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Nuclear shapes and currents
)

Figure 1: Legendre polynomials, Py(cosf) for A = 0,1,2, (a), and the patterns of the
current flows for the magnetic dipole (b), quadrupole (c), and octupole (d) moments of
symmetry-broken aligned ground states of odd nuclei.
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Nuclear currents

Amax

Jo(z,m) = Z ga(r) Px—1(cos8), with r =+/n? + 22, COS@Z;

A=1,2.3...
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Experimental data

Electric quadrupole
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Nuclear density functional theory
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7 M. Kortelainen et al., Phys. Rev. C 85, 024304 (2012) Picture courtesy of H. Wibowo

Self-consistent equations are solved iteratively, which includes the polarization effects
summed up to all orders without recurring to the lowest order perturbative coupling.
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Neutron s.p. energy (MeV)

How to calculate odd nuclei in nuclear DFT?
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[J. Dobaczewski ef al., arXiv:2509.26549 }

Neutron single-particle energies (MeV)
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Time-odd spin alignment & symmetry restoration

B

“Intrinsic”
Symmetry broken

“Laboratory”
Symmetry restored

[ J. A. Sheikh et al., ]. Phys. Gd8, 123001 (2021) |

M) =N [ dBdhi0(8)[2 )

Spectroscopic moments are determined for symmetry-restored wave functions without
using effective charges or effective g-factors and compared with experimental data.
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Nuclear quadrupole & dipole moments

Spectroscopic electric quadrupole Q and magnetic dipole ¢ moments are :

16 A 4 A P. Ring and P. Schuck, Th
0= /—”(m Ol 11y and p = /—’I<H|M,0 1) . Nuclear Many-Body Problerm

. 2\ = g,(8,) = 5.59(~3.83)
0=\ 8 (380) (5 -2 = Fm 3 st} T

2 = 1(0)

Intrinsic moments = moments of the symmetry-broken state
Spectroscopic moments = moments of the symmetry-restored state

[Spectroscopic moments = moments measured experimentally J
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Open shell Gd-Os and near doubly magic nuclei
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FIG. 1. Diagram illustrating the set of odd near doubly magic
nuclei considered in this study. The symbols pp, ph, np, and
nh represent the one-proton-particle, one-proton-hole, one-
neutron-particle, and one-neutron-hole neighbors of the eight
doubly magic nuclei.
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Experiment

Figure 4: Calculated magnetic dipole moments p (a) compared with 23 experimentally
measured values (the arrows mark the outlier cases discussed in the text). Full circles
(squares) show results obtained for odd-N (odd-Z) nuclei. Panel (b) shows the electric
quadrupole moments ) compared with 15 experimentally measured values (the inset shows
values that are outside the area of the main plot, as visualised by the dashed-line square
drawn inside). Panel (c) shows the effective spin g factors described in the text, with ovals

Summary of results obtained near doubly magic nuclei
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marking the outliers shown in panel (a).

[ P.L. Sassarini ef al. J. Phys. G 49 (2022) 11LT01 ]

Jacek Dobaczewski -

@ scerce e e
UNIVERSITYW & e ol Lo

WNER,
*

5'/
Py

Science & Technology LEVERHULME T B B

X 7
A

WA ?\S?\


https://doi.org/10.1088/1361-6471/ac900a

Dysprosium electric quadrupole moments vs. data
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Dysprosium magnetic dipole moments vs. data

Magnetic dipole moment p (uy)
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Summary of results obtained in Gd-Os nuclei
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Figure 6: Summary comparison of the experimental and theoretical DFT magnetic dipole
moments p, (a) and (d), electric quadrupole moments @, (b) and (e), in odd-N, even-Z
isotopes between gadolinium and osmium (panels adapted from Reference (67). Panels (c)
and (f) show the analogous comparison of the magnetic octupole moments 2 across the
mass chart. Open symbols and bars denote the outliers, see text.
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Residuals in Gd-Os nuclei
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Radiative decay and electromagnetic moments in ?Th
MIXED NOT MIXED NO OCTUPOLE
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B(M1:3/2+—5/2+) between the % ooF 35 Iy H :

isomeric and ground states of E_ 03§ (2)
2PTh and discussed the effects | Z= 05E % 3 ! TR

- - rpEme 1t
of parity breaking, 0.0E 4{ 3
configuration mixing, and o5k }
time-odd core polarization. — :
Without parameter == 0.5F ¢ ;

n(5/2+) (

[ A. Restrepo-Giraldo et al., to be published ]

adjustment, the obtained é: 0.0;—_ ™ ; 3o $s 3 -
results favorably compare = -05F : | (c)
with the experimental data < of | :
but also indicate the need to = I { {{ 3 ]
+ - L .
systematically adjust the 3 °F { ¢ ¢ te 4 E
octupole degrees of freedom 2 10f (d)
in future functional 2 0
Q)arametrizations. / g 5_ {' } {i {} % 3 _
o™ - -
2 1ok } (e)
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Meson exchange currents in nuclear DFT

The two-body operator (40) has two terms, called the intrinsic term,
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Hig + H2B — exp.

Meson exchange currents
T e T in nuclear DFT

Hecalc ~ Hexp (Mn)

[ H. Wibowo et al., to be published }
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Electric dipole moments in nuclear DFT

The nuclear Schiff operator is defined as follows,

A e 5)
Sz = 1—0 - <’f’},2) — §<T2>ch> Zp 1.

The laboratory Schiff moment, S*P, is determined using second-order pertur-
bation theory,

(Wo| S| W) (U, |Ver|Wo)
glab 0 PT
N C-C.
I Te.c,
17#£0
where |¥;) is the ground state and the sum is over excited states. The P, T-
violating NN interaction, VpT reads as follows,

. gm: 5 &
VPT('rl_"'Q):_Sﬂ_mﬂ (5'1—5'2)'(7“1—Tz){ﬁoﬁ'ﬁ—?(ﬁz—Fﬁz)—F
N
+§2(3’?1z%2z—:71"%2)] —%(01+02) (""1—7"2)(’?1z—’?2z)}

1 1

X |:1 + mﬂ“] + Zm?\; {51 —|—527%1 7%2} (5’1 — 5’2) . V&g(’rl — 7’2)- 3.

MT?

The linearity of Vor allows us to express the laboratory Schiff moment, S*", as
a linear combination of the unknown coupling constants with the coefficients
calculated in DFT, that is,

SPP = apggo + a19G1 + a29G2 + b1E1 + baco. 4.
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Electric dipole moments in nuclear DFT

[]. Dobaczewski et al., arXiv:2511.04632 ]
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Anapole moments in nuclear DFT

The nuclear anapole operator is the lowest-order parity non-conservation
(PNC), time-reversal-odd multipole operator defined by Haxton, Liu, and
Ramsey-Musolf as follows,

iy = —Mg /d% r? [j’n(r) + V2w |V2(0,0) @ j(r) m] : 5.

Analogous to the laboratory Schiff moment, SP, the laboratory anapole mo-
ment is

al=P (Wola- | W) (W [ Vene | Wo)
N; EO—E- + c.c., 6.

where Vch is used in the form of the Desplanques Donoghue, and Holstein
(DDH) potential, and has the form as follows,

VPPH(r) = Sshagany (71 X 72), (61 + 62) - 557 [P1 — P2, wn(r)]
- gp(hpﬁ Ay b LRL (R R2) |+ k2 (3fate. — T -%2))
X ﬁ((&l —&2) - {p1 — P2, w,(r)} +i(l+ xv)(E1 X 2) - [P —ﬁa,wp(v“)})
—Qw(h?u +5he (F1 +72)., )
< g7 (01— 62) - {B1 = Paswn ()} +i(1 4 xs)(61 % &2) - [Br — P2 (1)] )
2). (61 462) gy (900 {B1 — P20p (1)} — gl {pr — P2, ()}

. o1 —|—O’2)-2M [ﬁl—ﬁg,wp(r)}. 7.

|

W.C. Haxton et al., Phys. Rev. C 65 (2002) 045502

|

, Ann. Phys. 124 (1980) 449

[

[ B. Desplanques et al.

[]. Dobaczewski et al., arXiv:2511.04632 ]
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Conclusions

ﬁ For the first time, in nuclear theory, we can systematicalm
calculate spectroscopic electromagnetic moments in odd open-
shell nuclei with arbitrary particle numbers and (axial)
deformations.

2. Large nuclear-DFT single-particle phase space (well beyond the
valence space) allows for using the bare effective charges and g-
factors. (No adjustable “effective” values are needed.)

3. The calculated magnetic dipole moments p and electric
quadrupole moments Q reproduce the known experimental
data in heavy open-shell nuclei.

4. It is essential to take into account simultaneously:

a)  Self-consistency
b)  Polarization
C) Symmetry restoration

5. The effects of the extended T-odd sector, triaxiality,

octupolarity, two-body currents, K-mixing, and configuration

\ interaction (...) remain to be studied. /
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Basic definitions

The electric and magnetic moments are defined as
Qu = (V1Qu ) = [ ax,(?) &'F
My, = (N, |W) = [ m, (7) d'F

where |¥) is a many-body state, and g»,(7) and my,(7)
are the corresponding electric and magnetic-moment
densities:

Du(T) = ep(T)Qxru(7),
mxa(7) = 1 |9:5(7) + 525907 X 5(7) | - VQau ().
and e, gs, and g; are the elementary charge, and the

spin and orbital gyromagnetic factors, respectively. The
multipole functions (solid harmonics) have the standard

form: Q. (7) = r*Y,.(0, ¢).
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Particle-number symmetry restoration (PNP)
is not worth the 100 % increase in CPU time

LI L L I L LR BN RN
—l— eletric quadrupole
Gd - @ —magnetic dipole

| H. Wibowo ef al,, L. Phys. G 52 (2025) 065104 |
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Shape and spin polarization

€ € Spin polarization
I = total angular Q=1
momentum |Q=1 )
{2 = projection of /
............ €)oo R 02212
¥ J Q=1
Q=1
{ 4
Landau parameter g; (g, = 1.7)
o s T2 23
O=1/2 8 =N (2C]+2C] (Bxpy/2) )
_ parti | m )
O =hole @ - particle A 150— MeV - fm®
m?.r:
1Q=1) |1Q=1) Y J
P. L. Sassarini et al., J. Phys. G: Nucl. Part. Phys. 49, 11LT01 (2022)
A. Bohr and B. R. Mottelson, Nuclear Structure Vol. 1
p r(?late' Ob'late_ K. L. G. Heyde, The Nuclear Shell Model
polarlza_tlon polarlza_tlon I. Ragnarsson and S. G. Nilsson, Shapes and Shells in Nuclear Structure

Picture courtesy of H. Wibowo

In nuclear-DFT, we align the total angular momenta of odd nuclei along the intrinsic
axial-symmetry axis with broken spherical and time-reversal symmetries. We fully
account for the self-consistent charge, spin, and current polarizations, in particular
through the inclusion of the crucial time-odd mean-field components of the functional.
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Schmidt limits

The magnetic operator [« 1s a one-body operator and the magnetic dipole moment /¢ 1s the
expectation value of it,. The M1 operator acting on a composed state |Im) can then be written
as the sum of single particle M1 operators /4. (j) acting each on an individual valence nucleon

with total momentum j: ”= gL L + gS S
> i)

=1

M(I)E<1(j1,jz,...,jn),m=1 I(jl,jz,...,jn),mzl> (2.1)

The single particle magnetic moment (/) for a valence nucleon around a doubly magic core
1s uniquely defined by the quantum numbers / and j of the occupied single particle orbit [22]:

r/,L-:j—%+;up forj:l+%
for an odd proton: ; j 3 . | (2.2)
nw=——\/+5"i for j =1—3 ]
L / Schmidt
. | limits
U= [y for j =1+ 5
for an odd neutron: j _ | (2.3)
n = — [n for j=1—5

j+1
These single particle moments calculated using the free proton and free neutron moments
(Up = +2.793, p, = —1.913) are called the Schmidt moments. In a nucleus, the magnetic
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Gerda Neyens, Rep. Prog. Phys. 66 (2003) 633-689
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of the electromagnetic moments
in heavy deformed open—shell odd nuclei
L
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L
Blocked quasiparticles were tagged by the neutron

82 86 90 94 98 102 106 110 114 118 122 126

i13, (Q=+13/2) or proton h;,, (2=+11/2) single-particle orbitals
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Intrinsic quadrupole moment Q x 55/91 (eb)

Heavy deformed m11/2" 0dd-Z nuclei

O-Tb +Tm <-Ta *&Ir

©®-Eu - Ho @ Lu A Re VAu

“~TIi

Spectroscopic quadrupole moment Q (eb)

/Conclusion:

Spectroscopic electric quadrupole moments can be inferred

\from the intrinsic ones at ~5% precision only at | Q| >1b) y
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Magnetic dipole u (“N)
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Heavy deformed 11

1/2" odd-Z nuclei

Spectroscopic
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Spectroscopic magnetic dipole moments

Kcannot be inferred from the intrinsic ones y

O-Tb +Tm <>-Ta AIr —~TI
82 90 08 106 114 122 82 90 08 106 114 122
Neutron number N
fConclusion: h

7. Bonnard et al., Phys. Lett. B 843 (2023) 138014

Jacek Dobaczewski

Science & Technology LEVERHULME

@ scince e
UNIVERSITYW & oo Comnel Loy L

NER ¢

\ B
= % s
< @ 5 4
*ip ok x

e

i
o~
LY Tt SN
o o | =

WA ?\S?\



N
N

Magnetic dipole p (“N)

N
~

Heavy deformed v13/2" 0dd-N nuclei

©®-Eu B-Ho € Lu & Re
O-Tb +Tm <-Ta X&Ir

V-Au
—~TI

Spectroscoplc
107

115

123 83 91 99 107 115

Neutron number N

fConclusion:

Spectroscopic magnetic dipole moments
_cannot be inferred from the intrinsic ones )

\

123

[J. Bonnard ef al., Phys. Lett. B 843 (2023) 138014 |

a
UNIVERSITYW & o ol

Jacek Dobaczewski
Science & Technology

TRUST

LEVERHULME

NERg,
A
> é
*

“‘*\f‘

WarS



Heavy deformed v1 3/2" 0dd-N nuclei

o ,[(c
8 4f© 1|-®-Gd
g |
Q@
o 2t
Q | N, +Yb
-c-: I v e | |~O-Hf
S 0 fgrmo=———-—- O-W
() I | |-&%Os
*8' o 1| Pt
] |1-¥-Hg
- {|-<~Pb
4+ LT
83 91 9 107 115 123
Neutron number N
g . N
Conclusion:
Rules of oblate and prolate polarizations do extend
| from the magicity towards the open shell systems.

7. Bonnard et al., Phys. Lett. B 843 (2023) 138014
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Heavy deformed v13/2" 0dd-N nuclei

1|@-Gd
11-O-Dy
1| Er
| 1-O0-Yb
| | @ Hf
|1 [<O-W
1|4 0Os
1 Pt
| |I-"¥Hg
1| Pb

83 91 99 107 115 123
Neutron number N

/Conclusion: h

Rules of particle and hole polarizations do not extend
\from the magicity towards the open shell systems.
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Spectroscopic moments: theory vSs. experiment

Magnetic dipole p (py)

Electric quadrupole Q (eb)

7510 -
7.0 '
6.5 '

6.0L

Schmidt value

[ & I Theory :
. E ° Expenmentﬁ
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"m | odd-Zn11/27 []

s amg

145Eu149Eu 153-|-m191|r 189Au 193Au 197Au
147Eu 153Ho 187|r 177Au 191Au 195Au 207-|-|

-0.6}

1.0]

-1.4'

B Theory
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w1 83-197py, #205p)

7. Bonnard et al., Phys. Lett. B 843 (2023) 138014
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Electromagnetic moments - the rigid-rotor approximation

161Dy 5/2+ UNEDF1, g’,=1.7
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Convergence of the total HFB intrinsic energy

16’Ho 11/2-, UNEDF1, g’,=1.7

-1351.4¢+ g 0.6 Xi 72=0.000034
é -1351.6 g 04rF E=-1352.644(14)+35.9(2.5)*exp(-0.211(5)"N,) | T
-1351.8} : — 0.2¢F
5 351.8 | Optimal o, M _ th/(41MeV*A1/3) =19
S -1352.0} | > 0.0}
3 _ o |
o —@—N_ =16 o I
g -1352.2_—_‘_N0 = 0.2 |
£ 135240 W 3 047
L 0= " | k= I
35260 1 HEegn) & o6
By 1352.644(14)) 1 aE .
08 10 12 14 16 16 20 24 28 32 36 4
o, /(41MeV*A ") N,
E,,,=-1357.77346
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Convergence of the spectroscopic moments

16’Ho 11/2-, UNEDF1, g’,=1.7
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Proton number Z

Nuclear-DFT analysis of electromagnetic

moments between the Sn and Gd isotopes
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Magnetic dipole moments: theory vs.
experiment

Odd-Z n7/2*
e Experiment W Theory T Schmidt lines represent the value of magnetic
35 ] dipole moment of an odd-mass nucleus which is
EE ¢ completely determined by the # and j values of
3- , . - . . . -
@ 30- - < 3 the unpaired nucleon (single-particle model).
.8- - * a4 L 4 pe 4
S - ¢ * | o = -
£25] o [ ) * 4 [N Odd-N v11/2-
0.0
c m ]
2 Spgeanm [ | {1 ® Experiment B Theory
= | Sanm Egmun 1
i (LN 1
2.0 B L ~ —0.5 1
Schmidt line m N ! E :
"""""""""""""""""""""""""""" 3 ] *
T T T T T T T T T T T T T T T T T T T T T 11 o —1.04 .- '-'::'.'...‘ :..._. :::ﬂ'!. N
QX A NG aa 0w o oo A P~ 2 ] | *Te *
SOSFTEEVTTEE PPOLOTISF e a2 3. n a® | " n Tan [ "eY Jag
L ERER AR T8y o ] #o!it'l'. ...l
~ o~~~ 3 = _15_
Nuclei g ]
g 4
N. J. Stone, Table of nuclear magnetic dipole and electric = 50 TUTTTU T AS=E =L o od et e e il el e B
quadrupole moments (2014), INDC, report INDC(NDS)-0658 ] Schmidt line
_2-5-|||||||||||||||||||||||||||||||||
SoCoCoCSCCS S, % Y2999,000000 00 T ST
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Quadrupole moments: theory vs. experiment

0dd-Z n7/2*
2.5+ i |
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Moments of the 9/2 states in In
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states in Ag

Moments of the 1/2, 7/2 & 9/2
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g=wl

Moments of the vh,;, isomers in Sn
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Q/b

Quadrupole moments in Sb
O VS-IMSRG (sdg) =-= VS-IMSRG (sdg7 + eff) [ This work

= \/S-IMSRG (sdg7) Shell model V Literature
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- — /(o
-0.3 =
- A
. */
~0.4 e 0
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Quadrupole moments in Sb
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Magnetic dipole moments in Sb

O VS-IMSRG (sdg) =-= VS-IMSRG (sdg7 + eff) [ This work s
— \/S-IMSRG (sdg7) Shell model V Literature N
H
Hsp(rds) %)
4.5 = g
Gy
D~
4.0 = - e
effective g-factors: 0
f,.--""" Yseff = 0'693 ﬁ
3.5 : 9p=1.11 2
L/‘ = O g1,=-0.02 ,_q_]J
- m— + 7
3.0 I"=5/2"% S q_ ﬂ-—-‘g =y
..-‘.h-‘ “ﬂu_.gf- Q;
2.5 - \VERY/ o © =
—
Q
2.0 - 3
}usp(ng?ﬂ} \/ ‘g
|9
15 (a) '3
I | I | I I | I I | I 5
62 64 66 68 70 72 74 76 78 80 82 )

Jacek Dobaczewski

@ scerce e e
UNIVERSITY W & Facies cooncl

N

(ER .
WN K)
w a

LEVERHULME “.84.~
TRUST OX%&\\.?:#{@K‘&

WA ?\S?\

Science & Technology




Magnetic dipole moments in Sb
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Moments of the 9/2 states in In
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Two-body-current corrections to magnetic moments

170(5/27)
17F(5/27)
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207T1(1/27)
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» o O -
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d:lo*

O - 6.25 Exp. -

FIG. 1. Magnetic dipole moments of near doubly magic nuclei
from A = 17— 209 computed with the VS-IMSRG(2) relative
to the experimental values. Results are shown at the one-body
level, pip (blue squares), and including 2BC, pig + pop (red
- circles) based on the 1.8/2.0 (EM) NN+3N interactions. The
experimental dipole moments (stars) are taken from Ref. [21,
35]. In addition, we show the simple single-particle (sp) limit
(without many-body correlations and without 2BC).
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FIG. 4. Magnetic dipole moments of the 9/27 ground state for

—1.0

—-0.5 0.0
(lucalc. - .uexp. )»'r|)uexp. |

the odd-mass indium isotopes isotopes computed with the VS-
IMSRG(2) including 2BC, in comparison to experiment [21,
52].
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