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Conceptually simplest ab initio method: No-Core Shell Model (NCSM)  w

Ab initio no core shell model

Bruce R. Barrett?, Petr Navrétil®, James P. Vary ©* 5

= Basis expansion method (Cl)
= Harmonic oscillator (HO) basis truncated in a particular way (N, .x)
= HO frequency variational parameter
= Why HO basis?
= Lowest filled HO shells match magic numbers of light nuclei
(2, 8, 20 — “He, 60, 4°Ca)

= Equivalent description in relative(Jacobi)-coordinate and
Slater determinant basis — nuclei self-bound, [H,P]=0

= Exact factorization of CM and intrinsic eigenfunctions

at each N, N=2n+] \ /
1=13 N=3 \ / 20—40
N /=02  N=2 12—20
ﬁ Pt = 2 ECNZ (I)Ho(npnz’ M ay) /= N=1 6-8
N=0 i =0 N=0 22

= (2n+1+3)bQ

max

EECN] SDN](rl’ 7'2, e ’_;A)=IPA (pOOO(RCM)
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Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
local/non-local regulator
= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems
Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life

New LEC (E;) fitted to improve excitation levels in SLi PUYSICAL KIVIIW € 101014518 02
Denoted aS NN N4LO + 3N|n|E7 Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Soma, "+ P. Navritil ©,>" F. Raimondi,** C. Barbieri ©,*% and T. Duguet">:!

PHYSICAL REVIEW C, VOLUME 60, 034001

Phenomenological spin-orbit three-body force

V = Z (E\+Eyti-tj+E30;-0j+Est; - Tj0; - a,)[Z(’)’(r,,)—l—Z Zo( ”)]Zo(r,-k)
j

ik r; A. Kievsky*
" 0( lj) 0( lj)
+ (Es + E6T; - T;)Sij| Zo (7ij) — Zo(ri) + (E7 + Egti - Ti)(L - 8)ij ———Zo(rix)
ij ij d
A A ~ A . — oy ipr 2.
+ [(E9 + EioTj - Tk)0 - Tijok - T + (E11 + EnnTj - Tk + E13ti - Tj)og - £ij0; - Rl Zy(rij)Z)(rix) Zo(r; A) f (271)3e Fp%A)

PHYSICAL REVIEW C 102, 019903(E) (2020)

PHYSICAL REVIEW C 84, 014001 (2011)

Subleading contributions to the three-nucleon contact interaction

Erratum: Subleading contributions to the three-nucleon contact interaction
[Phys. Rev. C 84, 014001 (2011)]

L. Girlanda,! A. Kievsky,? and M. Viviani®

L. Girlanda®, A. Kievsky, and M. Viviani




Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

= NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
= |ocal/non-local regulator
= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems
= Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life
= New LEC (E) fitted to improve excitation levels in SLi
= Denoted as NN N4LO + 3Njg7

= Successfully applied to "Be(p,y)eB and muon capture on 6Li, 12C, and 6O

= Applied here for
= 19F structure and exotic moments
= MLj structure

rs B 845 (2023) 138156

Contents lists available at ScienceDirect — PHYSICAL REVIEW C 109, 065501 (2024)
Physics Letters B
j Isevier.

Muon capture on °Li, 12C, and °Q from ab initio nuclear theory

EEEEEE Lotta Jokiniemi ®,!"" Petr Navratil ©,12 " Jenni Kotila®,>*># and Kostas Kravvaris ©%%

K. Kravvaris®*, P. Navratil®, S. Quaglioni?, C. Hebborn 2, G. Hupin ¢



Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

= NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
= |ocal/non-local regulator
= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems
= Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life
= New LEC (E) fitted to improve excitation levels in SLi
= Denoted as NN N4LO + 3Njg7

Describes well ground-state energies & excitation levels of light nuclei

Ground-state energy of °Li Ground-state energy of 12C Ground-state energy of 6N
I T
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Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

= NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
= |ocal/non-local regulator

= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems

= Denoted as NN N4LO + 3Njg7

= Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life
= New LEC (E;) fitted to improve excitation levels in SLi

Describes well ground-state energies & excitation levels of light nuclei

6Li spectrum
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Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

= NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
= |ocal/non-local regulator
= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems

= Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life

= New LEC (E;) fitted to improve excitation levels in SLi

= Denoted as NN N4LO + 3Njg7

Improvement for "’He P-wave resonances, '2C muon capture rate

compared to other interactions
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Precision chiral EFT Hamiltonian with LECs determined in few-nucleon systems

= NN N4LO 500 interaction by Entem-Machleidt-Nosyk (2017)

= 3N N2LO plus a sub-leading spin-orbit enhancing term with a new LEC (E7) — Girlanda 2011
= |ocal/non-local regulator
= The Hamiltonian fully determined in A=2, A=3,4, and SLi systems
= Nucleon—nucleon scattering, deuteron properties, 3H and “He binding energy, 3H half life
= New LEC (E) fitted to improve excitation levels in SLi
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Why investigate the electric dipole moment (EDM) and nuclear Schiff moment (NSM)?

14

= Unsolved problem in physics: matter-antimatter asymmetry of the universe
=  Standard model predicts some CP violation, not enough to explain this asymmetry

=  The EDM and nuclear Schiff moment is a promising probe for CP violation beyond
the standard model, as well as CP violating QCD 8 parameter

Proposal to measure 8Li EDM in ion trap at ISOLDE

= Nuclear EDMs can be measured in storage rings (CERN feasibility study: arXiv:1912.07881)

Nuclear Schiff moments can be measured using (radioactive) molecules

Nuclear Schiff moment measurements planned in 227ThF*, RaF, and FrAg molecules

To understand the nuclear EDM and Schiff moment, nuclear structure effects must be understood




What is the nuclear Schiff moment?

Schiff Moment

g (er’r)  (1?) (e7)
10 6

Leonard Schiff's Theorem (1963):

« Any permanent dipole moment of the
nucleus is perfectly shielded by its electron
cloud

« True for point-like nuclei, non-relativistic
electrons

However, the “Schiff moment” is not
shielded by this effect

« Zero for point-like, spherical nuclei

« Arises from deformations in the nucleus or
its constituent nucleons

Very large in nuclei with both a quadrupole
and octupole deformation

Look for heavy nuclei with large
quadrupole and octupole
deformations!

Slide by Matthew R. Dietrich (ANL)

15



Parity violating (PV) and parity & time-reversal (PTV) violating nucleon-nucleon (NN) interaction 16

ANNALS OF PHYSICS 124, 449-495 (1980)

= Anapole moment arises due to PV NN interaction (weak force - imaginary),
EDM and Schiff moment due to PTV NN interaction (real) et i

BERTRAND DESPLANQUES*

- P a ri ty n O n _CO n Se r'vi n g PV O r PTV VN N PN C i n te ra C ti O n Institut de Physique Nucleaire, Division de Physique Théorique, 91406 Orsay Cedex—France

JouN F. DONOGHUE'

T
m CO nserves tot a I an g u | ar momen t um I A E > Center for Theoretical Physics, Laboratory for Nuclear Science and Physics Department,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

= Mixes opposite parities -

BARRY R. HOLSTEIN

] HaS isoscalar, isovector and isotensor Components N N Physics Division, National Science Foundation, Washington, D. C. 20550
= Admixes unnatural parity states in the ground state e Rem s e

P- and T-odd two-nucleon interaction and the deuteron electric dipole moment

|¢gs I> - |¢gs IW> + Z |¢J I_W> & rontiers
J

C.-P. Liu* and R. G. E. Timmermans®

in Physics

1
< T, IR s I
gs J

Jordy de Vries'?, Evgeny Epelbaum?®, Luca Girlanda*®, Alex Gnech®,
Emanuele Mereghetti” and Michele Viviani®



Parity violating (PV) and parity & time-reversal (PTV) violating nucleon-nucleon (NN) interaction 17

= Anapole moment arises due to PV NN interaction (weak force - imaginary),
EDM and Schiff moment due to PTV NN interaction (real)
= Parity non-conserving PV or PTV V\PNC interaction
= Conserves total angular momentum /
= Mixes opposite parities
= Has isoscalar, isovector and isotensor components

. e
= Admixes unnatural parity states in the ground state D, = 2 2 (1+71) z
i=1

= EDM and Schiff moment operators

RN

es 1) = s T+ D10y I77) Lz
o $= 153 (rin— 302

< T V PNC . I~ i=1
Egs _E‘7 <¢J | NN |?7bg >

= EDM and Schiff moment calculation
= Nuclear EDM is dominated by and the Schiff moment determined by the polarization contribution:

D®OD = (o I™|D, |thgs I) + c. . S = (Pgs I™|S|gs 1) + c. .



NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?

s 1) = I I7) + D 10y T77) o (T [RRle I7)
J

Egs_ J

18



NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?

L
Egs_Ej

[thgs 1) = [thes )+ D 15 I77) ;i I7TIVRR [Ygs I7)
j

/.4

Sum over all possible
intermediate states

19



NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?

1 —7Tr ™
— (W TR e I7)

Wgs I) = |¢gs 1) +Z|¢j =) B _
j gs J

= Solving Schroedinger equation with inhomogeneous term

(Egs - H)Wgs I> — Vl\Pr)l\l}ICWgs Iw>

= To invert this equation, we apply the Lanczos algorithm

20



NCSM applications to parity-violating moments:

How to calculate the sum of intermediate unnatural parity states?
21

1
Egs - Ej

[thes 1) = [thgs 1)+ D |95 I°7) (b5 I VRN [thes I7)
j

= Solving Schroedinger equation with inhomogeneous term

(Egs - H)Wgs I> — Vl\?l\l?ICWgs Iﬂ)

To invert this equation, we apply the Lanczos algorithm
— Bring matrix to tri-diagonal form (v4, v, ... orthonormal, H Hermitian)

Hv, =a,v, + v,
Journal of Research of the National Bureau of Standards Vol. 45, No. 4, October 1950 Research Paper 2133
HV2 - ﬁIVI TV F ﬁ2V3 An lteration Method for the Solution of the Eigenvalut?
Problem of Linear Differential and Integral Operators
HV3 - ﬁzvz + a3v3 + ﬁ3v4 By Cornelius Lanczos
Hv, = BsVs+a,V, + B,Vs

— nth iteration computes 2nt" moment
— Eigenvalues converge to extreme (largest in magnitude) values
— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)



NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?

22
e T) = [thgs ™)+ 3 [ty I7™) — I [VENC iy I7
gs - gs J E ) <¢J | VNN |¢gs > J. Phys. A: Math., Nucl. Gen., Vol. 7. No. 17, 1974. Printed in Great Britain. ® 1974
= Solving Schroedinger equation with inhomogeneous term The inverse of a linear operator
Roger Haydock
. PNC T
(Egs o H) |¢gs I> _ VNN |¢gs I > Few-Body Systems 33, 259-276 (2003) T Few.
DOI 10.1007/s00601-003-0017-z §(§g
_Sy_stchs
= To invert this equation, we apply the Lanczos algorithm
Efficient Method for Lorentz Integral
|V1> —_— Vl%) I\I? C |¢gs I 7r> Transforms of Reaction Cross Sections
M. A. Marchisio!, N. Barnea?, W. Leidemann’, and G. Orlandini’
1 .
N A
lwgs I) ~ E gr(Eo)| Vi) 21(w) = : Lanczos continued
o Bi fraction method
k w — U] 2
2
/' w—oy— 2 or
w—a3—
’ Lanczos strength

~100 iterations .. method
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Large-scale NCSM calculations of 19F
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Large-scale NCSM calculations of 19F
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Nuclear Schiff moment and EDM of '°F

Leading order PTV NN — one-pion exchange — isoscalar, isovector, isotensor contributions

Nonax=4 (1/2* g8) | N =5 (1/27)
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Nuclear Schiff moment and EDM of '°F

Leading order PTV NN — one-pion exchange — isoscalar, isovector, isotensor contributions
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Nuclear Schiff moment and EDM of '°F

9F Schiff moment dominated by the contribution of the lowest V% state
However, its contribution to the EDM of °F is negligible.

This is due to very different structure of the ¥2* g.s. and the 'z, state
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Nuclear Schiff moment and EDM of '°F

9F Schiff moment dominated by the contribution of the lowest V% state
However, its contribution to the EDM of °F is negligible.

This is due to very different structure of the ¥2* g.s. and the 'z, state
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Nuclear Schiff moment and EDM of '°F

Recent JILA high-precision measurements of the molecular electric dipole moment of 130Hf19F+

in combination with quantum-chemistry calculations to evaluate the sensitivity of the hafnium
monofluoride cation, HfF*, to the nuclear Schiff moment of 1°F

and with ab initio calculations of the 1°F nuclear Schiff moment

allows to set an experimental limit on the PTV pion-nucleon-nucleon couplings.
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monofluoride cation, HfF*, to the nuclear Schiff moment of 1°F

and with ab initio calculations of the 1°F nuclear Schiff moment

allows to set an experimental limit on the PTV pion-nucleon-nucleon couplings.

Recent JILA high-precision measurements of the molecular electric dipole moment of 130Hf19F+

in combination with quantum-chemistry calculations to evaluate the sensitivity of the hafnium
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—TT _
G =99+ (g~13.5)

S(°F) = (—2.9 930 —2.4 gg1 —2.0 ggo) x 10~ 2 e fm?

19F Schiff moment comparable to
129Xe Schiff moment calculated
Igo]  2.3x107° within the nuclear shell model
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Large-scale shell-model calculations of nuclear Schiff moments of '*’Xe and ”Hg

Kota Yanase” and Noritaka Shimizu®"

TABLE II. The NSM coefficients of ?*Xe in units of 10~2e fm°.
Our final results are given in bold.

ap a a
IPM (m, — o0) -9.9 -9.9 —19.8
IPM —4.6 —4.6 -9.2
LSSM (SN100PN, m, — 00) —8.7 —8.2 —15.8
LSSM (SNV, m,, — o0) —8.6 —-8.3 —16.2
LSSM (SN100PN) =37 —-4.1 —8.0
LSSM (SNV) -3.8 —-4.1 -8.1
IPM (m, — 00) [35,36] —11 —11 -22
IPM [38] -6 -6 —-12
RPA [38] -0.8 -0.6 -0.9
PTSM [41] 0.05 —-0.04 0.19
PTSM [42] 0.3 —0.1 0.4
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monofluoride cation, HfF*, to the nuclear Schiff moment of 1°F
and with ab initio calculations of the 19F nuclear Schiff moment

allows to set an experimental limit on the PTV pion-nucleon-nucleon couplings.

in combination with quantum-chemistry calculations to evaluate the sensitivity of the hafnium
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Still, the lighter mass of 9F results in smaller
coefficients for the TTNN coupling terms than
those in heavier and octupole-deformed
nuclei such as ??°Ra and 2?’Ac.

Nevertheless, the 1°F NSM can be computed
using ab initio methods that provide a more
detailed and reliable description of the
nuclear structure than approaches typically
used for heavier nuclei.
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"Li within NCSM

(prerequisite for "Li ~ SLi + n + n)
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— 18472
Borromean halo nucleus ''Li ry-+ P9 SEW VS,
OO0 Osf,/s
m Z=3, N=8 3.5

= Very weakly bound: Ey=-0.3 MeV
= Halo state — dominated by °Li+n+n in the S-wave
= Configuration mixing, °Li ¥2- excited state plays a role

= Can we describe "Li in ab initio calculations?
= Continuum must be included
= What role does the 3N interaction play in the configuration mixing?
= NCSMC needs to be applied — very challenging
= The first step — large-scale NCSM

N
@

Nuclear radius (fm)
w
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6 10

12 fm

——— Op1s2
—— OO0

Ops2

OO0 0S4,

|. Tanihata et al.
Phys. Rev. Lett. 55, 2676 (1985)

Interaction cross section
measurements at Bevalac
(790 MeV/u)
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Large-scale NCSM calculations of "Li
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Large-scale NCSM calculations of "Li
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Large-scale NCSM calculations of "Li

19 E—
g 2T 11, .
171 32— Li
15 NNN'LO+3N,_
14+ —
13+ — hQ =14 MeV
12
% 11+ :
10 J—
6 - 1/2 — —_— 1/
St —— — 3/2
‘3‘: 1
2 |
- ]
0l-3/2 3/2
0hQ 2hQ 4hQ 6hQ 8hQ 10hQ

X

E [MeV]
N W kL Y9 0 O

S =

12" — 11, .

12" Li
— + s 4

32— NNN'LO+3N, -
e hQ = 14 MeV
B2 —
- — 12
= — 12"

e 312
- R . T
312"
L 3/2° 3/2
0/1hQ 2/3hQ 4/5hQ 6/7ThQ 8/9hQ

38



Large-scale NCSM calculations of "Li
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Next step — including continuum via NCSMC — "Li ~9Li + n + n
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Enhanced short-range 3N interaction
with two-pion exchange

Results for 3H
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A new class of three-nucleon forces — enhanced sub-leading terms?

PHYSICAL REVIEW LETTERS 135, 022501 (2025) 41

Closer look at enhanced three-nucleon forces

New Class of Three-Nucleon Forces and Their Implications E. Epelbaum,! A. M. Gasparyan,l J. Gegelia,1’2 D. Hog,l and H. Krebs!

Vincenzo Cirigliano®,” Maria Dawid,” Wouter Dekens®,” and Sanjay Reddy® arXiv:2512.14117

= Enhanced short-range 3N interaction with two- .

pion exchange H{ 4 |+ ]+... + . # .

t
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Fy = (;,i; F> = FC;K?( f>K >K - >K N

Exploring quark mass dependent three-nucleon forces in medium-mass nuclei

Urban Vernik®,:2:* Kai Hebeler®,:23 T and Achim Schwenk®' 23,1



A new class of three-nucleon forces — enhanced sub-leading terms?

PHYSICAL REVIEW LETTERS 135, 022501 (2025) 42

Closer look at enhanced three-nucleon forces

New Class of Three-Nucleon Forces and Their Implications E. Epelbaum,! A. M. Gasparyan,' J. Gegelia,"»? D. Hog,! and H. Krebs!
Vincenzo Cirigliano®,” Maria Dawid,” Wouter Dekens®,’ and Sanjay Reddy® arXiv:2512.14117
. . . . ; 4
= Application to 3H gs energy — Jacobi NCSM  Georgios Palkanoglou (TRIUMF) Calculations for *He,
p-shell nuclei in progress

NN: N4LO NN: N4LO
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Conclusions 44

Sub-leading spin-orbit enhancing 3N interaction improves description of light nuclei

Enhanced short-range 3N interaction with two-pion exchange applied to 3H
= Calculations for “He and p-shell nuclei in progress

9F Schiff moment and EDM calculated in NCSM
= Obtained experimental limits for PTV 1TNN couplings

Nuclear structure of 'Li investigated in NCSM
= Relevant for new "Li(d,d’)"'Li TRIUMF IRIS Experiment
= Prerequisite for NCSMC "Li ~ °Li + n + n study with three-body continuum



