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| will discuss work done in collaboration with
Domenico Orlando (INFN, Torino and Bern) and Susanne Reffert (Bern)

(Chowdhuri, Mishra,Son)
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Will exploit two theoretical tools:

e Schrodinger symmetry and its breaking
e The large-charge expansion (superfluid EFT)
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Overview: unitary Fermi gas and neutrons

Consider a gas of () non-relativistic fermions
of mass M with range of interaction /¢
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Consider a gas of () non-relativistic fermions
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Unitary Fermigas: ¢ —0 , a— o0

Can exploit non-relativistic conformal symmetry (=Schrodinger symmetry)!



() large builds a Fermi surface. If there is attraction, implies..

Superfluidity/pairing: spontaneous breaking of particle number
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() large builds a Fermi surface. If there is attraction, implies..

Superfluidity/pairing: spontaneous breaking of particle number
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() large builds a Fermi surface. If there is attraction, implies..

Superfluidity/pairing: spontaneous breaking of particle number
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Nuclear systems are near unitarity!

Can systems of few/many neutrons be
described by a deformation of a non-
relativistic conformal field theory (CFT)?
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Nuclear systems are near unitarity!

Can systems of few/many neutrons be
described by a deformation of a non-
relativistic conformal field theory (CFT)?

s-wave singlet neutron-proton scattering EFT (1)
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Fundamental EFT defined

Introduce auxiliary field s. At unitarity CFT defined by:
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Fundamental EFT defined

Introduce auxiliary field s. At unitarity CFT defined by:

v? 1
— T |5 T ToT T o=
Lorr = Y, [23t +- 2M]¢g — c° s+ jhrs + sty 14
iy 1

OOPDS(V) — C*

M1l/a — v a0

Deformed CFT is defined by:
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State-operator correspondence  uishida,son)

I The dimension of a primary operator = energy of state in harmonic potential '

@Qunitarity Qfree
= 2hw AQ =2 3
= 4.27h
Fo = AT Az = 4.27 %

Correspondence valid only in the symmetry limit!



Consider subsectors of fixed charge Q (canonical)

G(x1,$2,...,x]\[) = —i<O‘T(01(3§1)02($2)...ON(ZEN))’O>

n-point functions constrained by Schrodinger symmetry
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Superfluid EFT and large charge expansion

(Son,Wingate)

BCS |nstab|||ty + Fermi Surfa ce (Greiter,Wilczek,Witten)
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Superfluid EFT and large charge expansion

(Son,Wingate)

BCS |nstab|||ty + Fermi Surfa ce (Greiter,Wilczek,Witten)

U(l) =0 @ (@) = [(Py)|e 2

Galilean invariant building block:

(9;0)
2M Y

DtH — (9 — AO : AQ:MCU2T2/2

At unitarity have NR CFT:
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Homogeneous ground state (grand canonical)
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Homogeneous ground state (grand canonical)
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Power counting: derivative expansion or large [
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State-operator correspondence:
energy of () fermions in a harmonic trap
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Not useful when including Schrodinger-
symmetry breaking effects..



Not useful when including Schrodinger-
symmetry breaking effects..

But..exact large-charge solution can be found!

Ono =N X272 exp (iQ0)

/N

normalization primary operator

Now need Euclidean path integral formulation
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EOM: continuity equation with source

r

Orp + %az' (i10:0p) = Q [0%(z — x2) — 6" (x — 21)]

Saddle point instanton solution: master field

(Orlando,Reffert,SB)
(Son,Stephanov,Yee)
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EOM: continuity equation with source
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Orp + %@' (i10:0p) = Q [0%(z — x2) — 6" (x — 21)]
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Saddle point instanton solution: master field  co. stopnanov-ves)

T — T 7 (X — x2)? (x — x1)*
T—TQ) B M[ (T — 7o) (11 — 7)
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Emergent time-dependent harmonic trap
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Recovers state-operator correspondence



Unnuclear physics

(Hammer,Son)
(Chowdhuri, Mishra,Son)

() neutrons

SH 4+ 3H — *He + 2n
i+ Li— "C+3n
‘He + 8He — ®Be + 4n




Factorization (theorem?) /" n
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do

— end point recoil energy
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Deformation via conformal perturbation theory
(Chowdhuri, Mishra,Son)
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For larger Q, perhaps it is more efficient to use the large-
charge EFT. Naively, in conformal perturbation theory

But there are boundary terms.. Need:

1. the Lo action evaluated on the Lo solution

2. the Lo action evaluated on the NLO solution

3. the NLO action evaluated on the Lo solution
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Summary

The large-charge EFT provides a systematic (far infrared)
description of many fermions near unitarity. Applicability to
neutron matter is complicated by large effective range effects in
the neutron-neutron interaction.

The state-operator correspondence is a powerful tool for computing
the dimensions of operators in an interacting NR CFT. However,
including symmetry breaking is non-trivial.

Large-charge master field is known; useful for computing
Schrodinger-symmetry breaking corrections to correlation
functions without detailed knowledge of few-body wavefunctions.

Leading non-vanishing effects from relevant and irrelevant
deformations of the non-relativistic CFT are under control in nuclear
physics only in narrow energy windows.
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