling between states of different spectators
and different partial waves in some cases necessary
strategy: make use of relation for
S,S′

T p,q|p′,q′

Ω,Ω′ f(p′, q′) :=∫
dp′ p′2 ∫ dq′ q′2

S⟨p, q; Ω|p
′, q′; Ω′⟩S′ f(p′, q′)

simplify analytically to reduce number of numerical
integrations (Wigner 3nj symbols etc.)

p

q

n

n′

c

spectator: c

p

q

n

n′

c

spectator: n
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NLO results with FSIs I

all FSIs (also 2S1/2 nc FSI) in comparison on the basis of the NLO ground state
overall E1 strength obtained from

〈
r2c
〉
via sum rule
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➔ sum rule fulfilled except for one FSI, which is missing unitarity term (UT)
according to power counting

➔ nn FSI is more important than 2P3/2 nc and 2S1/2 nc FSIs
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NLO results with FSIs II

now also FSI based on products of three Møller operators (third order)
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➔ effects of going to third order in FSI approximation quite strong
➔ strong variation between different orders of applying the single FSIs; in any case

stronger than nn FSI only
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NLO results in comparison with experimental data

folded with detector resolution
uncertainty estimated according to power counting
in comparison with experimental data from Sun et al., PLB 814 (2021)
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➔ acceptable agreement
➔ including FSI up to third order important for agreement
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Conclusion and outlook

Conclusion

finite-range interactions for p-wave nc interaction work well
➔ convergence of the E1 distribution in cutoff Λ
NLO correction due to s-wave nc interaction important ➔ reduces E1 strength
FSI effects beyond leading order in the Møller operator significant ➔ increases E1
strength
acceptable agreement with experimental data

Outlook

full three-body calculation of FSI work in progress
use these interactions also to calculate nn relative-energy distribution at NLO
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Convergence in partial waves
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Convergence in partial waves II
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convergence behavior is similar for all three systems
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Gaussian representation

relative deviation between result from Gaussian representation and full calculation
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Wave functions of regularized Lednický-Lyuboshitz approach

squares of radial wave functions from direct calculation, from LL approach, and from
regularized LL approach in comparison
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E1 strength distributions in halo EFT

E1 strength as an interesting observable

parameterizes the Coulomb dissociation cross
section: dσ

dE ∝ dB(E1)
dE

characteristic property of halo nuclei
for 2n halos reltd. to a large core distance rc

E1 strength of 11Li in halo EFT

good agreement
with experimental
data from Nakamura et

al., PRL 96 (2006) was
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E1 strength of 6He

E1 strength of 6He extensively investigated based on different models , e.g., Cobis et al.,

PRL 79 (1997), Danilin et al., NPA 632 (1998), Forssén et al., NPA 697 (2002), Grigorenko et al., PRC 102 (2020)

recent E(F)T results
using an asymptotic three-body w. f. Bertulani, PRC 108 (2023)

using coord.-space approach and pseudostate method for FSI Pinilla et al., arXiv (2024)

standard halo EFT description of the 6He ground state Ji, Elster, Phillips, PRC 90 (2014), Göbel,

Hammer, Ji, Phillips, FBS 60 (2019)

for p-wave nα int. (2P3/2): Bedaque, Hammer, van Kolck, PLB 569 (2003):
1/a1 ∼ MhiM2

lo and r1 ∼ Mhi ➔ one fine tuning; tnc ∝
(
1/a1 − r1k2/2

)−1

zero-range rank-1 separable int. requires energy dependency for reproduction of ERE
in QM this corresponds to energy-dependent potentials H → H(E)
solutions of H @ different E are in fact solutions of different H
Formánek, Lombard, Mareš, CJP 54 (2004)

➔ corrections ∝ ∂EV to expectation values and normalization are necessary
probability density of 6He: ∀ p, q < Mhi: corrections to the normalization are most
important Göbel, Hammer, Ji, Phillips, FBS 60 (2019)
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Finite-range EFT

implication for dB(E1)
dE in zero-range halo EFT

shape: no problem
absolute value: would require correction terms

avoid V(E) by using rank-1 separable int. which is finite-range

might induce higher-order terms in the ERE
EFT aim can still be realized

systematic improvability is given
uncertainty estimates by comparing different-order results

finite-range interactions in use: Yamaguchi (YM) interactions Yamaguchi, PR 95 (1954)

work well in momentum-space Faddeev calculations
have already two parameters ➔ ideal for p-wave nα int.
extension of YM form factors ➔ more parameters ➔ reproducability of more ERE
terms

Yamaguchi interaction is a rank-one separable interaction:
⟨p, l|V̄l|p

′, l′⟩ = δl,l′δl,̄lgl(p)λlgl(p′)

with YM form factors gl(p) := pl β4
l

(p2+β2
l )

2
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Obtaining the E1 distribution of 6He

approach: 6He in halo EFT
1. calculate wave functions Ψc;Ω(p, q) (for different partial waves Ω)
2. evaluate the E1 operator
3. take final-state interactions into account
4. obtain E1 strength distribution

dB(E1)
dE = 1

2Ji+1
∑

Mi,µ

∫
dτf | ⟨f|M(E1, µ)|i; Ji,Mi⟩|2 δ(E − Ef)

tool: halo EFT
�πEFT
core & valence nucleons as degrees of freedom
results are expanded in k/Mhi
→ systematic improvement possible

properties of 6He
Borromean 2n halo
separation of scales: S2n = 0.975MeV < E∗

α ≈ 20MeV
quantum numbers: Jπ = 0+ (4He: Jπ = 0+)
leading-order (LO) halo EFT interaction channels:
nn: 1S0; nc: 2P3/2
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Leading-order Lagrangian

L1 =
c

+
n

L2 = +

L2 = + +

[
+ + H. c.

]

L3 =
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Leading-order Faddeev equations

use EFT in dimer formalism

1. step: obtain dressed dimer propagators

= +

= +

2. step: set up equations for Faddeev transition amplitudes

An = Ac + An

Ac = 2× An
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& renormalize using input values
a1, r1

a0

three-body force required for renormalization
diagram shows case of vanishing three-body force
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Results for the wave function

calculated ground-state wave functions and probability densities in halo EFT
Göbel, Hammer, Ji, Phillips, FBS 60 (2019)
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2D E1 distributions

definition: dB(E1)
dE1E2

= 1
2Ji+1

∑
Mi,µ

∫
dτf | ⟨f|M(E1, µ)|i; Ji,Mi⟩|2 δ

(
E1 − E(f)

1

)
δ
(
E2 − E(f)

2

)

➔ peak position fits expectation based on ann
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