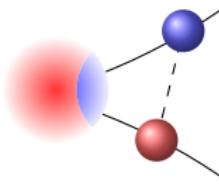


Hirschegg 2026 - Challenges in effective field theory descriptions of nuclei

Nucleon-nucleon correlation functions from different interactions in comparison

Phys. Lett. B 869 (2025); arXiv:2505.13433

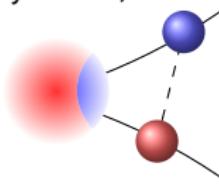


Matthias Göbel
Nuclear Physics Institute, Czech Academy of Sciences, Řež
in collaboration with A. Kievsky

Correlation functions

- correlations between particle momenta can be measured in heavy-ion collisions (femtoscopy) [Lisa, Pratt, Soltz, Wiedemann, ARNPS 55 \(2005\)](#), [Fabbietti, Mantovani Sarti, Vazquez Doce, ARNPS 71 \(2021\)](#)

- practical definition of correlation: $C(\mathbf{k}_1, \mathbf{k}_2) = \frac{\mathcal{P}(\mathbf{k}_1, \mathbf{k}_2)}{\mathcal{P}(\mathbf{k}_1)\mathcal{P}(\mathbf{k}_2)}$
with probability distributions \mathcal{P}
 - have an imprint of creation process and of final-state interactions
→ if the source is approximately known, we can use it to study the interaction



Correlation functions

- correlations between particle momenta can be measured in heavy-ion collisions (femtoscopy) Lisa, Pratt, Soltz, Wiedemann, *ARNPS 55 (2005)*, Fabietti, Mantovani Sarti, Vazquez Doce, *ARNPS 71 (2021)*
 - practical definition of correlation: $C(\mathbf{k}_1, \mathbf{k}_2) = \frac{\mathcal{P}(\mathbf{k}_1, \mathbf{k}_2)}{\mathcal{P}(\mathbf{k}_1)\mathcal{P}(\mathbf{k}_2)}$
with probability distributions \mathcal{P}
 - have an imprint of creation process and of final-state interactions
→ if the source is approximately known, we can use it to study the interaction
- theoretical counterpart:
$$C(\mathbf{k}_1, \mathbf{k}_2) = \frac{c_{NN}}{N} \sum_{m_1, m_2} \int d\mathbf{r}_1 \int d\mathbf{r}_2 S_1(\mathbf{r}_1) S_1(\mathbf{r}_2) |\Psi_{m_1, m_2}(\mathbf{k}_1 \mathbf{r}_1, \mathbf{k}_2 \mathbf{r}_2)|^2$$

with single-particle source function S_1 and wave function Ψ
- integrating out the center-of-mass dependence yields the Koonin-Pratt formula:
$$C(\mathbf{k}) = \frac{c_{NN}}{N} \sum_{m_1, m_2} \int d\mathbf{r} S(\mathbf{r}) |\Psi_{m_1, m_2, \mathbf{k}}(\mathbf{r})|^2$$
- averaging over the angle of \mathbf{k} yields:
$$C(k) = \frac{c_{NN}}{4\pi N} \sum_{m_1, m_2} \int d\Omega_{\mathbf{k}} \langle \Psi_{m_1, m_2, \mathbf{k}} | S(\mathbf{r}) | \Psi_{m_1, m_2, \mathbf{k}} \rangle$$

Correlation functions II

- typically evaluated in partial-wave basis with truncations
→ truncation parameters $j_{\max, \text{int}}$ and $j_{\max, \text{free}}$

$$C(k) = \frac{c_{NN}}{4\pi N} \sum_{0 \leq j \leq j_{\max, \text{int}}} \sum_{l, s, t, l'} w_j \int dr r^2 S(r) \left| \Psi_{k; (l, s,)j, t, m_t}^{(l')} (r) \right|^2$$
$$+ \frac{c_{NN}}{4\pi N} \sum_{j_{\max, \text{int}} < j \leq j_{\max, \text{free}}} \sum_{l, s, t} w_j \int dr r^2 S(r) \left| \Psi_{k; (l, s,)j, t, m_t}^{(\text{free})} (r) \right|^2$$

- source function is typically Gaussian: $S(r) = (4\pi\rho^2)^{-3/2} e^{-r^2/(4\rho^2)}$

Correlation functions II

- typically evaluated in partial-wave basis with truncations
→ truncation parameters $j_{\max, \text{int}}$ and $j_{\max, \text{free}}$

$$C(k) = \frac{c_{NN}}{4\pi N} \sum_{0 \leq j \leq j_{\max, \text{int}}} \sum_{l, s, t, l'} w_j \int dr r^2 S(r) \left| \Psi_{k; (l, s, j, t, m_t)}^{(l')} (r) \right|^2$$
$$+ \frac{c_{NN}}{4\pi N} \sum_{j_{\max, \text{int}} < j \leq j_{\max, \text{free}}} \sum_{l, s, t} w_j \int dr r^2 S(r) \left| \Psi_{k; (l, s, j, t, m_t)}^{(\text{free})} (r) \right|^2$$

- source function is typically Gaussian: $S(r) = (4\pi\rho^2)^{-3/2} e^{-r^2/(4\rho^2)}$
- $\Psi_{k; (l, s, j, t, m_t)}^{(l')} (r)$ is obtained by solving the coupled-channel Schrödinger equation
 - nuclear tensor force couples spin-1 channels with $l = l_- = j - 1$ and $l = l_+ = j + 1$
 - boundary condition: j_l or F_l as incoming wave in partial-wave l

$$\mathbf{u}_{k; \alpha}^{(l)} (r) = \begin{pmatrix} u_{k; l_-, \alpha}^{(l)} (r) \\ u_{k; l_+, \alpha}^{(l)} (r) \end{pmatrix} \rightarrow \begin{pmatrix} \delta_{l, l_-} \tilde{j}_l (kr) + T_{k; \alpha}^{(l, l_-)} \tilde{h}_{l_-}^+ (kr) \\ \delta_{l, l_+} \tilde{j}_l (kr) + T_{k; \alpha}^{(l, l_+)} \tilde{h}_{l_+}^+ (kr) \end{pmatrix}$$

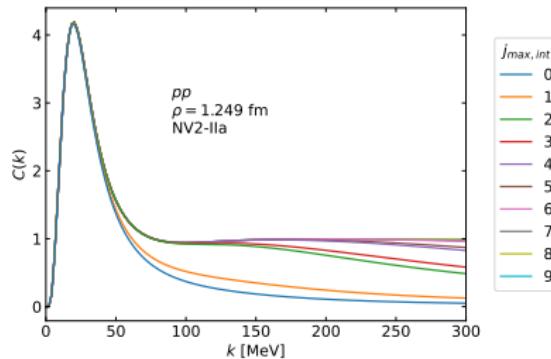
Nucleon-nucleon interactions

- Argonne V18 (AV18) [Wirigna, Stoks, Schiavilla, PRC 51 \(1995\)](#)
 - long-range part given by one-pion exchange
 - short-range part is phenomenological (terms: central, tensor, spin-orbit, quadratic spin-orbit, L^2)
 - fitted to phase shift data up to $T_{lab} = 350$ MeV
- Norfolk interactions [Piarulli et al., PRC 94 \(2016\)](#)
 - following the chiral EFT approach
 - consistent with chiral symmetry
 - power counting determines which terms are present
 - N3LO
 - local formulation, Δ excitations included
 - versions differing in fit region
 - NV2-I: $T_{lab} \leq 125$ MeV
 - NV2-II: $T_{lab} \leq 200$ MeV
 - versions differing in regulation scale
 - a: $R_S = 0.8$ fm, $R_L = 1.2$ fm
 - b: $R_S = 0.7$ fm, $R_L = 1.0$ fm

Composition of correlation functions

pp correlation function as an example for the composition of correlation functions

$$C(k) = \frac{c_{NN}}{4\pi N} \sum_{0 \leq j \leq j_{max,int}} \sum_{l,s} \sum_{l'} \int dr r^2 S(r) \left| \Psi_{k;(l,s),j,t}^{(l')}(r) \right|^2$$



- at low k dominated by lowest partial waves
- peak almost entirely given by $j = 0$ contribution (mostly s -wave)
- to get $C(k) = 1$ for $k \rightarrow \infty$: the larger the k , the more partial waves are necessary

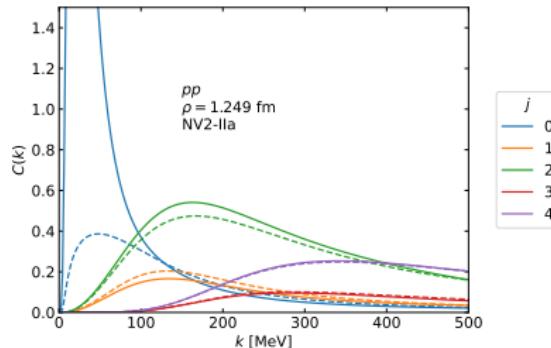
Composition of correlation functions

Difference between free and interacting contributions

- single components of the pp correlation function of specific j

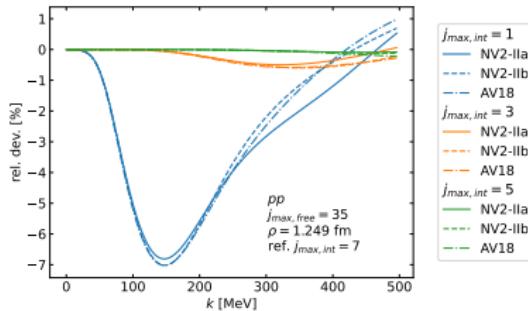
$$C_j(k) = \frac{c_{NN}}{4\pi N} \sum_{l,s} \sum_{l'} \int dr r^2 S(r) \left| \Psi_{k,(l,s),j,t}^{(l')}(r) \right|^2$$

- free contribution (dashed line) vs. interacting contribution (solid line)



- the s -wave component displays largest difference
- the biggest deviation moves with higher j to higher k
(interplay of centrifugal barrier (almost free at low k) and being almost free at high k)

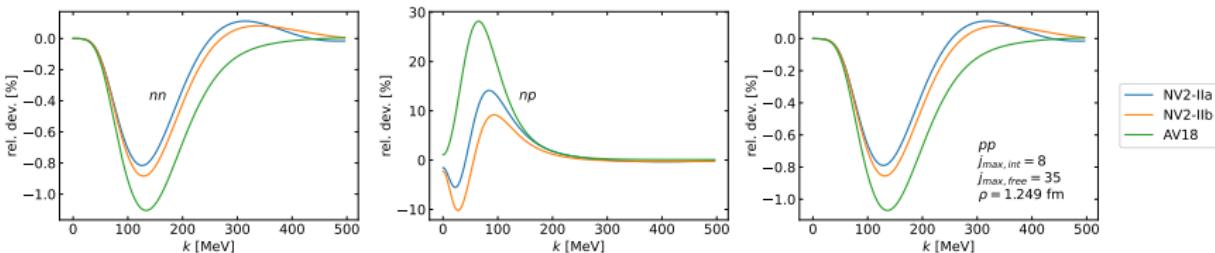
Convergence in the partial waves



- using $j_{\max, \text{int}} = 5$ results in convergence better than 1 % for $k < 500 \text{ MeV}$

Influence of the coupling between different channels

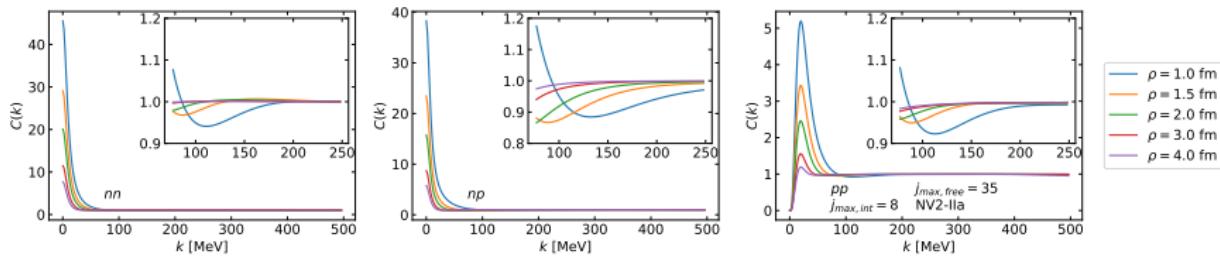
- effect of coupling often neglected → quantification important
- quantify effect in terms of relative deviation $(C_{\text{cpld.}}(k)/C_{\text{uncpld.}}(k) - 1)$ in %



- effect of coupling due to the tensor force is much larger for np than for nn and pp
 - antisymmetrization condition: $(-1)^{I+s+t} = -1$
 - lowest coupled channels for nn and pp : $^3P_2 - ^3F_2$
 - lowest coupled channels for np : $^3S_1 - ^3D_1$

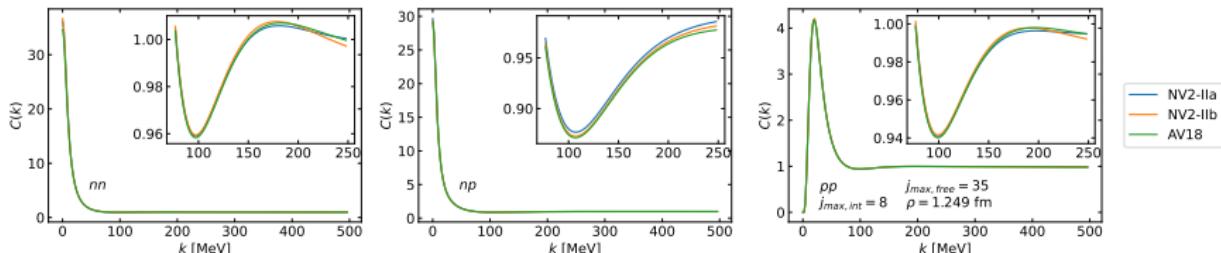
Correlation functions for different source radii ρ

- pp collisions lead to smaller source radii compared to, e.g., Pb-Pb collisions
 - pp @ $\sqrt{s} = 13$ TeV: $\rho = 1.249$ fm [Acharya et al., PLB 805 \(2020\)](#)
 - Pb-Pb @ $\sqrt{s_{NN}} = 2.76$ TeV: $\rho \approx 4$ fm (depends also on selected m_T) [Adam et al., PRC 92 \(2015\)](#)

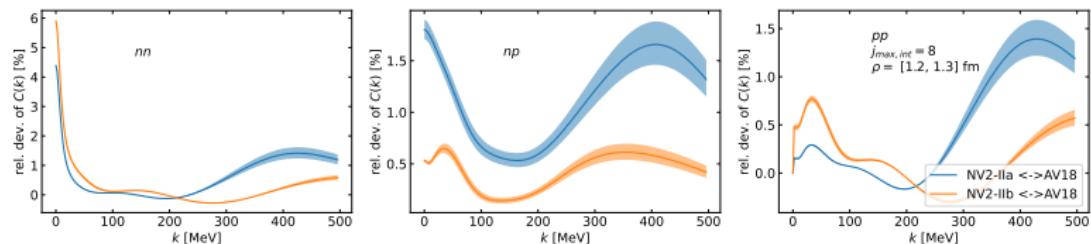


- smaller ρ lead to
 - less pronounced peak
 - smaller “dip” at intermediate k

Sensitivity to the NN interaction



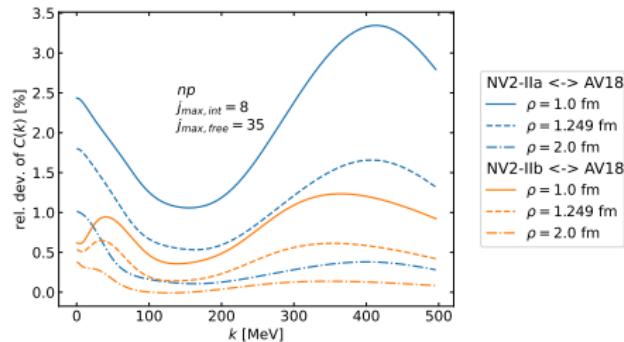
quantify effect in terms of relative deviation $(C_{\text{NV2-II}x}(k)/C_{\text{AV18}}(k) - 1)$ in %



- sensitivity of up to 5.9 % for nn
- sensitivity of up to 1.8 % for np , 1.4 % for pp

Sensitivity to the NN interaction

Source-radius-dependence

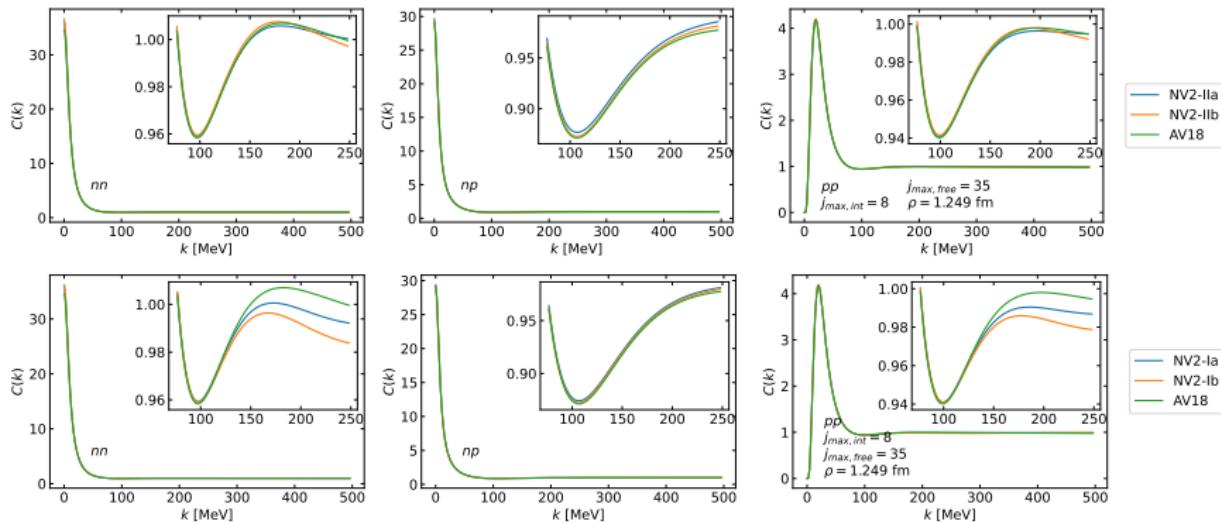


- the larger the source radius, the smaller the sensitivity

Sensitivity on the interaction Connection to phase shifts

■ compare NV2-I and NV2-II interactions

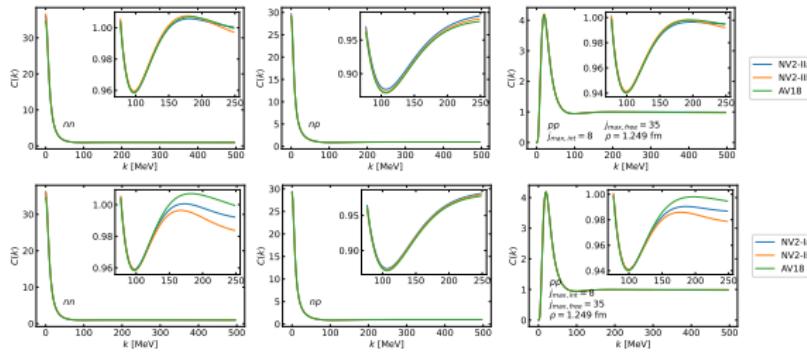
- NV2-I: fitted phase shifts up to $T_{lab} = 125$ MeV $\leftrightarrow k \approx 242$ MeV
- NV2-II: fitted phase shifts up to $T_{lab} = 200$ MeV $\leftrightarrow k \approx 307$ MeV



Sensitivity on the interaction Connection to phase shifts

■ compare NV2-I and NV2-II interactions

- NV2-I: fitted phase shifts up to $T_{lab} = 125$ MeV $\leftrightarrow k \approx 242$ MeV
- NV2-II: fitted phase shifts up to $T_{lab} = 200$ MeV $\leftrightarrow k \approx 307$ MeV



- in regions where phase shifts are reproduced better the correlation functions are more similar
- correlation functions and phase shifts seem to capture similar information
 - "unphysical" off-shell behavior might be also captured, but this illustrates the strong connection to the phase shifts
 - $C(k)$ might be especially useful in systems with scarce scattering data

Simplified approaches for calculating correlation functions

Gaussian representation

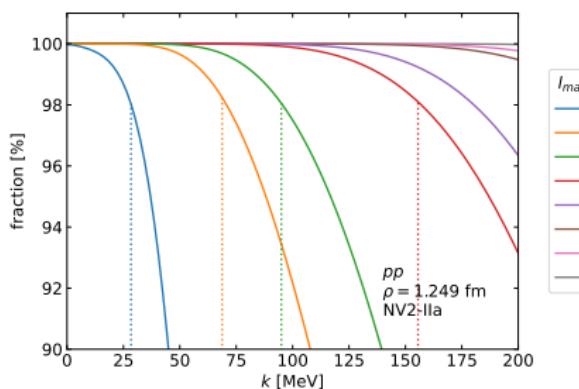
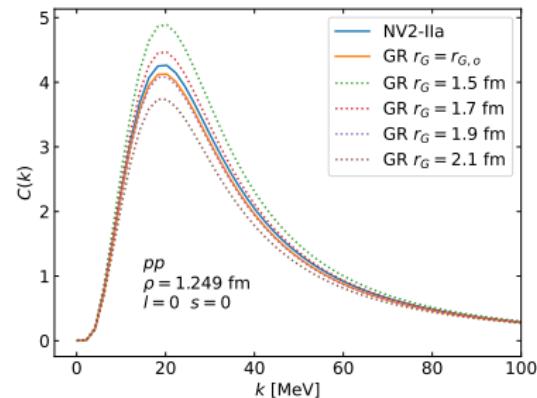
- one might want to infer effective-range-expansion parameters directly from $C(k)$
- simplified approaches are useful for this purpose
- one approach: Gaussian representation

local Gaussian potential: $V(r) = V_G e^{-(r/r_G)^2}$ (plus Coulomb interaction)

Simplified approaches for calculating correlation functions

Gaussian representation

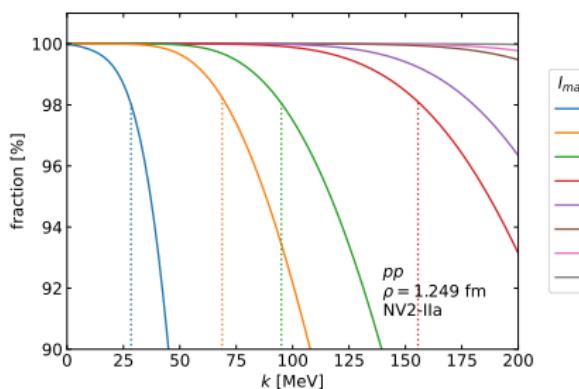
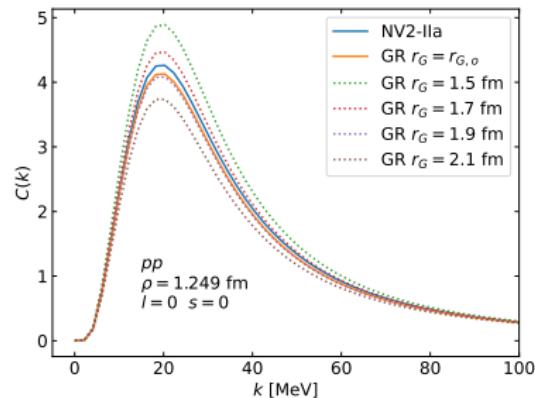
- one might want to infer effective-range-expansion parameters directly from $C(k)$
- simplified approaches are useful for this purpose
- one approach: Gaussian representation
local Gaussian potential: $V(r) = V_G e^{-(r/r_G)^2}$ (plus Coulomb interaction)



Simplified approaches for calculating correlation functions

Gaussian representation

- one might want to infer effective-range-expansion parameters directly from $C(k)$
- simplified approaches are useful for this purpose
- one approach: Gaussian representation
local Gaussian potential: $V(r) = V_G e^{-(r/r_G)^2}$ (plus Coulomb interaction)



- Gaussian parameterization has an accuracy of about 3 % in the peak region

Simplified approaches for calculating correlation functions

Lednický-Lyuboshitz approach

idea

- use asymptotic wave function over complete range of r to calculate $C(k)$ [Lednický, PPN 40 \(2009\)](#)
- asymptotic wave function determined by [scattering amplitude](#)

Simplified approaches for calculating correlation functions

Lednický-Lyuboshitz approach

idea

- use asymptotic wave function over complete range of r to calculate $C(k)$ [Lednický, PPN 40 \(2009\)](#)
- asymptotic wave function determined by [scattering amplitude](#)

correlation function as sum of spin singlet (S) and spin triplet (T) contribution

$$C(k) = \frac{1}{4} \int d\mathbf{r} S(\mathbf{r}) \left| \Psi_{-\mathbf{k}}^{(S)}(\mathbf{r}) + \Psi_{+\mathbf{k}}^{(S)}(\mathbf{r}) \right|^2 + \frac{3}{4} \int d\mathbf{r} S(\mathbf{r}) \left| \Psi_{-\mathbf{k}}^{(T)}(\mathbf{r}) - \Psi_{+\mathbf{k}}^{(T)}(\mathbf{r}) \right|^2$$

$$\Psi_{-\mathbf{k}}^{(i)}(\mathbf{r}) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-i\mathbf{k}\mathbf{r}} F(-i\eta, 1, i\xi) + \delta_{i,S} f_{c,0}(\mathbf{k}) \tilde{G}_0(kr, \eta) / r \right]$$

- confluent hypergeometric function F (stems from sum over F_I)
- $\tilde{G}_I = \sqrt{A_c(\eta)} (F_I + iG_I)$, a combination of Coulomb wave functions

Simplified approaches for calculating correlation functions

Lednický-Lyuboshitz approach

idea

- use asymptotic wave function over complete range of r to calculate $C(k)$ [Lednický, PPN 40 \(2009\)](#)
- asymptotic wave function determined by [scattering amplitude](#)

correlation function as sum of spin singlet (S) and spin triplet (T) contribution

$$C(k) = \frac{1}{4} \int d\mathbf{r} S(\mathbf{r}) \left| \Psi_{-\mathbf{k}}^{(S)}(\mathbf{r}) + \Psi_{+\mathbf{k}}^{(S)}(\mathbf{r}) \right|^2 + \frac{3}{4} \int d\mathbf{r} S(\mathbf{r}) \left| \Psi_{-\mathbf{k}}^{(T)}(\mathbf{r}) - \Psi_{+\mathbf{k}}^{(T)}(\mathbf{r}) \right|^2$$

$$\Psi_{-\mathbf{k}}^{(i)}(\mathbf{r}) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-i\mathbf{k}\mathbf{r}} F(-i\eta, 1, i\xi) + \delta_{i,S} f_{c,0}(\mathbf{k}) \tilde{G}_0(kr, \eta) / r \right]$$

- confluent hypergeometric function F (stems from sum over F_I)
- $\tilde{G}_I = \sqrt{A_c(\eta)} (F_I + iG_I)$, a combination of Coulomb wave functions

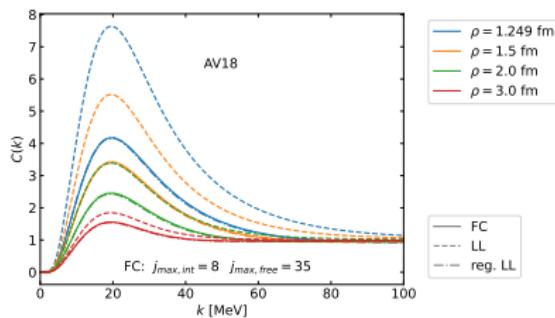
remarks

- takes all free waves into account
- extension beyond s-wave due to divergence structure of G_I problematic

Simplified approaches for calculating correlation functions

Lednický-Lyuboshitz approach II

comparison of pp correlation function based on AV18 and based on LL approach (using corresponding ERE parameters)



- for smaller source radii LL approach works not so well (about 40 % dev. in peak region for $\rho = 2$ fm, about 20 % dev. for $\rho = 3$ fm)
- similar findings were reported for pd system [Rzesz, Stefaniak, Pratt, PRC 111 \(2025\)](#)
- possible fix: use regularized G_I : $G_I \rightarrow G_I (1 - e^{-\gamma r})$
 - works quite well for $\gamma = 1.0$ fm $^{-1}$
 - has scale dependence, Gaussian parameterization might be the better approach

Conclusion & Outlook

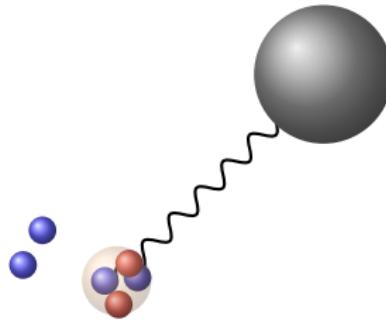
Conclusion

- detailed study of NN correlations based on different interactions (also chiral ints.)
- studied **convergence behavior** in detail → important for **accurate results**
- correlation functions are **sensitive to nuclear interactions**, captures similar information as phase shift
→ especially important in sectors with scarce scattering data
- benchmarked more approximate, effective approaches such as Lednický-Lyuboshitz approach or Gaussian representation

Outlook

- study hyperon-nucleon correlation function
- calculation of Λd correlation function using hyperspherical harmonics formalism
 $(\Lambda + p + n)$

Part II



E1 strength distributions
following Coulomb dissociation
&
finite-range interactions

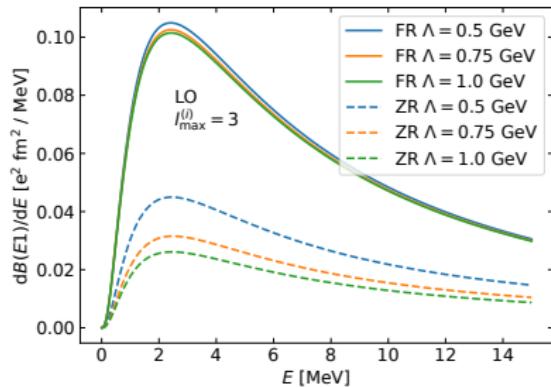
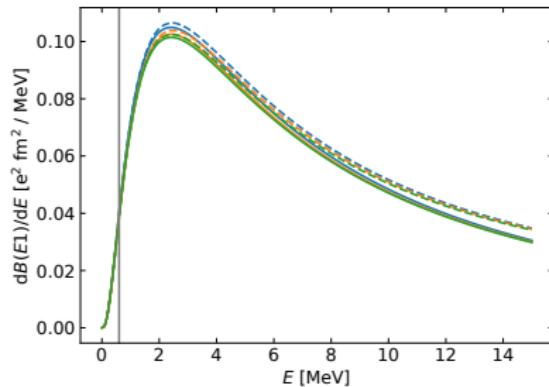
in collaboration with H.-W. Hammer and D. R. Phillips

^6He in Halo EFT

- $E1$ strength distribution $\text{d}B(E1)/\text{d}E$ is an interesting and experimentally well accessible observable
- $\text{d}B(E1)/\text{d}E$ of ^6He has also in theory been extensively investigated
 - often in cluster models, e.g., Cobis *et al.*, PRL 79 (1997), Danilin *et al.*, NPA 632 (1998), Forssén *et al.*, NPA 697 (2002), Grigorenko *et al.*, PRC 102 (2020)
 - recently also in cluster E(F)Ts Bertulani, PRC 108 (2023), Pinilla *et al.*, PRC 112 (2025)
- calculate $\text{d}B(E1)/\text{d}E$ of ^6He in Halo EFT
 - EFT for halo nuclei Hammer *et al.*, JPG 44 (2017)
 - α core and two neutrons as degrees of freedom
 - two-body interactions parameterized in terms of effective-range expansion (ERE) parameters
 - three-body interaction for renormalizing three-body system
 - systematic improbability and uncertainty estimates
- three-body dynamics are described in terms of Faddeev equations
 - three-body wave functions can afterwards be assembled from Faddeev amplitudes
- speciality: use finite-range interactions, wherever more than one ERE parameter needs to be fitted
 - avoids difficulties with energy-dependent interactions

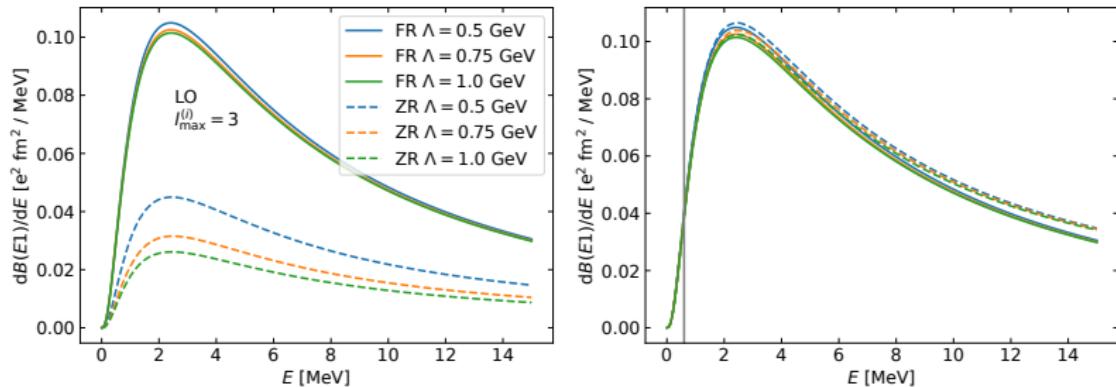
Leading-order results (preliminary)

- compare zero-range (ZR) and finite-range (FR) results for different cutoffs Λ
 - $\Lambda_1 = 500$
- left: $dB(E1)/dE$ itself; right: shape of $dB(E1)/dE$



Leading-order results (preliminary)

- compare zero-range (ZR) and finite-range (FR) results for different cutoffs Λ
 - $\Lambda_1 = 500$
- left: $dB(E1)/dE$ itself; right: shape of $dB(E1)/dE$



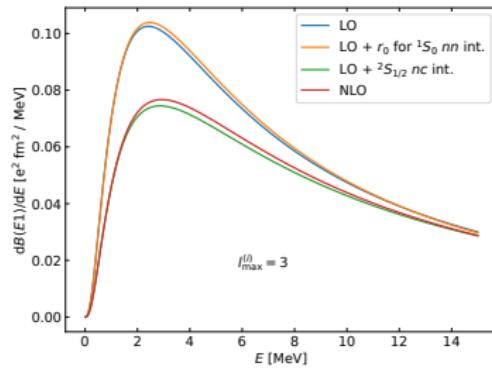
- zero-range (ZR) approach has convergence issue in Λ , related to $V(E)$
- finite-range (FR) approach is convergent
- results for the shape agree

Going to NLO

- inclusion of the different NLO effects in the finite-range approach
($^2S_{1/2}$ nc int., r_0 -term of 1S_0 nn int., (UT of $^2P_{3/2}$ nc int. in FR already LO))

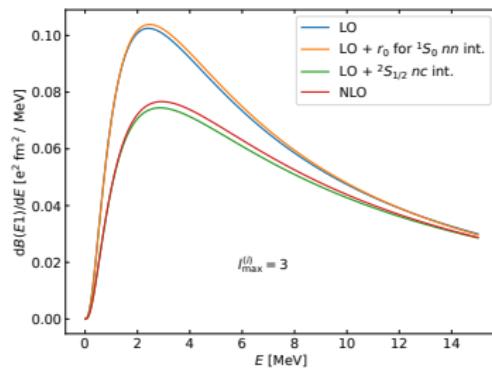
Going to NLO

- inclusion of the different NLO effects in the finite-range approach ($^2S_{1/2}$ nc int., r_0 -term of 1S_0 nn int., (UT of $^2P_{3/2}$ nc int. in FR already LO))



Going to NLO

- inclusion of the different NLO effects in the finite-range approach ($^2S_{1/2}$ nc int., r_0 -term of 1S_0 nn int., (UT of $^2P_{3/2}$ nc int. in FR already LO))



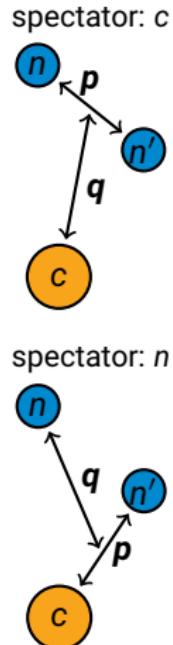
- NLO corrections have the expected size
- NLO correction from $^2S_{1/2}$ nc int. much stronger than from nn r_0 term

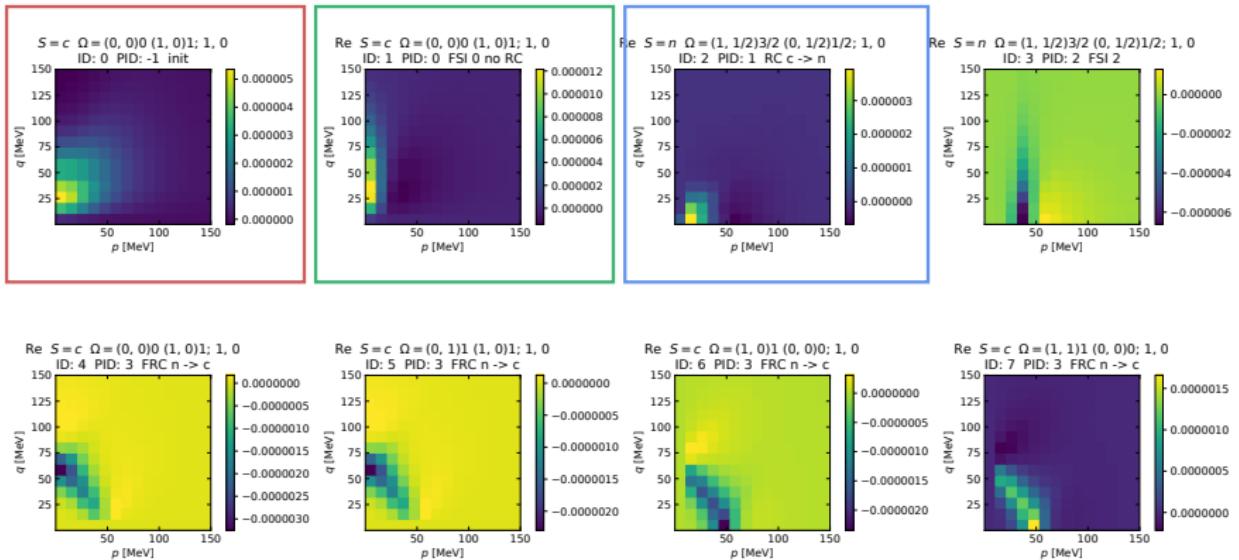
Final-state interactions and partial waves

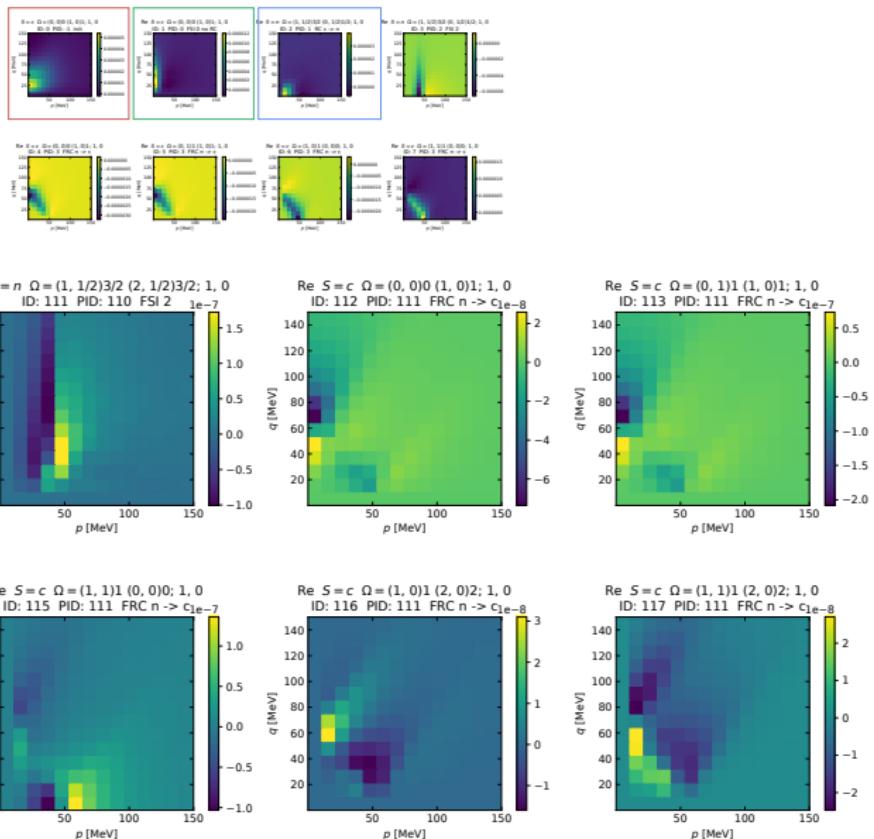
- calc. FSI via Møller operator: e.g. nn FSI:
$$_c\langle p, q; \Omega_c | \Omega_{nn} = _c\langle p, q; \Omega_c | + _c\langle p, q; \Omega_c | t_{nn}(E_p) G_0(E_p)$$
- also apply multiple FSIs by using products of Møller operators: e.g. $\Omega_{nn} \Omega_{nc;1,3/2}$ [Göbel, Acharya, Hammer, Phillips, PRC 107 \(2023\)](#)

Final-state interactions and partial waves

- calc. FSI via Møller operator: e.g. nn FSI:
 ${}_c\langle p, q; \Omega_c | \Omega_{nn} = {}_c\langle p, q; \Omega_c | + {}_c\langle p, q; \Omega_c | t_{nn}(E_p) G_0(E_p)$
- also apply multiple FSIs by using products of Møller operators: e.g. $\Omega_{nn} \Omega_{nc;1,3/2}$ Göbel, Acharya, Hammer, Phillips, PRC 107 (2023)
- a priori* the matrix element of the t_i acting in the jk subsystem is known for i ($= S_i$) as spectator
 $i\langle p, q; \Omega | t_i(E_3) | p', q'; \Omega' \rangle_i$
- recoupling between states of different spectators and different partial waves in some cases necessary
- strategy: make use of relation for
 $\mathcal{T}_{\Omega, \Omega'}^{p, q | p', q'} f(p', q') := \int dp' p'^2 \int dq' q'^2 {}_S\langle p, q; \Omega | p', q'; \Omega' \rangle_{S'} f(p', q')$
 - simplify analytically to reduce number of numerical integrations (Wigner 3nj symbols etc.)

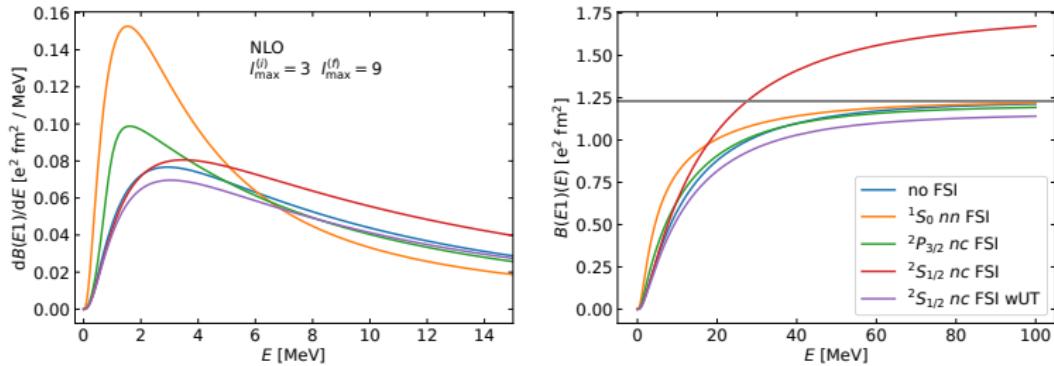






NLO results with FSIs I

- all FSIs (also $^2S_{1/2}$ *nc* FSI) in comparison on the basis of the NLO ground state
- overall *E1* strength obtained from $\langle r_c^2 \rangle$ via sum rule

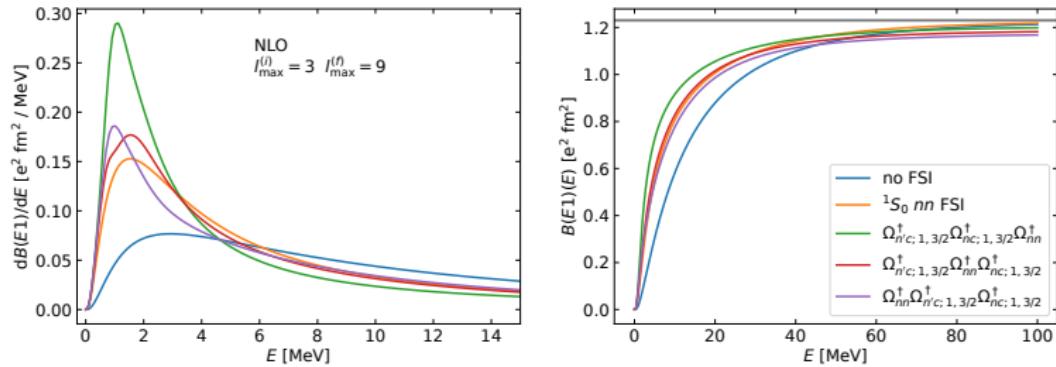


→ sum rule fulfilled except for one FSI, which is missing unitarity term (UT) according to power counting

→ *nn* FSI is more important than $^2P_{3/2}$ *nc* and $^2S_{1/2}$ *nc* FSIs

NLO results with FSIs II

- now also FSI based on products of three Møller operators (third order)

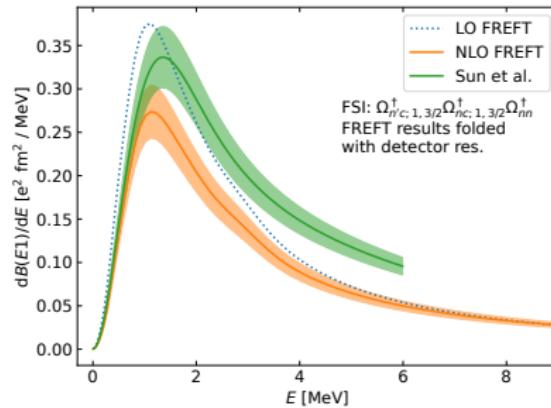


Göbel, Hammer, Phillips, in preparation

- effects of going to third order in FSI approximation quite strong
- strong variation between different orders of applying the single FSIs; in any case stronger than nn FSI only

NLO results in comparison with experimental data

- folded with detector resolution
- uncertainty estimated according to power counting
- in comparison with experimental data from [Sun et al., PLB 814 \(2021\)](#)



[Göbel, Hammer, Phillips, in preparation](#)

- acceptable agreement
- including FSI up to third order important for agreement

Conclusion and outlook

Conclusion

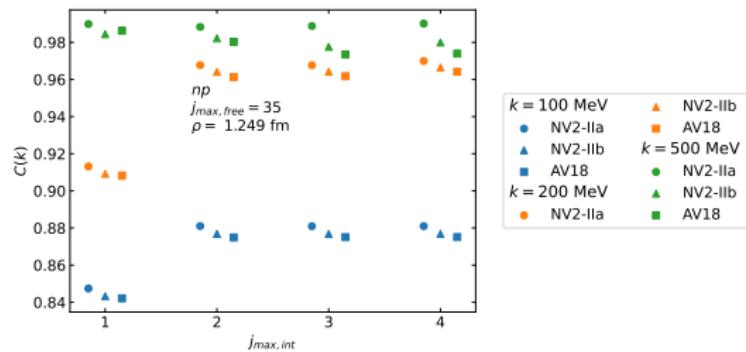
- finite-range interactions for p -wave nc interaction work well
→ convergence of the $E1$ distribution in cutoff Λ
- NLO correction due to s -wave nc interaction important → reduces $E1$ strength
- FSI effects beyond leading order in the Møller operator significant → increases $E1$ strength
- acceptable agreement with experimental data

Outlook

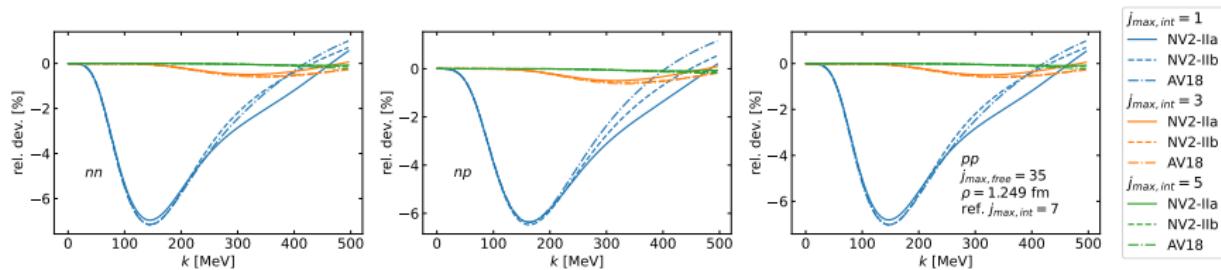
- full three-body calculation of FSI work in progress
- use these interactions also to calculate nn relative-energy distribution at NLO

Backup slides

Convergence in partial waves



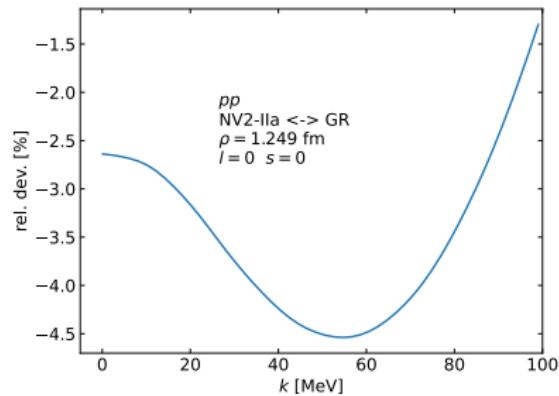
Convergence in partial waves II



- convergence behavior is similar for all three systems

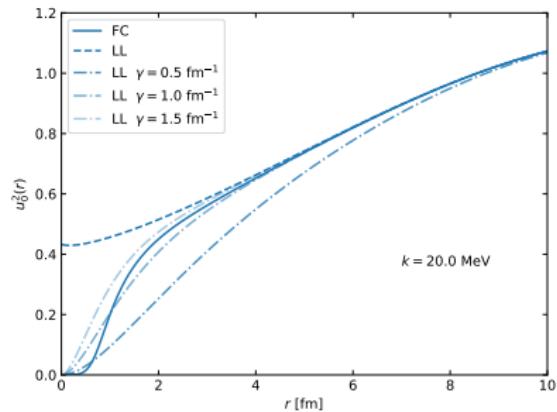
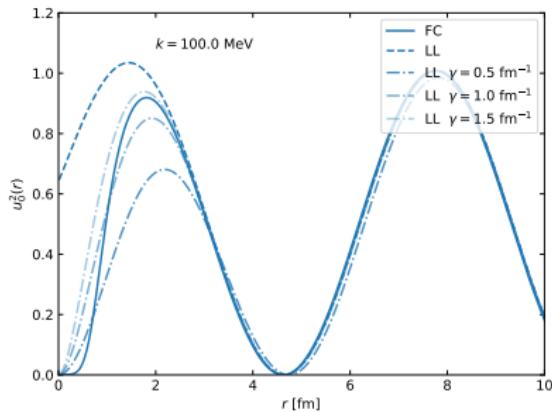
Gaussian representation

relative deviation between result from Gaussian representation and full calculation



Wave functions of regularized Lednický-Lyuboshitz approach

squares of radial wave functions from direct calculation, from LL approach, and from regularized LL approach in comparison



$E1$ strength distributions in halo EFT

$E1$ strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dB(E1)}{dE}$
- characteristic property of halo nuclei
- for $2n$ halos reltd. to a large core distance r_c

see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002),
Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014)
review of low-energy dipole response in [Aumann, EPJA 55 \(2019\)](#)

high-Z target

$E1$ strength distributions in halo EFT

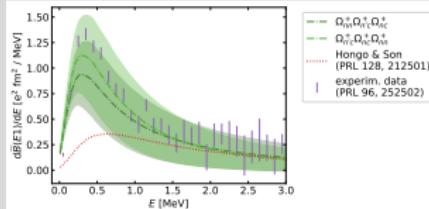
$E1$ strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dE(E1)}{dE}$
- characteristic property of halo nuclei
- for $2n$ halos reltd. to a large core distance r_c

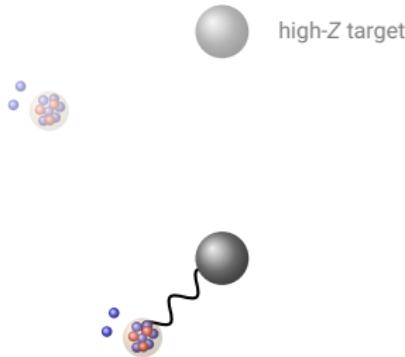
see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002),
Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014)
review of low-energy dipole response in Aumann, EPJA 55 (2019)

$E1$ strength of ^{11}Li in halo EFT

good agreement
with experimental
data from Nakamura et
al., PRL 96 (2006) was
found



Göbel, Acharya, Hammer, Phillips, PRC 107 (2023)



$E1$ strength distributions in halo EFT

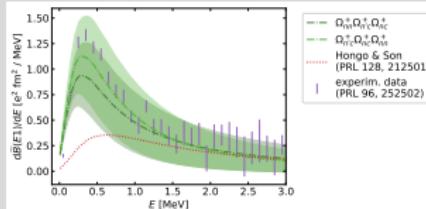
$E1$ strength as an interesting observable

- parameterizes the Coulomb dissociation cross section: $\frac{d\sigma}{dE} \propto \frac{dE(E1)}{dE}$
- characteristic property of halo nuclei
- for $2n$ halos reltd. to a large core distance r_c

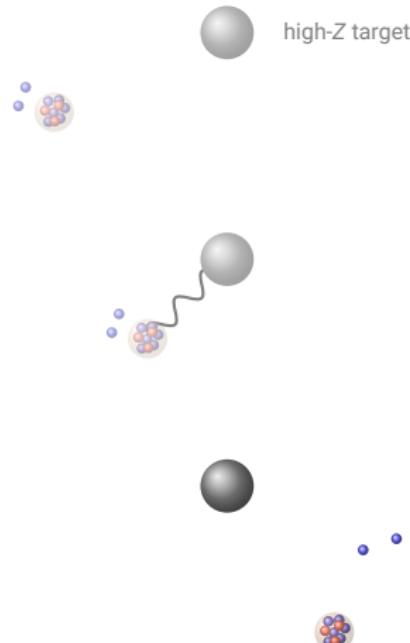
see, e.g., Forssén, Efros, Zhukov, NPA 697 (2002),
Acharya, Phillips, EPJ Web Conf. 113 (2016), Hagen, (2014)
review of low-energy dipole response in Aumann, EPJA 55 (2019)

$E1$ strength of ^{11}Li in halo EFT

good agreement
with experimental
data from Nakamura et
al., PRL 96 (2006) was
found



Göbel, Acharya, Hammer, Phillips, PRC 107 (2023)



E1 strength of ${}^6\text{He}$

- *E1 strength of ${}^6\text{He}$ extensively investigated based on different models* , e.g., [Cobis et al.](#),
[PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- *recent E(F)T results*
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al., arXiv \(2024\)](#)

E1 strength of ${}^6\text{He}$

- *E1 strength of ${}^6\text{He}$ extensively investigated based on different models* , e.g., [Cobis et al.](#),
[PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- *recent E(F)T results*
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al.](#), [arXiv \(2024\)](#)
- *standard halo EFT description of the ${}^6\text{He}$ ground state* [Ji, Elster, Phillips, PRC 90 \(2014\)](#), [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)

$E1$ strength of ${}^6\text{He}$

- $E1$ strength of ${}^6\text{He}$ extensively investigated based on different models , e.g., [Cobis et al.](#), [PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- recent E(F)T results
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al.](#), [arXiv \(2024\)](#)
- standard halo EFT description of the ${}^6\text{He}$ ground state [Ji, Elster, Phillips, PRC 90 \(2014\)](#), [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)
 - for p -wave $n\alpha$ int. (${}^2P_{3/2}$): [Bedaque, Hammer, van Kolck, PLB 569 \(2003\)](#):
$$1/a_1 \sim M_{hi} M_{lo}^2 \text{ and } r_1 \sim M_{hi} \rightarrow \text{one fine tuning; } t_{nc} \propto (1/a_1 - r_1 k^2/2)^{-1}$$

$E1$ strength of ${}^6\text{He}$

- $E1$ strength of ${}^6\text{He}$ extensively investigated based on different models , e.g., [Cobis et al.](#),
[PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- recent E(F)T results
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al.](#), [arXiv \(2024\)](#)
- standard halo EFT description of the ${}^6\text{He}$ ground state [Ji, Elster, Phillips, PRC 90 \(2014\)](#), [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)
 - for p -wave $n\alpha$ int. (${}^2P_{3/2}$): [Bedaque, Hammer, van Kolck, PLB 569 \(2003\)](#):
 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1 k^2/2)^{-1}$
 - zero-range rank-1 separable int. requires energy dependency for reproduction of ERE

E1 strength of ${}^6\text{He}$

- *E1 strength of ${}^6\text{He}$ extensively investigated based on different models* , e.g., [Cobis et al.](#), [PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- *recent E(F)T results*
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al.](#), [arXiv \(2024\)](#)
- *standard halo EFT description of the ${}^6\text{He}$ ground state* [Ji, Elster, Phillips, PRC 90 \(2014\)](#), [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)
 - for *p*-wave $n\alpha$ int. (${}^2P_{3/2}$): [Bedaque, Hammer, van Kolck, PLB 569 \(2003\)](#):
 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi}$ \rightarrow one fine tuning; $t_{nc} \propto (1/a_1 - r_1 k^2/2)^{-1}$
 - zero-range rank-1 separable int. requires energy dependency for reproduction of ERE
 - in QM this corresponds to energy-dependent potentials $H \rightarrow H(E)$
solutions of H @ different E are in fact solutions of different H
[Formánek, Lombard, Mareš, CJP 54 \(2004\)](#)
 - corrections $\propto \partial_E V$ to expectation values and normalization are necessary

E1 strength of ${}^6\text{He}$

- *E1 strength of ${}^6\text{He}$ extensively investigated based on different models* , e.g., [Cobis et al.](#), [PRL 79 \(1997\)](#), [Danilin et al.](#), [NPA 632 \(1998\)](#), [Forssén et al.](#), [NPA 697 \(2002\)](#), [Grigorenko et al.](#), [PRC 102 \(2020\)](#)
- *recent E(F)T results*
 - using an asymptotic three-body w. f. [Bertulani, PRC 108 \(2023\)](#)
 - using coord.-space approach and pseudostate method for FSI [Pinilla et al.](#), [arXiv \(2024\)](#)
- *standard halo EFT description of the ${}^6\text{He}$ ground state* [Ji, Elster, Phillips, PRC 90 \(2014\)](#), [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)
 - for *p*-wave $n\alpha$ int. (${}^2P_{3/2}$): [Bedaque, Hammer, van Kolck, PLB 569 \(2003\)](#):
 $1/a_1 \sim M_{hi}M_{lo}^2$ and $r_1 \sim M_{hi} \rightarrow$ one fine tuning; $t_{nc} \propto (1/a_1 - r_1 k^2/2)^{-1}$
 - zero-range rank-1 separable int. requires energy dependency for reproduction of ERE
 - in QM this corresponds to energy-dependent potentials $H \rightarrow H(E)$
solutions of H @ different E are in fact solutions of different H
[Formánek, Lombard, Mareš, CJP 54 \(2004\)](#)
 - corrections $\propto \partial_E V$ to expectation values and normalization are necessary
 - probability density of ${}^6\text{He}$: $\forall p, q < M_{hi}$: corrections to the normalization are most important [Göbel, Hammer, Ji, Phillips, FBS 60 \(2019\)](#)

Finite-range EFT

- implication for $\frac{dB(E1)}{dE}$ in zero-range halo EFT
 - shape: no problem
 - absolute value: would require correction terms
- avoid $V(E)$ by using rank-1 separable int. which is finite-range

Finite-range EFT

- implication for $\frac{dB(E1)}{dE}$ in zero-range halo EFT
 - shape: no problem
 - absolute value: would require correction terms
- avoid $V(E)$ by using rank-1 separable int. which is finite-range
- might induce higher-order terms in the ERE
- EFT aim can still be realized
 - systematic improbability is given
 - uncertainty estimates by comparing different-order results

Finite-range EFT

- implication for $\frac{dB(E1)}{dE}$ in zero-range halo EFT
 - shape: no problem
 - absolute value: would require correction terms
- avoid $V(E)$ by using rank-1 separable int. which is finite-range
- might induce higher-order terms in the ERE
- EFT aim can still be realized
 - systematic improbability is given
 - uncertainty estimates by comparing different-order results
- finite-range interactions in use: Yamaguchi (YM) interactions [Yamaguchi, PR 95 \(1954\)](#)
 - work well in momentum-space Faddeev calculations
 - have already two parameters → ideal for p -wave $n\alpha$ int.
 - extension of YM form factors → more parameters → reproducability of more ERE terms
- Yamaguchi interaction is a rank-one separable interaction:
$$\langle p, l | V_l | p', l' \rangle = \delta_{l,l'} \delta_{l,l'} g_l(p) \lambda_l g_l(p')$$
with YM form factors $g_l(p) := p' \frac{\beta_l^4}{(p^2 + \beta_l^2)^2}$

Obtaining the $E1$ distribution of ${}^6\text{He}$

- **approach:** ${}^6\text{He}$ in halo EFT

1. calculate wave functions $\Psi_{c;\Omega}(p, q)$ (for different partial waves Ω)
2. evaluate the $E1$ operator
3. take final-state interactions into account
4. obtain $E1$ strength distribution

$$\frac{dB(E1)}{dE} = \frac{1}{2J_i+1} \sum_{M_i,\mu} \int d\tau_f | \langle f | \mathcal{M}(E1, \mu) | i; J_i, M_i \rangle |^2 \delta(E - E_f)$$

Obtaining the $E1$ distribution of ${}^6\text{He}$

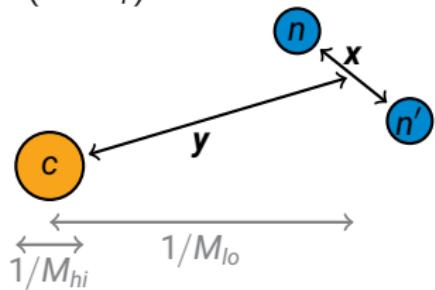
■ approach: ${}^6\text{He}$ in halo EFT

1. calculate wave functions $\Psi_{c;\Omega}(p, q)$ (for different partial waves Ω)
2. evaluate the $E1$ operator
3. take final-state interactions into account
4. obtain $E1$ strength distribution

$$\frac{dB(E1)}{dE} = \frac{1}{2J_i+1} \sum_{M_i,\mu} \int d\tau_f | \langle f | \mathcal{M}(E1, \mu) | i; J_i, M_i \rangle |^2 \delta(E - E_f)$$

■ tool: halo EFT

- $\not\!\text{EFT}$
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
→ systematic improvement possible



Obtaining the $E1$ distribution of ${}^6\text{He}$

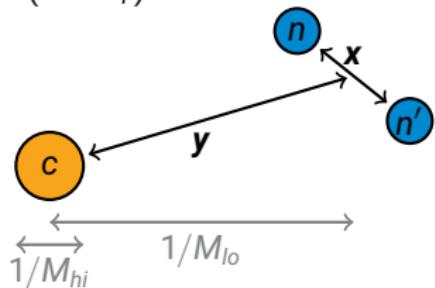
■ approach: ${}^6\text{He}$ in halo EFT

1. calculate wave functions $\Psi_{c;\Omega}(p, q)$ (for different partial waves Ω)
2. evaluate the $E1$ operator
3. take final-state interactions into account
4. obtain $E1$ strength distribution

$$\frac{dB(E1)}{dE} = \frac{1}{2J_i+1} \sum_{M_i,\mu} \int d\tau_f | \langle f | \mathcal{M}(E1, \mu) | i; J_i, M_i \rangle |^2 \delta(E - E_f)$$

■ tool: halo EFT

- $\not\!\text{EFT}$
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
→ systematic improvement possible



■ properties of ${}^6\text{He}$

- Borromean $2n$ halo
- separation of scales: $S_{2n} = 0.975 \text{ MeV} < E_\alpha^* \approx 20 \text{ MeV}$
- quantum numbers: $J^\pi = 0^+$ (${}^4\text{He}$: $J^\pi = 0^+$)
- leading-order (LO) halo EFT interaction channels:
 $nn: {}^1S_0; nc: {}^2P_{3/2}$

halo EFT for ${}^6\text{He}$ formulated in [Ji, Elster, Phillips, PRC 90 \(2014\)](#)
review of halo EFT in [Hammer, Ji, Phillips, JPG 44 \(2017\)](#)

Leading-order Lagrangian

$$\mathcal{L}_1 = \text{---}^c + \text{---}^n$$

$$\mathcal{L}_2 = \text{---} + \text{---}$$

$$\mathcal{L}_2 = \text{---} + \text{---} + \left[\text{---} \text{---} \text{---} \right] + \left[\text{---} \text{---} \text{---} \right] + \text{H. c.}$$

$$\mathcal{L}_3 =$$

Leading-order Faddeev equations

use EFT in dimer formalism

1. step: obtain dressed dimer propagators

$$\text{---} = \text{---} + \text{---} \text{---}$$

& renormalize using **input values**

a_1, r_1

$$\text{---} = \text{---} + \text{---} \text{---}$$

a_0

Leading-order Faddeev equations

use EFT in dimer formalism

1. step: obtain dressed dimer propagators

$$\text{---} = \text{---} + \text{---} \text{---}$$

& renormalize using **input values**

a_1, r_1

$$\text{---} = \text{---} + \text{---} \text{---}$$

a_0

2. step: set up equations for Faddeev transition amplitudes

$$\text{---} \text{---} \text{---} = \text{---} \text{---} \text{---} \text{---} + \text{---} \text{---} \text{---} \text{---}$$

$$\text{---} \text{---} \text{---} = 2 \times \text{---} \text{---} \text{---} \text{---}$$

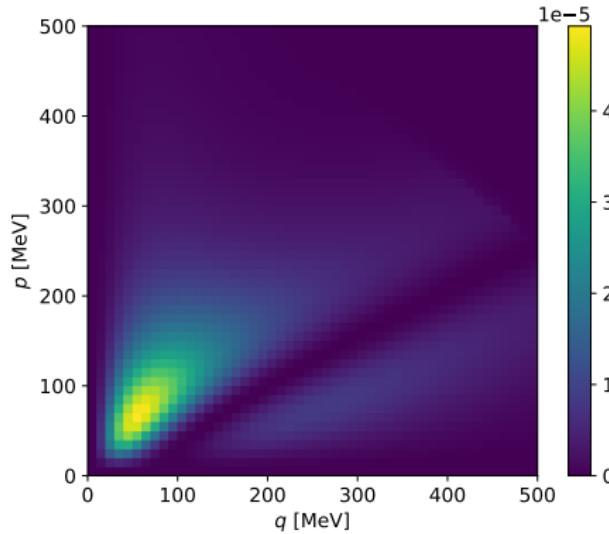
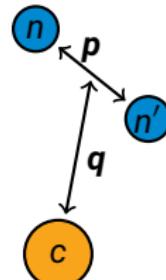
three-body force required for renormalization
diagram shows case of vanishing three-body force

Results for the wave function

calculated ground-state wave functions and probability densities in halo EFT

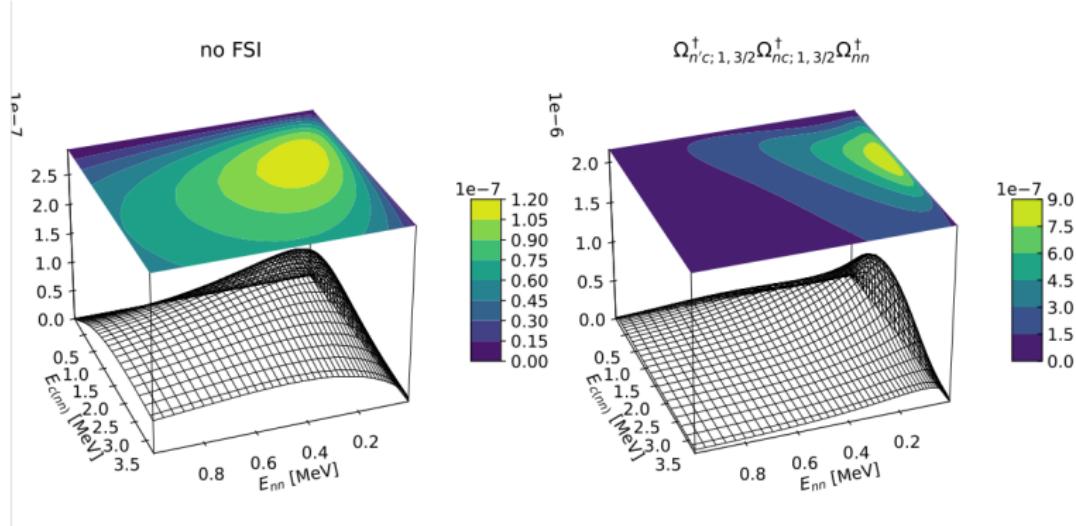
Göbel, Hammer, Ji, Phillips, FBS 60 (2019)

$$\Psi_c^2(p, q)p^2q^2$$



2D E1 distributions

definition: $\frac{dB(E1)}{dE_1 E_2} = \frac{1}{2J_f + 1} \sum_{M_i, \mu} \int d\tau_f |\langle f | \mathcal{M}(E1, \mu) | i; J_i, M_i \rangle|^2 \delta(E_1 - E_1^{(f)}) \delta(E_2 - E_2^{(f)})$



→ peak position fits expectation based on a_{nn}