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Motvation: neutrino oscillations
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Motivation:
long-baseline oscillation experiments
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Next generation experiments

Long-baseline oscillation experiments

Hyper-Kamiokandé
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elementary particle unification theories
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v CP-violation measurement v Proton decay searches

/ Determining v mass ordering v Cosmic neutrino observation
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Nuclear responses
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Electrons for neutrinos

do
JE'JO ;. — 00<UCCRCC Ve Rep + 01 Ry
do _ _
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v much more precise data

v we can get access to R; and R, separately (Rosenbluth separation)

v experimental programs of electron scattering in JLab, MAMI, MESA




Electron scattering:
Rosenbluth separation

Inclusive cross-section Nuclear responses
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Rosenbluth separation
with Bayesian neural network
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 Trained on 4He, 6Li, 12C, 160,
40Ca

* Rosenbluth separation
possible for kinematics and
nuclei where there is less data



Lorentz Integral Transform (LIT)
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Electron scattering on 100

Lorentz Integral Transform + Coupled Cluster (LIT-CC)

E=537 MeV; 6=37.1°; |q|= 330 MeV/c
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First ab-initio result for many-body

system of 16 nucleons

—— BNN
—— LIT-CC

la| =335 MeV/c

o e 5 e

50

100 150 200 250 300

50

2-body currents missing

(expected lack of strength) I
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Phys. Rev. Lett. 134.202501 (2025)



Neutrino scattering on 100
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Electromagnetic responses on 40Ca
(LIT-CC)
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JES, B. Acharya, S. Bacca, G. Hagen;

v Coupled cluster singles & doubles
v Two different chiral Hamiltonians
v Uncertainty from LIT inversion
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Alternative way to reconstruct response

Inversion of LIT is an ill-posed
problem + might be unstable.

Alternative: reconstruct
discretised spectrum in terms
of histograms.

Gaussian integral transform
(GIT) reconstructed via
Chebyshev polynomials

Binning based on the density
of states.

Study on deuteron

13

Dipole response on deuteron
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Alternative way to reconstruct response

Inversion of LIT is an ill-posed
problem + might be unstable.

Alternative: reconstruct
discretised spectrum in terms
of histograms.

Gaussian integral transform
(GIT) reconstructed via
Chebyshev polynomials

Binning based on the density
of states.

Study on deuteron
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Towards semi-exclusive cross-sections

Initial Vertex of Final state
nuclear state interaction interactions

, N

Spectral function
for nucleus
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Towards semi-exclusive cross-sections

Initial

N
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Spectral function for nuclear matter

+Local density approximation

g2

F. Marino, C. Barbieri, G. Colo arXiv: 2601.03763

nuclear state

Vertex of
interaction

Final state
interactions

L2, |19 = 300 MeVv

ANNLOG0(394)

« [FG
w e hinle SF

= hiole+ e Licle ST

16

A. Cavallin, F. Marino, JES, In preparation

Use NN to interpolate SF

To be applied for symmetric
nuclei

For low momenta can use
particle SF

Can be interfaced with intra-
nuclear cascade

J




Towards semi-exclusive cross-sections

Initial Vertex of Final state
nuclear state interaction interactions

N

e Quasi-elastic process,
e Pion production,

e Strangeness production
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160 spectral function: probing new physics

Effective Lagrangian (SMEFT):

LR _ (=.1 =
4G @V = (cy*P L,Rd)(T}/,uP V)
P = —721” Cd[(l—g‘%)@{; + .+ geO% + glO% + gLO% +h.c.

O = (TP pd)(TPv,)

o @%’R — (EGﬂVPLd)(%G/AZ/PLVT)
* Charge-current transition on the quark level

v.d — © c:is there new physics there?

1.0- —— BA€(30,50) MeV; gf =0
* Constraints on Wilson coefficients from ---- Bp=40 MeV; f#0
experimental observations (decays of _ 08
charmed mesons; proton-proton collisions at E o
high energy) S Ve + 160 5T + Ac + X
* Could we constrain them looking at A Ev=10 GeV

vn— 1 A\?
* NEED TO ACCOUNT FOR NUCLEAR

EFFECTS: spectral function for initial

nucleon; binding energy for produced A, High precision of A properties in nuclear
medium needed to gain sensitivity to BSM

18
E. Hernandez, J. Nieves, JES, Phys. Rev. D 112, 053006 (2025)
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Neutrinos in nuclear matter

Thin atmosphars: H, He, O . Outer crust: ians placirone

Inner crust: on lattice,
sueked insuper Muid neutrons 15Fn)

Outer core liquid:- e, 1",
Sin supercanducting protons
\

—"—— Inner core. hyperons?

quarks? unsnown
}’ =10 gom™

=2 nuclear denszity

2x 10 gom!
~ruclear darsity

410" gem™!
‘neutron Jrig”

Spin fluctuation in the long

Source: https;/www.nature.com/articles/s42254-022-00420-y

wavelength approximation g — 0

v Neutrino interaction rate driven by nuclear
responses

— 2 —
v neutrino emission — mechanism of cooling So(w) = Z | <le || Po) [70(Ey + @ Ef )

in neutron stars f

v Dynamics of supernova core collapse
20



Neutrinos in PNM

PHYSICAL REVIEW C 87, 025802 (2013)

Spin response and neutrino emissivity of dense neutron matter

G. Shen,' S. Gandolfi,! S. Reddy,"? and J. Carlson!
'Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
2Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA
(Received 29 May 2012; published 15 February 2013)

* Response reconstructed from 3 energy-
weighted sum-rules
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Neutrinos in nuclear matter

Coupled cluster + NNLO ,(394) interaction
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0.02 A i o 2
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a box with N particles. 3 N=114 NNLO,(394)
0.00 — . . 0+— . .
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J.E.S., W.Jiang, A. Roggero, Phys. Rev. Lett. 134, 192701 (2025)

Sum rules calculation

consistent between (But very different from AVS8 results\
simulations with various N Demsiy S, (MeV) S0 5 (MeV)

(fm=3)

n=0.12 0.0057(9) 0.20(1) 8(1)
n=0.16 0.0044(7) 0.20(1) 11(1)

\ n =020 0.0038(6) 0.18(1) 14(1) j
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Neutrinos in PNM

Coupled cluster + Gaussian integral transform
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Neutrinos in nuclear matter

How sensitive to nuclear Hamiltonian & wave function?
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of spin response

Spin response is a highly sensitive observable (strongly depends on
correlations in wave function and nuclear Hamiltonian)
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Outlook

e Neutrino-nucleus scattering

* Towards 4°Ar

* Include 2-body currents

e Spectral function -> towards pion production regime
e Nuclear matter:

e Spin response sum-rules: Hamiltonian dependence + other many-
body methods

* Include temperature dependence

e Momentum-dependent responses
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More on QMC

e Mixed estimator:

e For observables commuting with Hamiltonian:
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Binning in nuclear matter

Driven by the kinetic h2(2ﬂ/L)2
] energy difference —

Py 1.4 between 2 shells sep 2m
S0
o 1.0 -
p
o
5 0.8- H
2 0.6-
0
. |
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2 0.2 ;

0.0 ]
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w [MeV] . 1/3
Size of the box: L = (N/p)

First excitation:
Energy needed to excite 2 nucleons from
the 1st closed-shell configuration

~kinetic energy ~(p/N)*3



Uncertainty estimation (responses)

Assessing EFT truncation error

NNLO..(450) . 0.25}
1 ANNLOgo(450) | '

1 ANLOgo(450) |
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w [MeV]

Gaussian process (GP) to assess chiral truncation using 2 orders of expansion

k n
Order k EFT prediction: y,(p) = y,.f(p) Z ¢, (p) <%>
n=0

EFT truncation error: 0y, (p) = Y.e(P) Z ¢,(p)

n
P
A :
n=k+1 Draws from an underlying GP



Bayesian neural network

P(Y|W)P(W
powlyy = P DVIPOY)
P(Y)
szl,...,wNp - parameters of BNN treated

as probability distribution

Using the Gaussian prior:

1 ol w;
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Assume a Gaussian for the likelihood
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The loss function is the least-
squares fit to data
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BNN responses on40Ca
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BNN responses on40Ca

40Ca, g =380 MeV/c

40Ca, g =380 MeV/c
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