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r-process sensitivity to nuclear beta decay:
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Mumpower et al., PPNP 86 (2016) 86

Very active area in experiment:

N~50: NSCL@MSU: PRL 94 (2005) 112501; PRC 82 (2010) 025806;
RIKEN: PRL 113 (2014) 032505; PRL 134 (2025) 172701; ...

N~82: RIKEN: PRL 114 (2015) 192501; ISOLDE@CERN: PRC 104
(2021) 044328; PRL 131 (2023) 022501; ...

N~126: GSI: PRL 117 (2016) 012501; ...
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Motivation
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* Neutron-rich, less known
experimentally

» Current model calculations show
sizable discrepancies

» Quenched g4 (e.g., g&" ~ 0.894)
is used in current model
calculations

Zhi et al., PRC 87 (2013) 025803
Marketin et al., PRC 93 (2016) 025805



Motivation

| Mg+l experiment

ab initio

¢ This work /V

Shell model

....... q: 1
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Mg+l theory (unquenched)

Gysbers et al., Nat. Phys. 15 (2019) 428
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* Ab initio calculations:

Quenching puzzle of ga in
Gamow-Teller (GT) transitions
can be explained by taking into
account many-body correlations

and two-body currents

* Qur focus:

Ab initio calculations of beta-decay
half-lives for N = 50 neutron-rich
nuclei



Valence-space in-medium similarity renormalization group (VS-IMSRG)

H|\¥x) = Ex|¥k) Her| Wi ) = Ex|¥k)

H=T+ Vnn+ Vay Het = [U(S)HUT(S)]so0
Oeff = [U(S)OUT(S)]S—mo

Tsukiyama at al., PRL 106 (2011) 222502
Hergert at al., Phys. Rep. 621 (2016) 165
Stroberg et al., Ann. Rev. Nucl. Part. Sci. 69 (2019) 307 S



Total beta-decay half-life

* Total B~-decay half-life from initial ground state:

1 1 W
Tij2 = th/ t! = — c(w
K

1

* Gamow-Teller (GT) transition (dominates)

F(Z,W)WVW2 — AW (W, — W)2dW

11 _ _ 1 AL
' =BGy Car(W) = BGT) = o (I IGTI 1)
GT = +GT Wo
*® f0=/ F(Z, W)V W2 —1W (W, — W)2dW
1

A
GTog = Z],j‘ from chiral EFT

i<j

Park et al., PRC 67 (2003) 055206

Menéndez, Gazit and Schwenk, PRL 107 (2011) 062501
Hoferichter, Menéndez and Schwenk, PRL 102 (2020) 074018
Krebs, EPJA 56 (2020) 234
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Calculational setup for N = 50 isotones

« “Magic” 1.8/2.0 (EM) with NN + 3N interactions, consistent 2B currents

 Hartree-Fock basis fiw = 16 MeV, emax = (2N + Nimax = 14, Ezmax = (61 + €2 + €3)max = 24

« VS-IMSRG(2), NO2B approximation with ensemble reference 19

* P: core 8Ca + valence space

{Ofé)/z,s/z’ 1pg/z,ue’ 08 125195 /2.1 /2 09 /5 105 /5 }

 Arctangent (White) generator with A = 5 MeV
* H' =H + BHem, =3

« Effective Hamiltonian Heg = [U(S)H'UT(8)]s—s 00
- Reference state from initial nucleus to evolve GT operator GTex = [U(S)GTUT(S)]s— 00
 Lanczos strength function method in the calculation of total GT transition probability

1.8/2.0 (EM): Hebeler et al., PRC 83 (2011) 031301, VS-IMSRG(2): Stroberg et al., PRL 118 (2017) 032502

Multi-shell valence space: Miyagi et al., PRC 102 (2020) 034320; Lanczos strength function: Haxton et al., PRC 72 (2005) 065501 7



Results for 78Ni
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Ground-state energies
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NN+3N interaction: AN?LOgo (394) from Jiang et al., PRC 102 (2020) 054301
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Total beta-decay half-lives from GT transitions
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Total beta-decay half-lives from GT transitions
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Total beta-decay half-lives from GT transitions
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Total beta-decay half-lives from GT transitions
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Total beta-decay half-lives from GT transitions
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GT transition strength distribution for 7Ni
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* Including 2B currents — systematically reduced transition strength distribution

* B(GT) distribution is quite different between 1.8/2.0 (EM) and AN2LO¢, (394)



Running sum of t - for 78Ni and 32Ge
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+ Inverse of total half-life T} = >, t;, where t;' = B(GT)fo/x

« fy is quite different between 1.8/2.0 (EM) and AN?2LOgo (394) for both "8Ni and 82Ge
« Surprisingly close final running sums from 1.8/2.0 (EM) and AN?LOgo (394) for 82Ge



Contribution from first forbidden (FF) transitions
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Summary and outlook

« Summary

— First ab initio calculations of total S-decay half-lives of r-process waiting point nuclei at N = 50
— Very good agreement with existing experimental data

— Two-body currents play an important role

— No need to use quenching factor in ab initio calculations

e Qutlook

— Quantify uncertainty especially from the Hamiltonian
— Introduce 2BC into the FF transitions and construct effective FF operators within VS-IMSRG
— Perform calculations for heavier r-process waiting point nuclei, e.g., at N =82, N = 126

18



A quick look at some preliminary results of
many-body perturbation theory calculation
beyond 3™ order (work in progress)

With
Alexander Tichai, Achim Schwenk (TU Darmstadt)
Nadezda A. Smirnova (LP2I Bordeaux)

19



Automatic dlagram generation and evaluation
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1. Automate diagram generation and evaluation
(in m-scheme) from ZL, PhD thesis (2023)

similar to the code ADG by Arthuis et al.
(https://github.com/adgproject/adg)

2. Convert m-scheme diagram expressions into
j-scheme diagram expressions with AMC

Tichai et al., EPJA 56 (2020) 272

3. Code generation for numerical calculation

* Ground-state higher-order diagrams converge
faster in terms of em.x than lower orders

* Ground-state energy is likely converging
order-by-order

* Order-by-order convergence of charge radius
is unclear till the 4% order

IMSRG(3)-N’: Heinz et al., PRC 111 (2025) 034311 9(
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Large cancellation between triples N\

Decomposition of the fourth order contributions

and quadruples at 4" order

Differences between
IMSGR(2) and MBPT
calculations are within 2
MeV when all diagrams of
IMSRG(2) are included in
MBPT (including the pp,
ph, and hh ladders L to
infinite order, see the
shaded area)

{MBPT(3), S, D, Qa, 1/2Qy, L (op + ph + hh to oo order)} € IMSRG(2)

Hergert at al., Phys. Rep. 621 (2016) 165
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Thank you for your attention
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Backup slides
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Spectra of 78Ni
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