

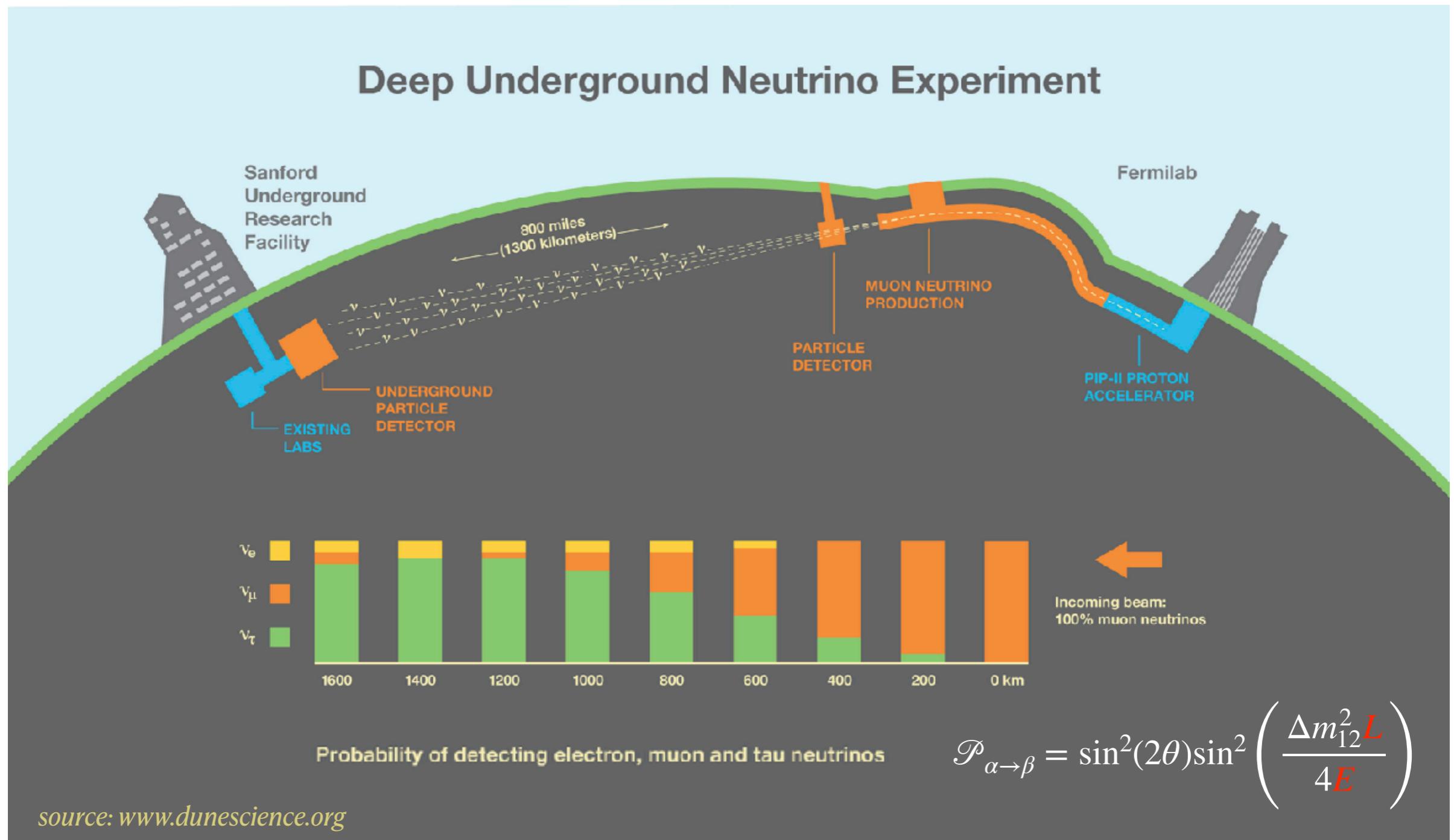
Electroweak responses in nuclear systems

Joanna Sobczyk

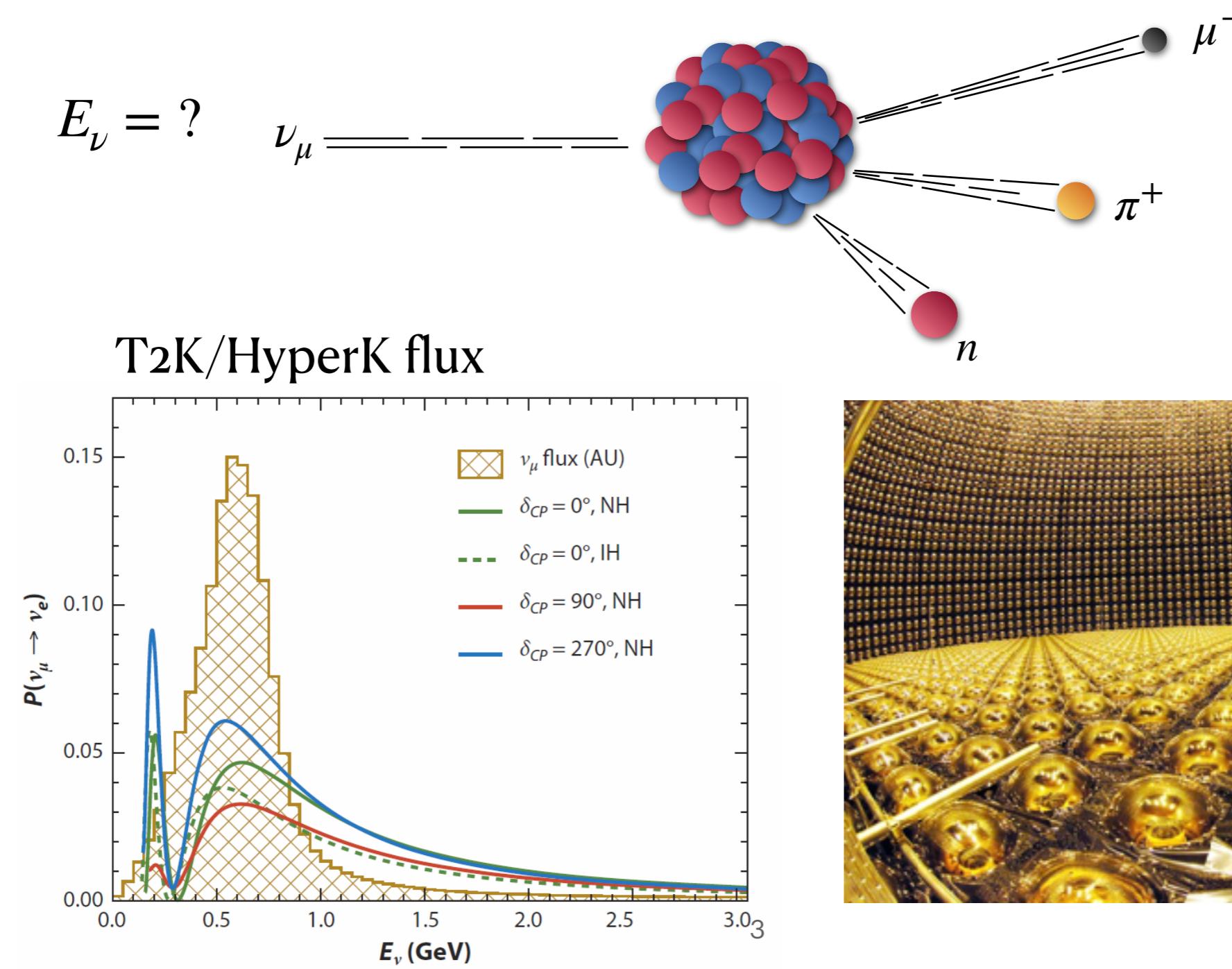
Hirschegg, 20 January 2026

CHALMERS
UNIVERSITY OF TECHNOLOGY

Motivation: neutrino oscillations

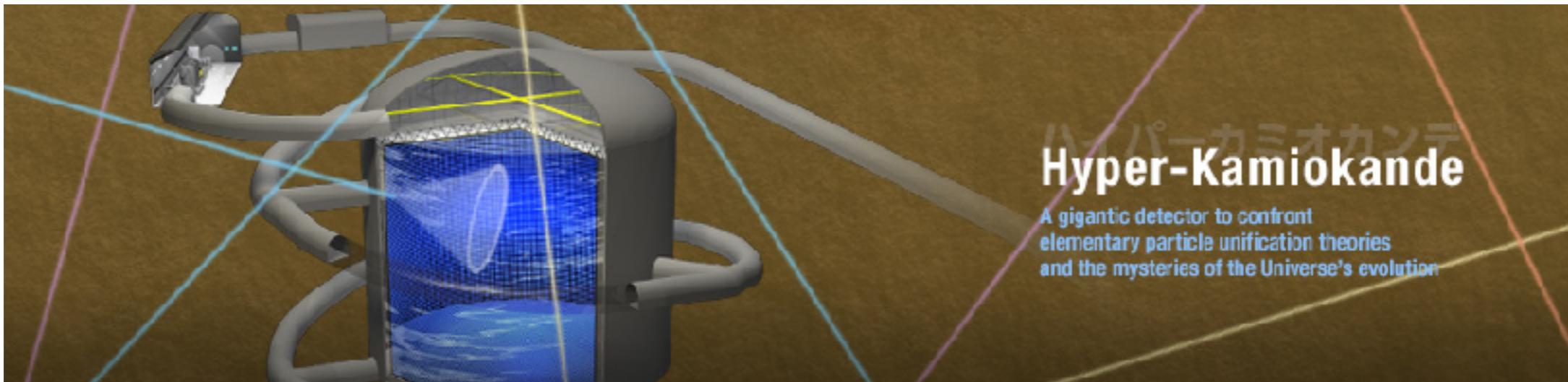
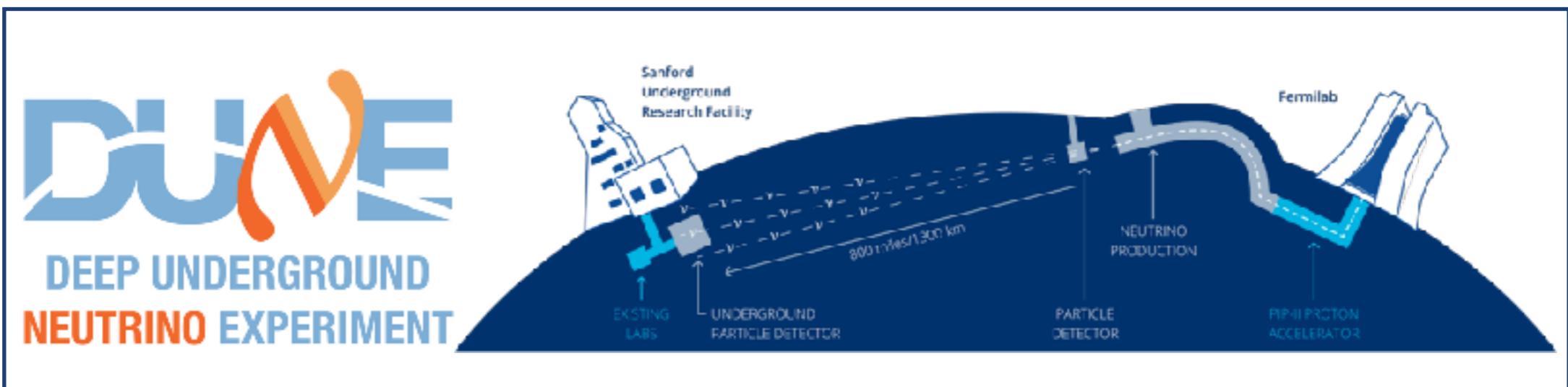


Motivation: long-baseline oscillation experiments



Next generation experiments

Long-baseline oscillation experiments

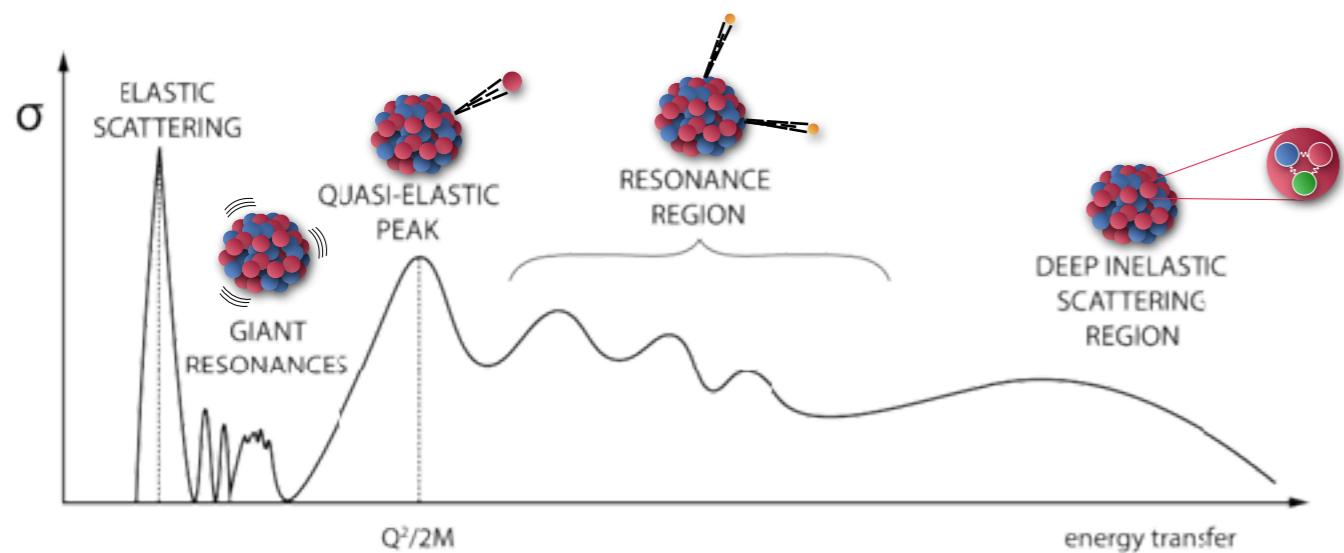


- ✓ CP-violation measurement
- ✓ Determining ν mass ordering
- ✓ Proton decay searches
- ✓ Cosmic neutrino observation

Nuclear responses

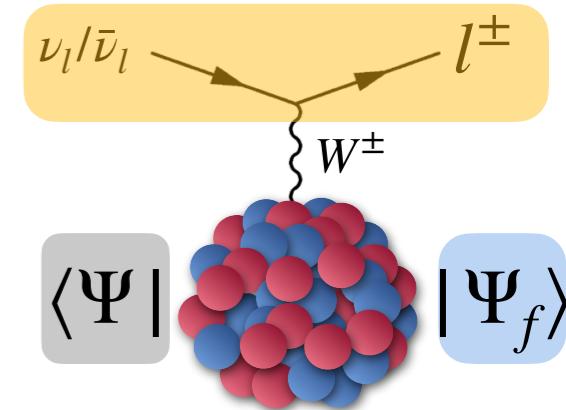
Cross-section

$$\sigma \propto L^{\mu\nu} R_{\mu\nu}$$



lepton tensor

nuclear responses



$$R_{\mu\nu}(\omega, q) = \sum_f \langle \Psi | J_\mu^\dagger(q) | \Psi_f \rangle \langle \Psi_f | J_\nu(q) | \Psi \rangle \delta(E_0 + \omega - E_f)$$

Challenging sum over
continuum spectrum

Electrons for neutrinos

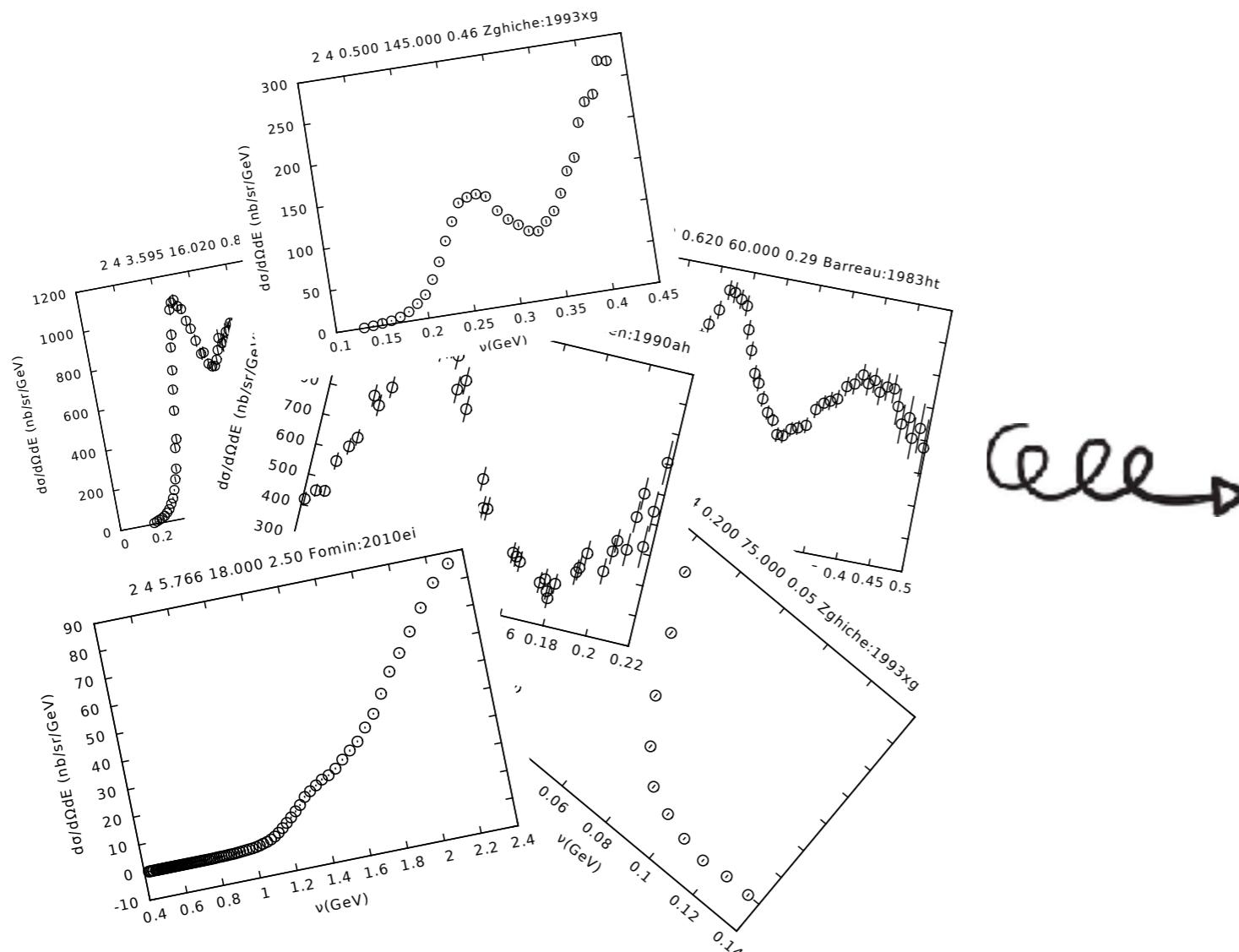
$$\frac{d\sigma}{dE'd\Omega} \bigg|_{\nu/\bar{\nu}} = \sigma_0 \left(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_T R_T \pm v_{T'} R_{T'} \right)$$

$$\frac{d\sigma}{dE'd\Omega} \bigg|_e = \sigma_M \left(v_L R_L(\omega, \bar{q}) + v_T R_T(\omega, \bar{q}) \right)$$

- ✓ much more precise data
- ✓ we can get access to R_L and R_T separately (**Rosenbluth separation**)
- ✓ experimental programs of electron scattering in JLab, MAMI, MESA

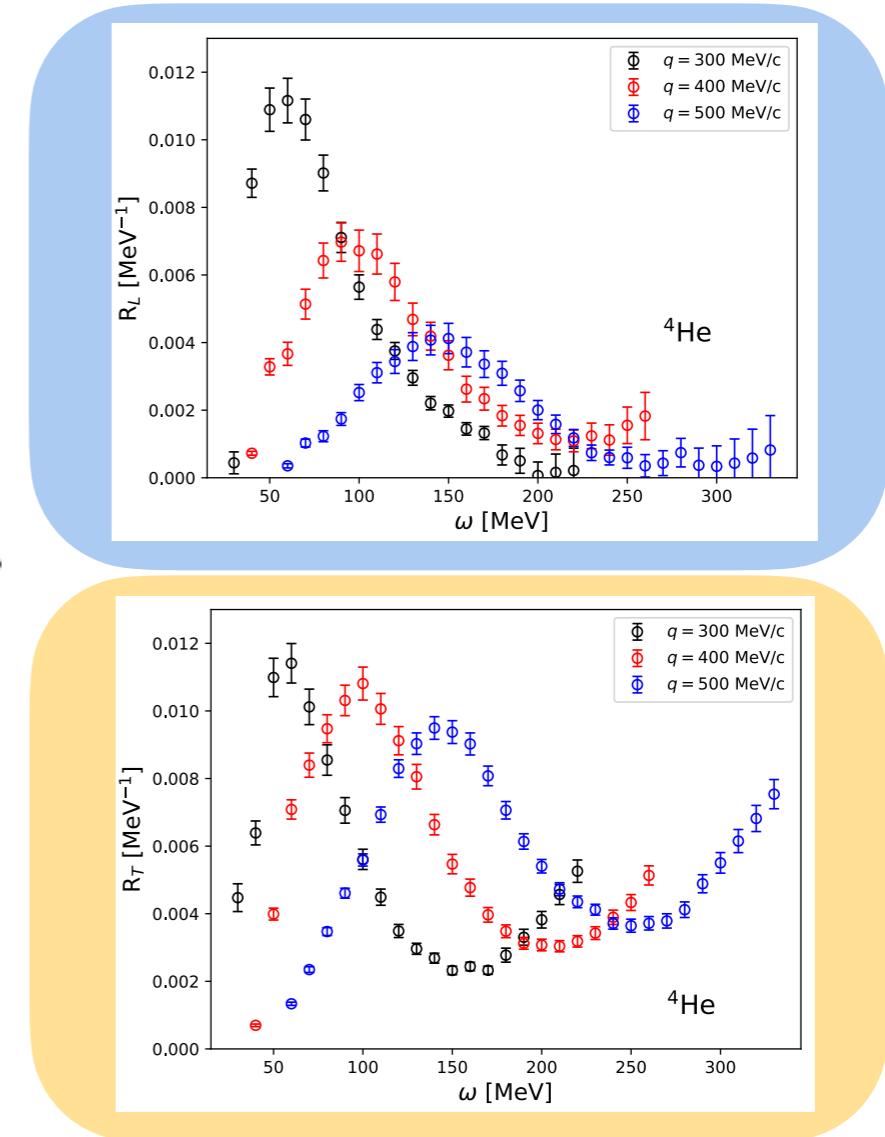
Electron scattering: Rosenbluth separation

Inclusive cross-section

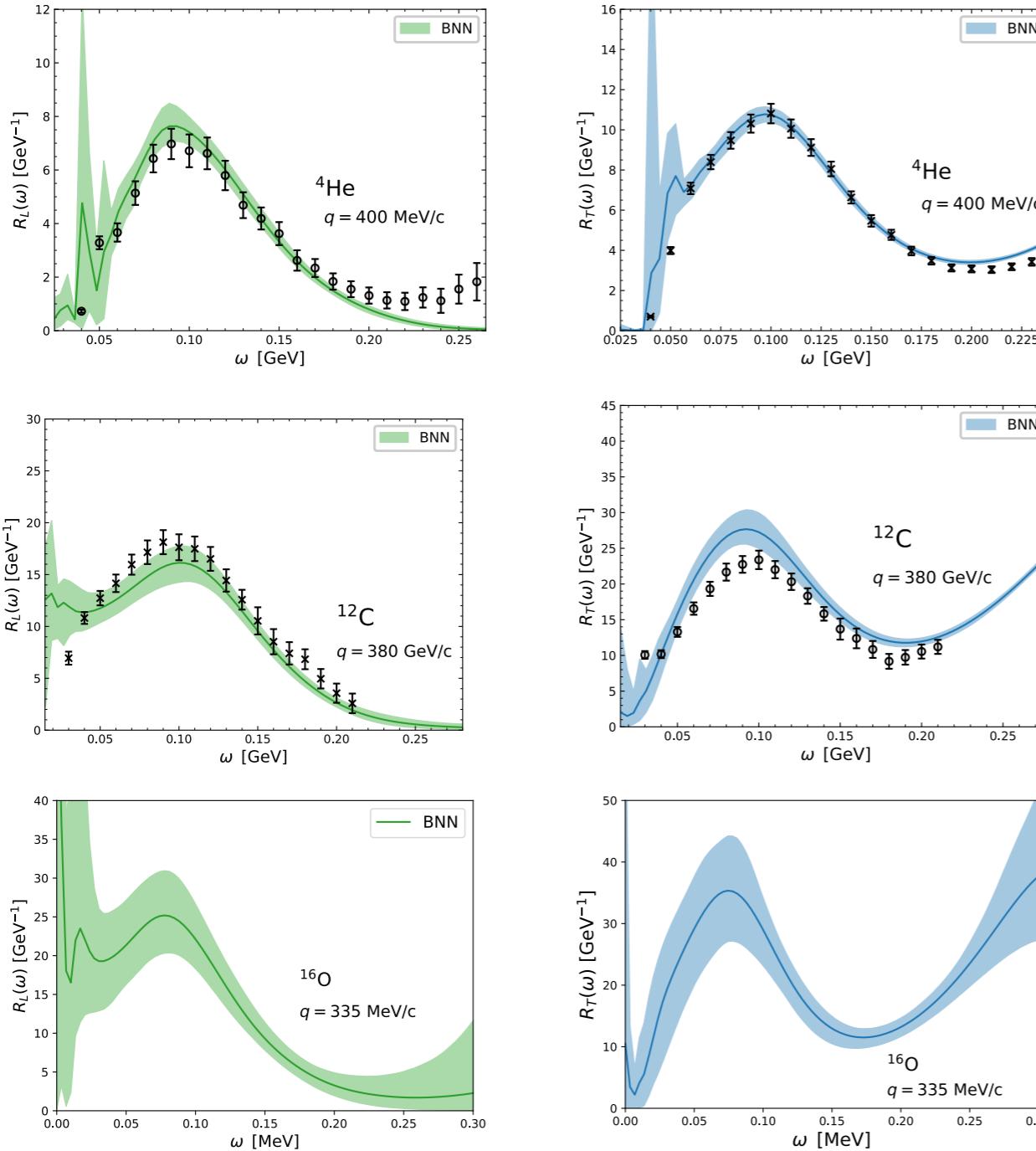
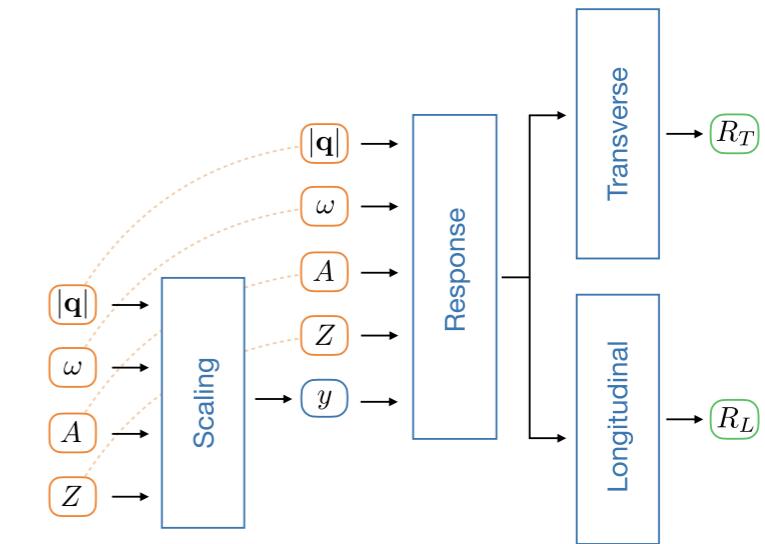


$$\frac{d\sigma}{dE'd\Omega} \Big|_e$$

Nuclear responses



Rosenbluth separation with Bayesian neural network



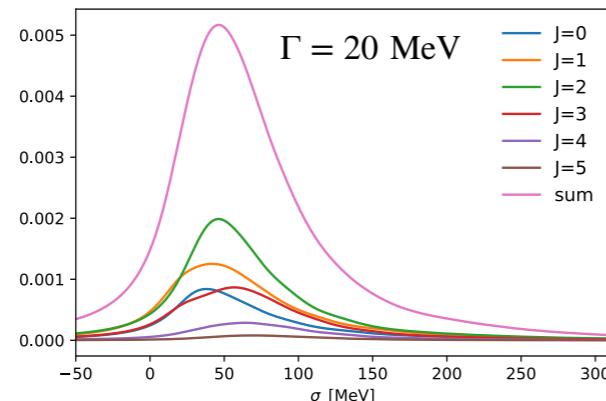
- Trained on ^4He , ^6Li , ^{12}C , ^{16}O , ^{40}Ca
- Rosenbluth separation possible for kinematics and nuclei where there is less data

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega, q) = \sum_f \langle \Psi | J_\mu^\dagger | \Psi_f \rangle \langle \Psi_f | J_\nu | \Psi \rangle \delta(E_0 + \omega - E_f)$$

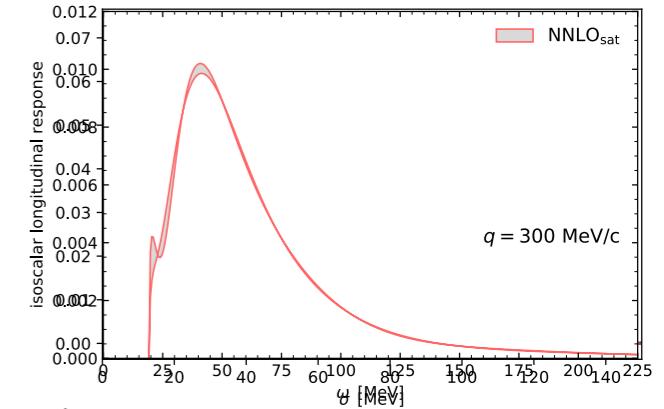
continuum spectrum

Integral transform



$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_\mu^\dagger | K(\mathcal{H} - E_0, \sigma) | J_\nu | \Psi \rangle$$

Inversion
of $S_{\mu\nu}$

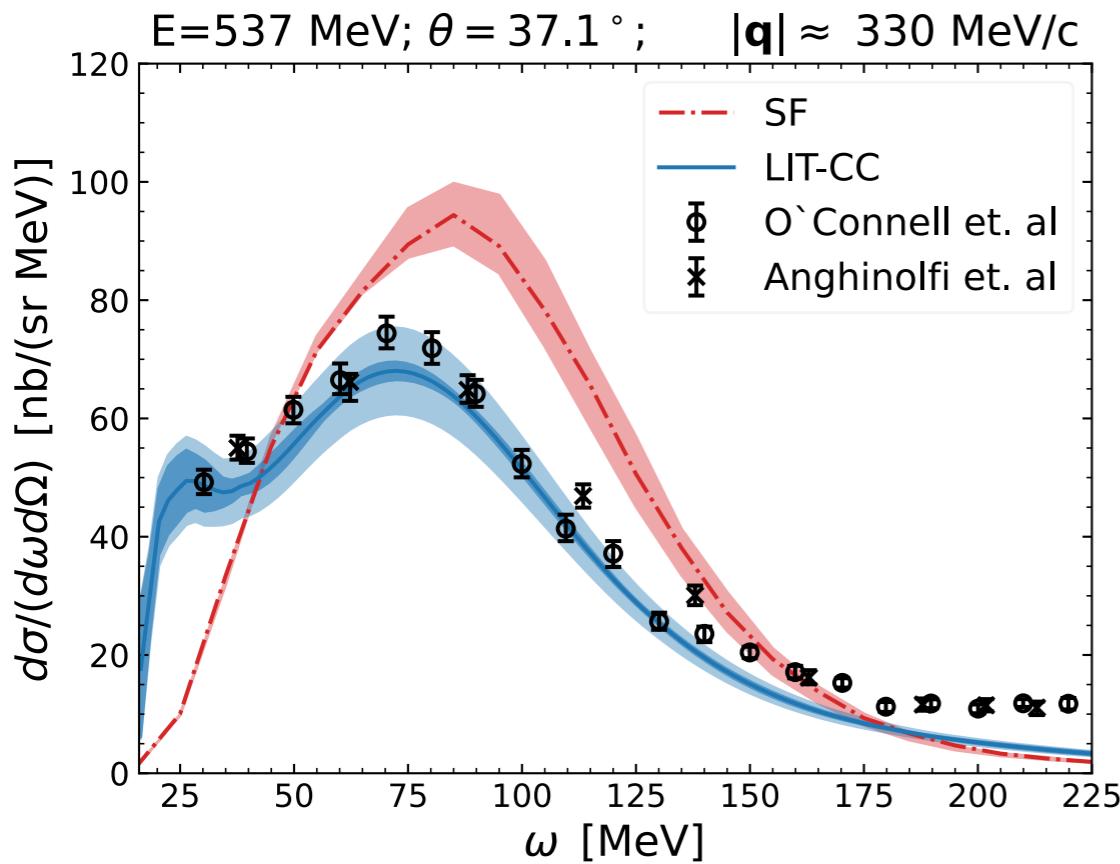


Lorentzian kernel:

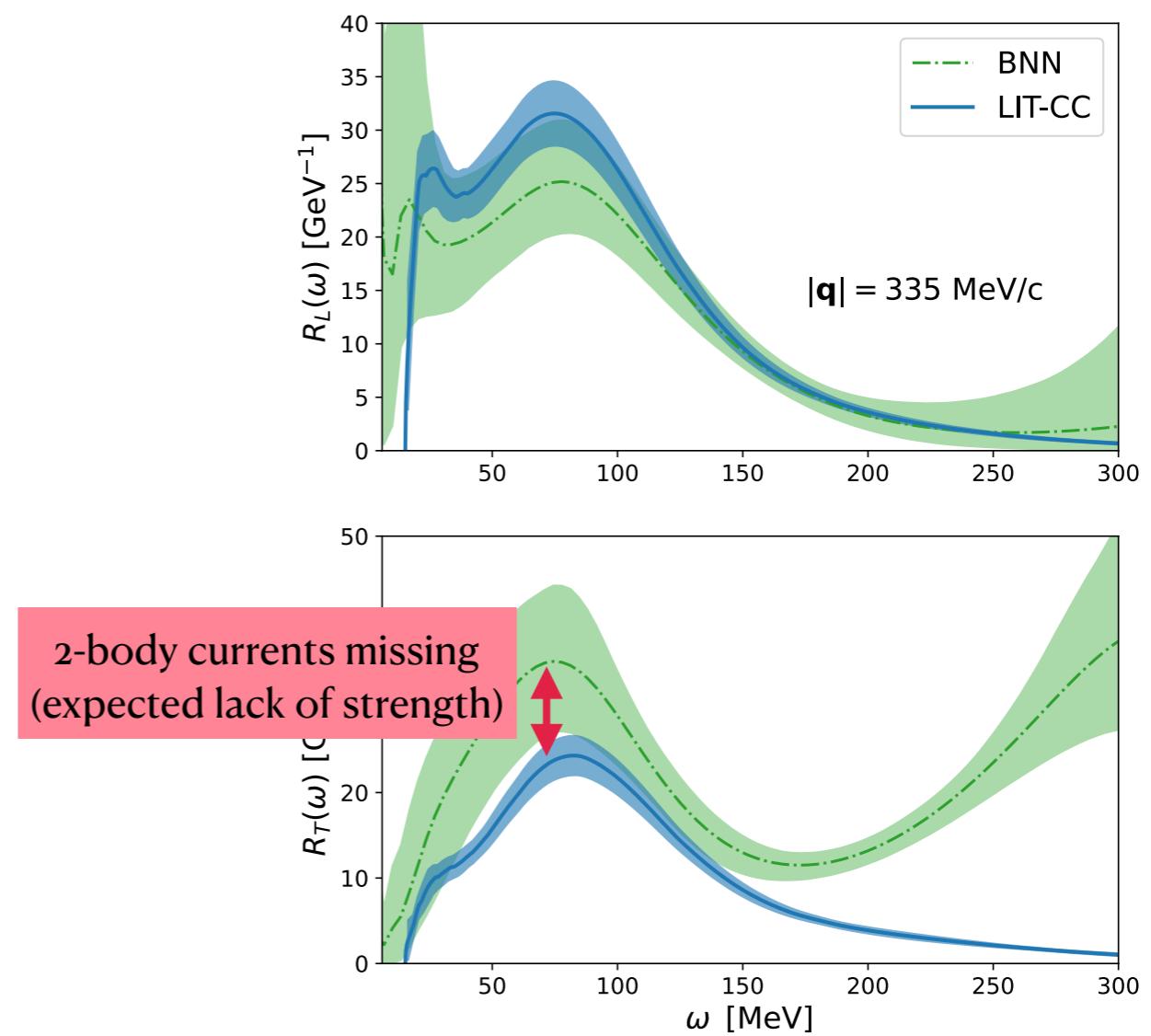
$$K_\Lambda(\omega, \sigma) = \frac{1}{\pi} \frac{\Lambda}{\Lambda^2 + (\omega - \sigma)^2}$$

Electron scattering on ^{16}O

Lorentz Integral Transform + Coupled Cluster (LIT-CC)



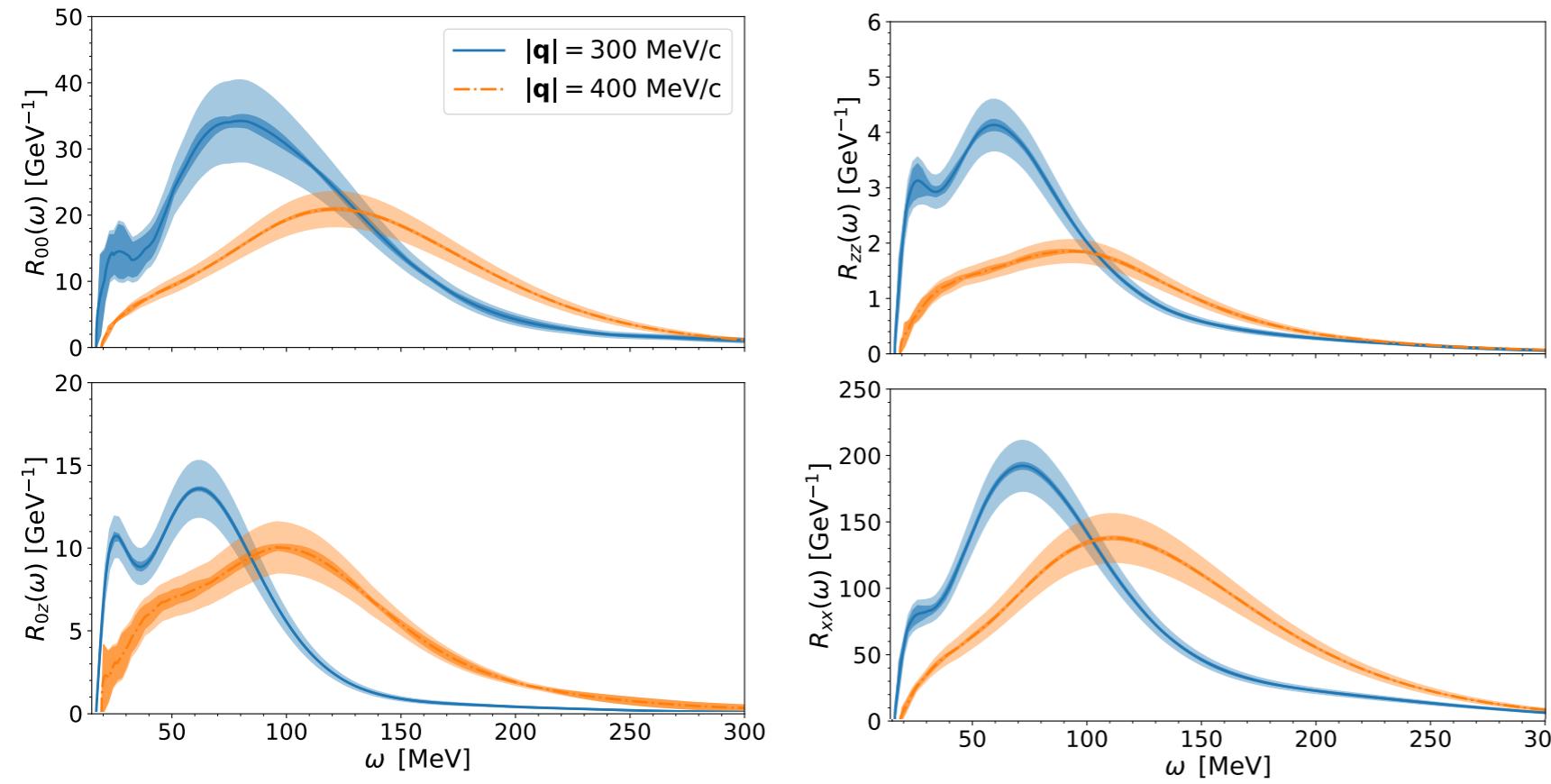
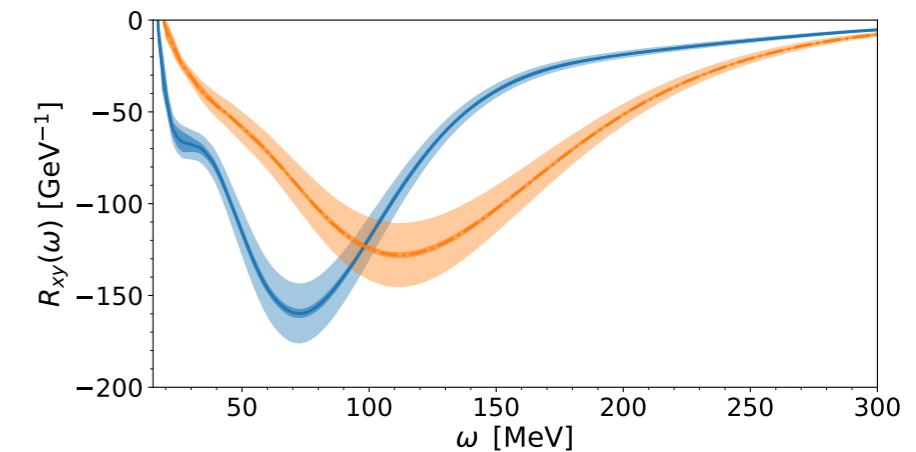
First ab-initio result for many-body system of 16 nucleons



Neutrino scattering on ^{16}O

LIT-CC

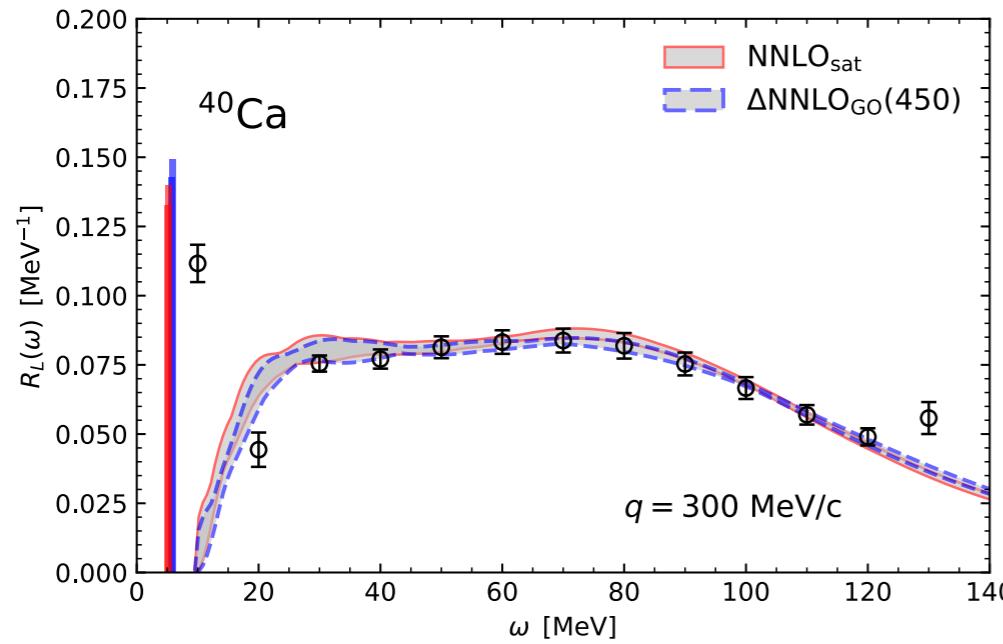
$$\left. \frac{d\sigma}{dE'd\Omega} \right|_{\nu/\bar{\nu}} = \sigma_0 \left(v_{00}R_{00} + v_{0z}R_{0z} + v_{zz}R_{zz} + v_T R_T \pm v_{xy}R_{xy} \right)$$



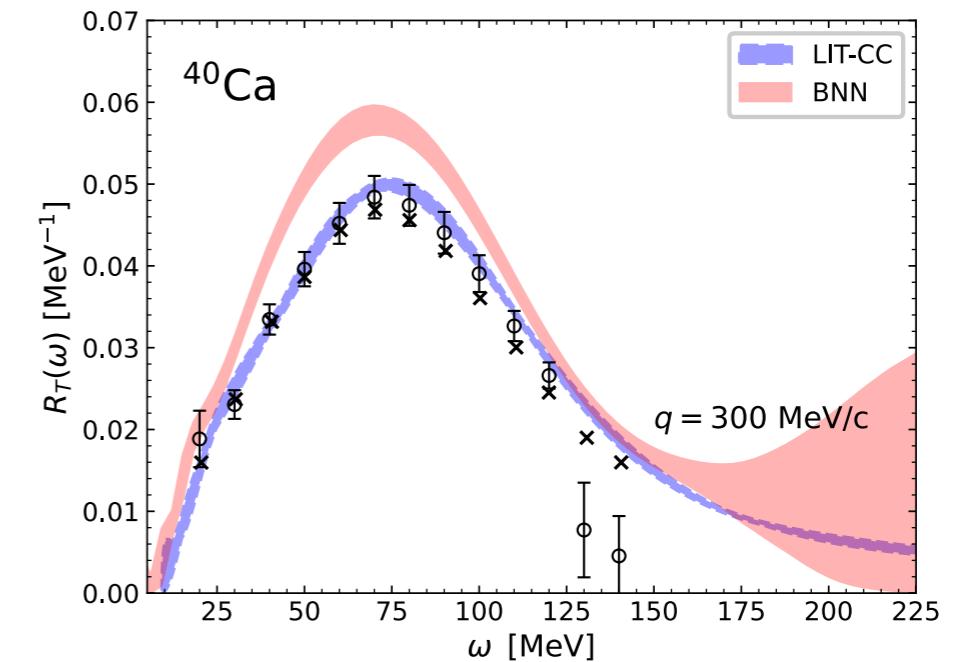
Uncertainty band:
truncation in chiral
expansion of Hamiltonian
+ inversion procedure

NNLO_{sat} as reference
 $\Delta\text{NLO}_{\text{GO}}(450) + \Delta\text{NNLO}_{\text{GO}}(450)$
to estimate truncation

Electromagnetic responses on ^{40}Ca (LIT-CC)



JES, B. Acharya, S. Bacca, G. Hagen;
Phys. Rev. Lett. **127** (2021) 7, 072501

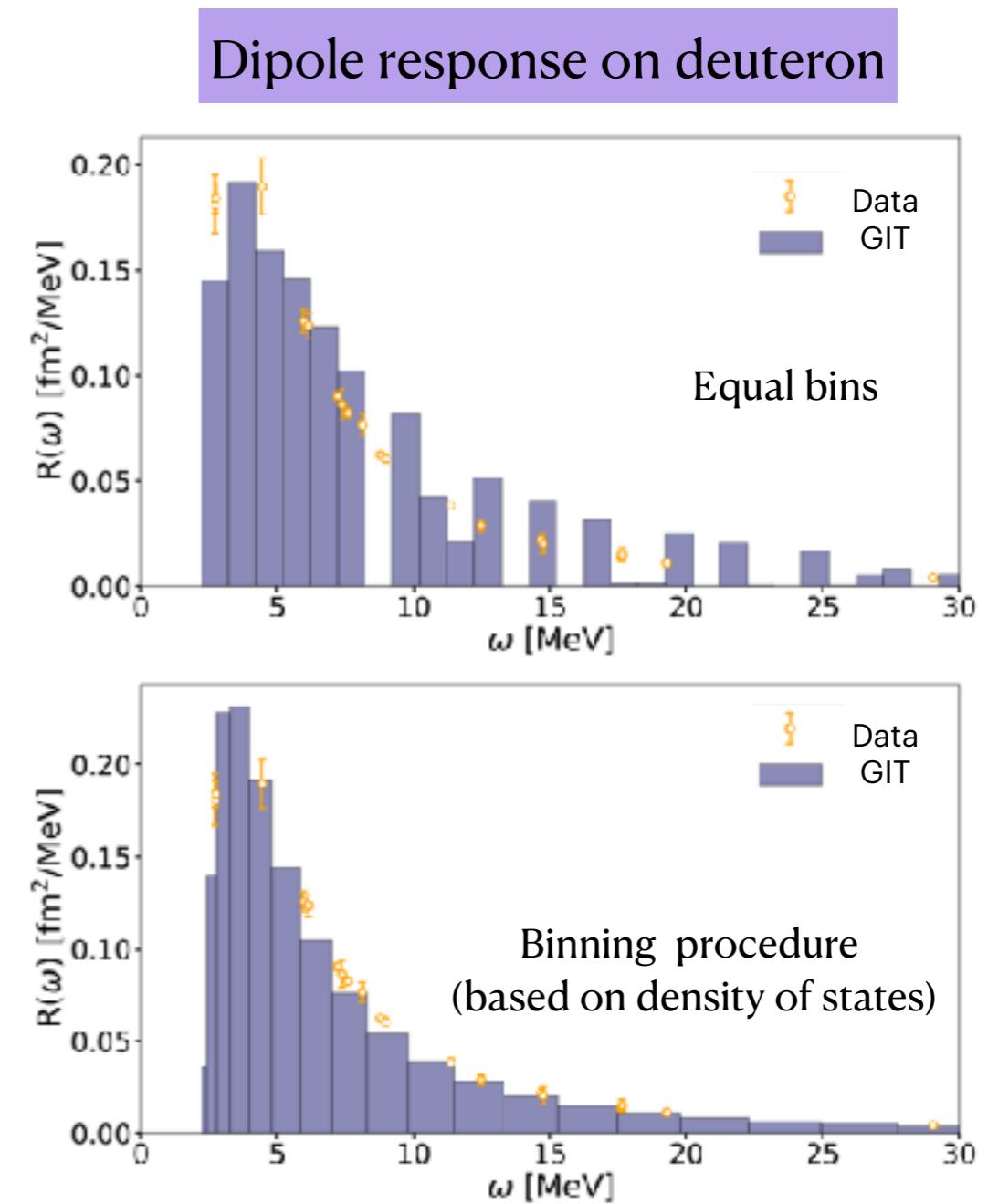


JES, B. Acharya, S. Bacca, G. Hagen;
Phys. Rev. C **109** (2024) 2, 025502

- ✓ Coupled cluster singles & doubles
- ✓ Two different chiral Hamiltonians
- ✓ Uncertainty from LIT inversion

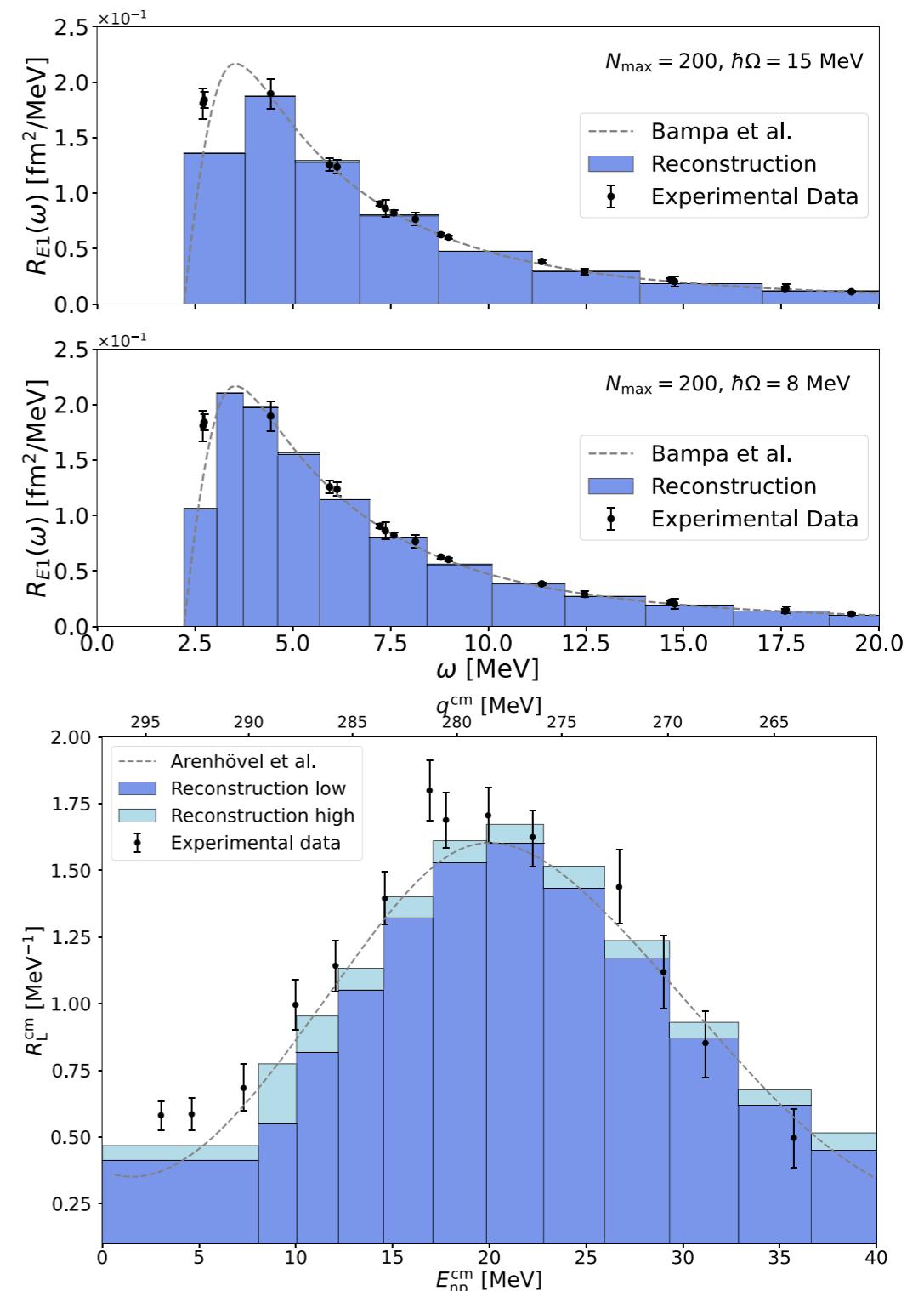
Alternative way to reconstruct response

- Inversion of LIT is an ill-posed problem + might be unstable.
- Alternative: reconstruct discretised spectrum in terms of histograms.
- Gaussian integral transform (GIT) reconstructed via Chebyshev polynomials
- Binning based on the density of states.
- Study on deuteron

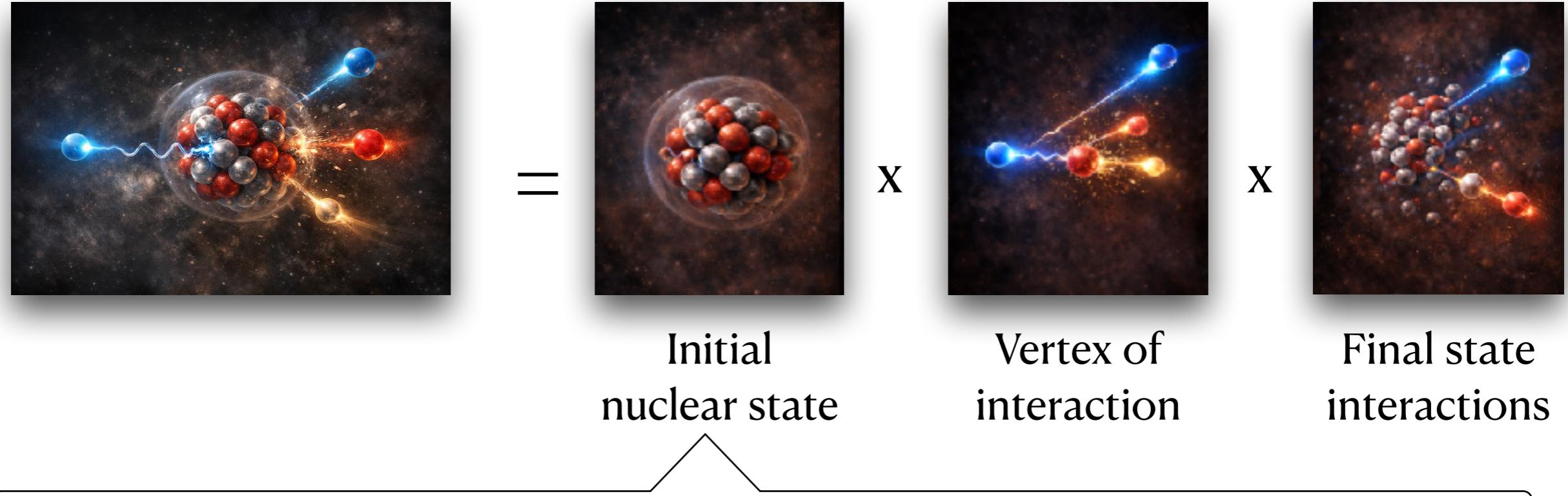


Alternative way to reconstruct response

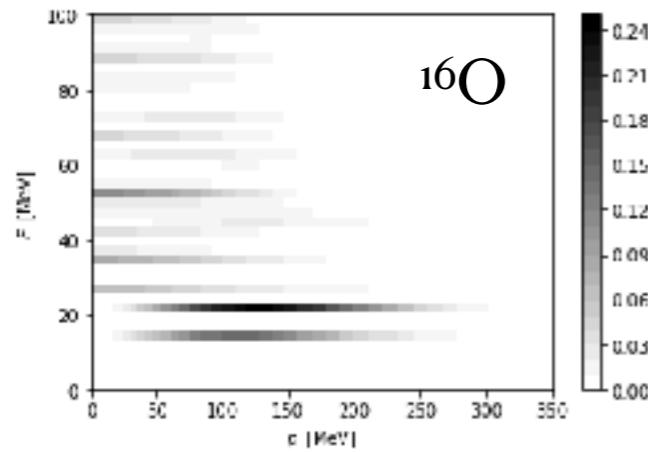
- Inversion of LIT is an ill-posed problem + might be unstable.
- Alternative: reconstruct discretised spectrum in terms of histograms.
- Gaussian integral transform (GIT) reconstructed via Chebyshev polynomials
- Binning based on the density of states.
- Study on deuteron



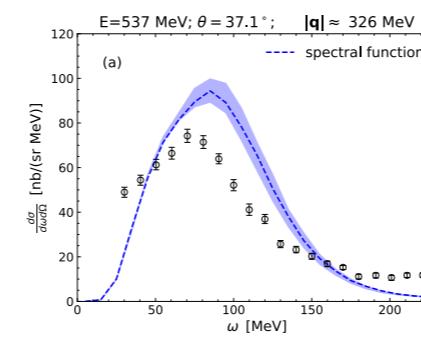
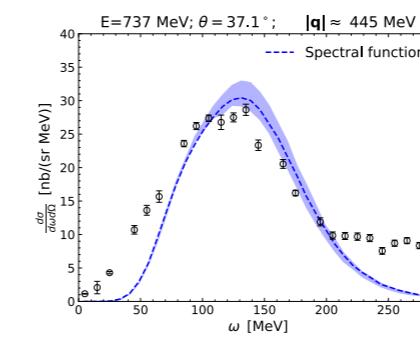
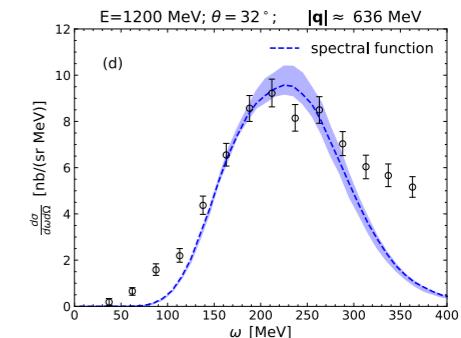
Towards semi-exclusive cross-sections



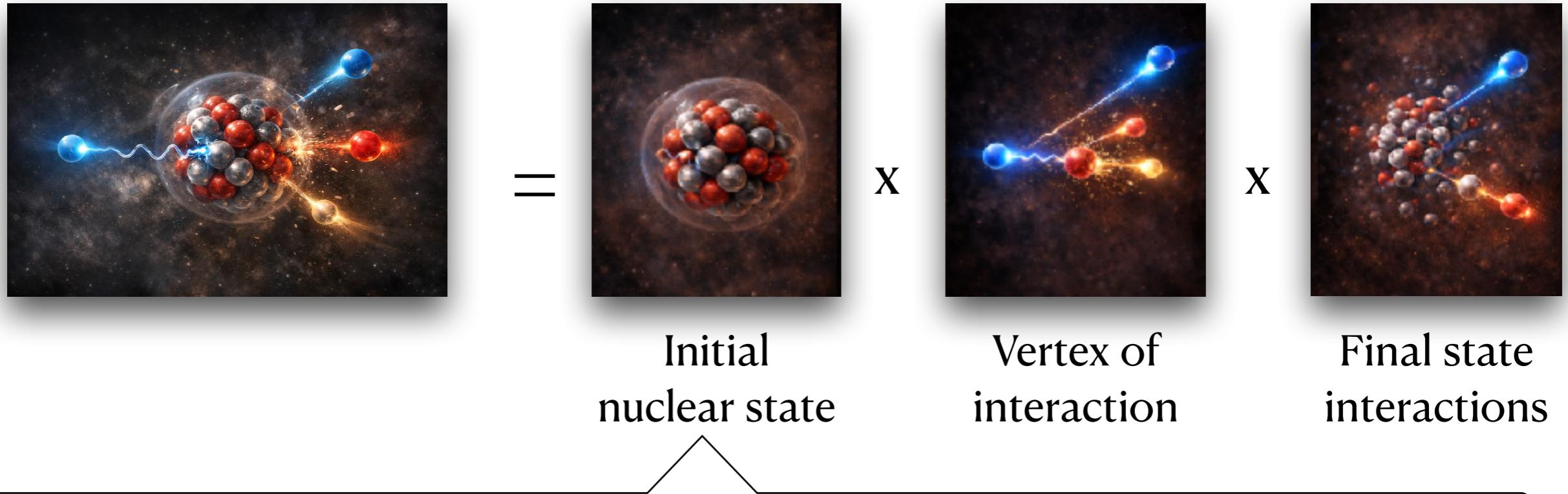
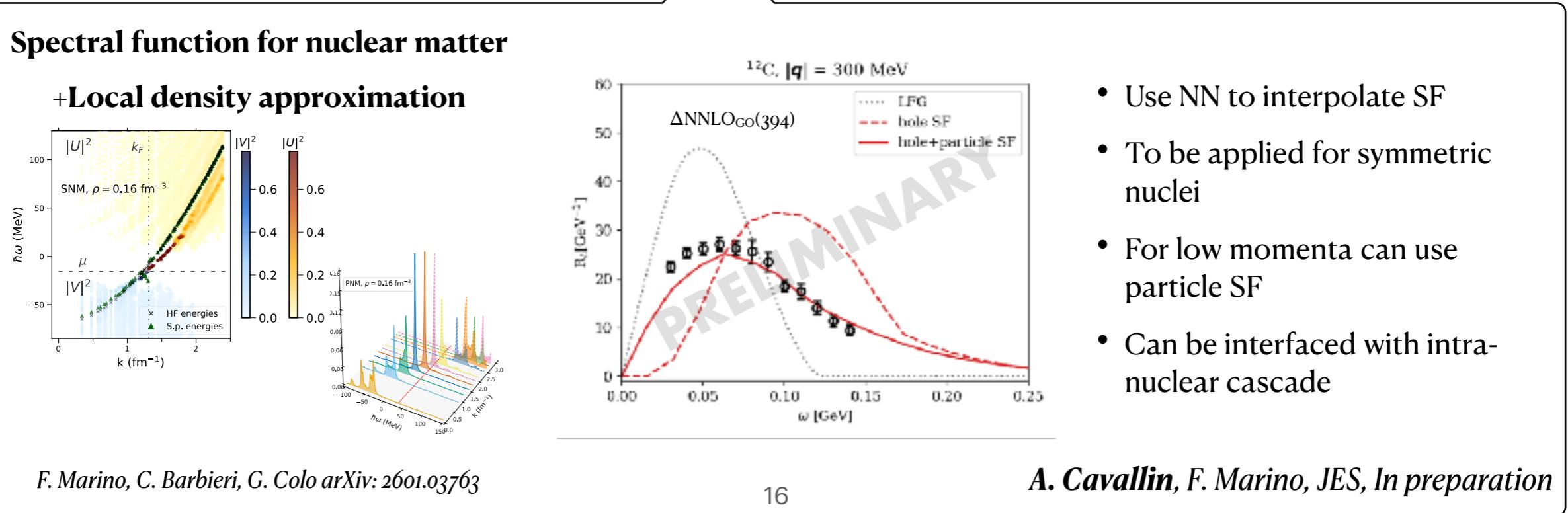
Spectral function for nucleus



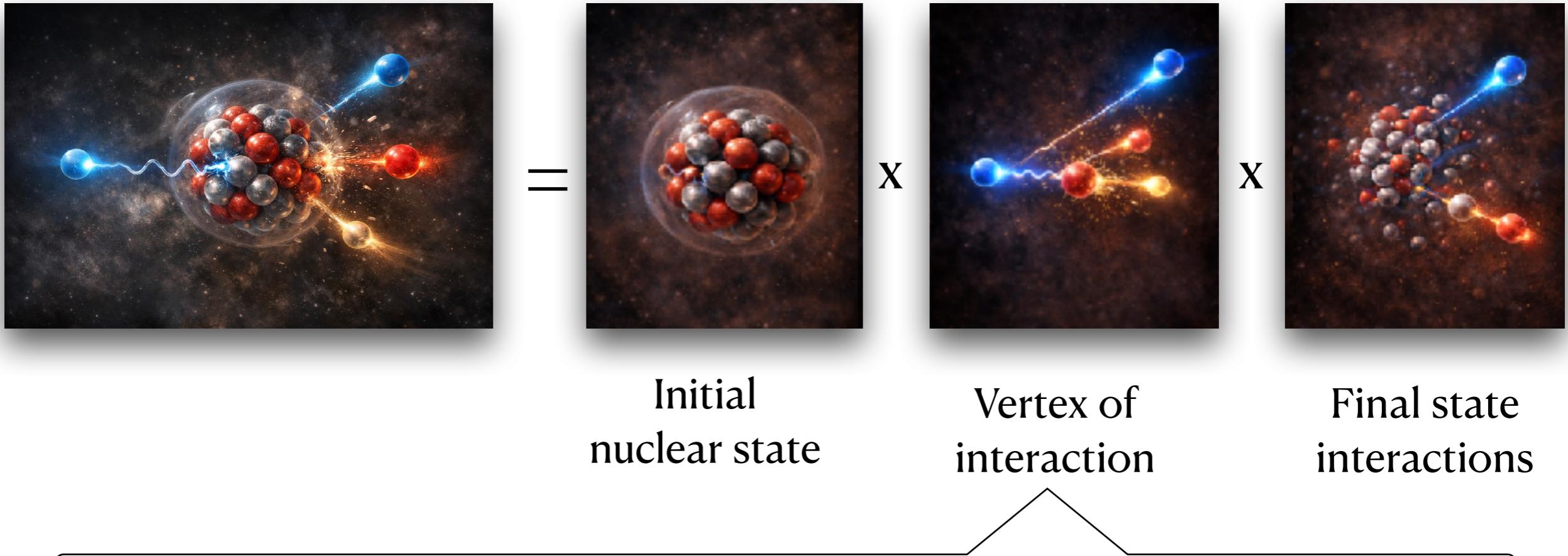
$$\sigma \propto |\mathcal{M}|^2 S(E, p)$$



Towards semi-exclusive cross-sections



Towards semi-exclusive cross-sections



- Quasi-elastic process,
- Pion production,
- Strangeness production
- ...

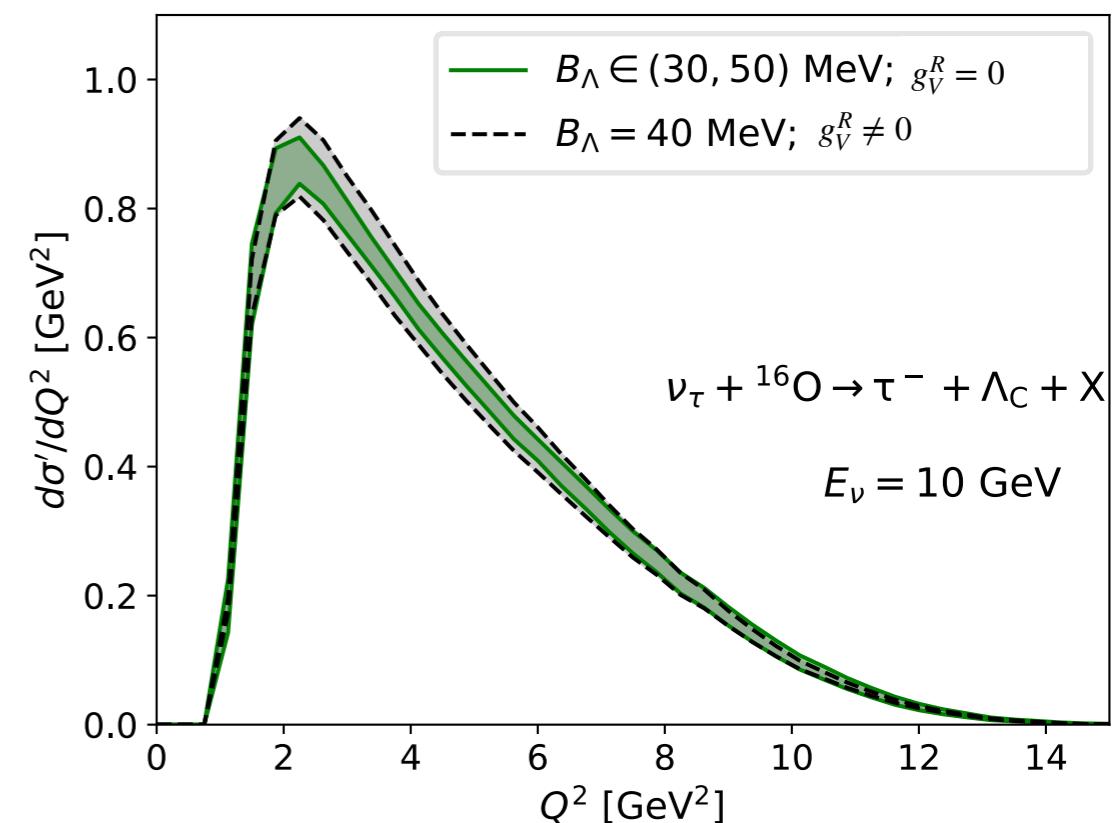
^{16}O spectral function: probing new physics

Effective Lagrangian (SMEFT):

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} V_{cd} \left[(1 - g_V^L) \mathcal{O}_V^L + g_V^R \mathcal{O}_V^R + g_S^L \mathcal{O}_S^L + g_S^R \mathcal{O}_S^R + g_T^L \mathcal{O}_T^L \right] + h.c.$$

- Charge-current transition on the quark level
 $\nu_\tau d \rightarrow \tau^- c$: is there new physics there?
- Constraints on **Wilson coefficients** from experimental observations (*decays of charmed mesons; proton-proton collisions at high energy*)
- Could we constrain them looking at
 $\nu_\tau n \rightarrow \tau^- \Lambda_c$?
- **NEED TO ACCOUNT FOR NUCLEAR EFFECTS:** spectral function for initial nucleon; binding energy for produced Λ_c

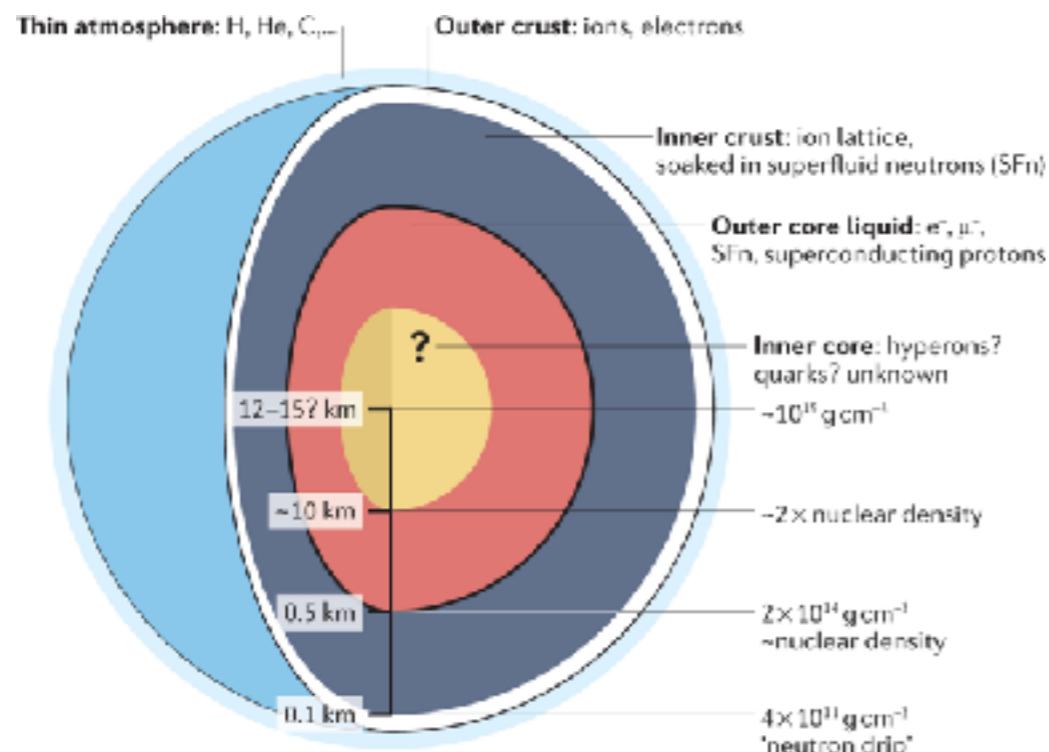
$$\begin{aligned} \mathcal{O}_V^{L,R} &= (\bar{c} \gamma^\mu P_{L,R} d)(\bar{\tau} \gamma_\mu P_L \nu_\tau) \\ \mathcal{O}_S^{L,R} &= (\bar{c} P_{L,R} d)(\bar{\tau} P_L \nu_\tau) \\ \mathcal{O}_T^{L,R} &= (\bar{c} \sigma^{\mu\nu} P_L d)(\bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau) \end{aligned}$$



High precision of Λ_c properties in nuclear medium needed to gain sensitivity to BSM

Neutrinos in nuclear matter

Neutrinos in nuclear matter



Source: <https://www.nature.com/articles/s42254-022-00420-y>

What can we learn about neutrino interactions in nuclear matter from first principles?

Spin fluctuation in the long wavelength approximation $q \rightarrow 0$

- ✓ Neutrino interaction rate driven by nuclear responses
- ✓ neutrino emission – mechanism of cooling in neutron stars
- ✓ Dynamics of supernova core collapse

$$S_\sigma(\omega) = \sum_f |\langle \Psi_f | \sigma | \Psi_0 \rangle|^2 \delta(E_0 + \omega - E_f)$$

Neutrinos in PNM

PHYSICAL REVIEW C 87, 025802 (2013)

Spin response and neutrino emissivity of dense neutron matter

G. Shen,¹ S. Gandolfi,¹ S. Reddy,^{1,2} and J. Carlson¹

¹Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA

²Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

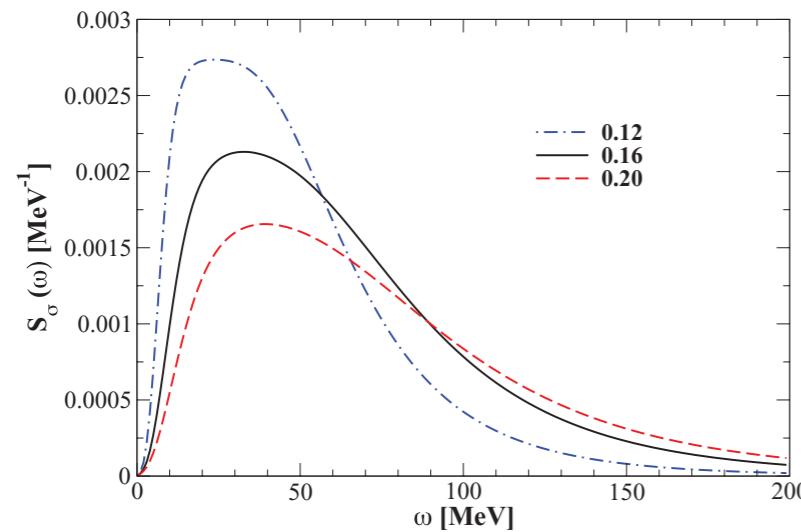
(Received 29 May 2012; published 15 February 2013)

- Response reconstructed from 3 energy-weighted sum-rules

$$Q_\sigma^n = \int d\omega \omega^n S_\sigma(\omega)$$

$$n = -1, 0, 1$$

- AFDMC calculation, using AV8'



$$Q_\sigma^0 = 1 + \lim_{q \rightarrow 0} \frac{4}{3N} \sum_{i \neq j}^N \langle 0 | e^{-iq(r_i - r_j)} \sigma_i \cdot \sigma_j | 0 \rangle$$

(Expectation value of 2-body operator)

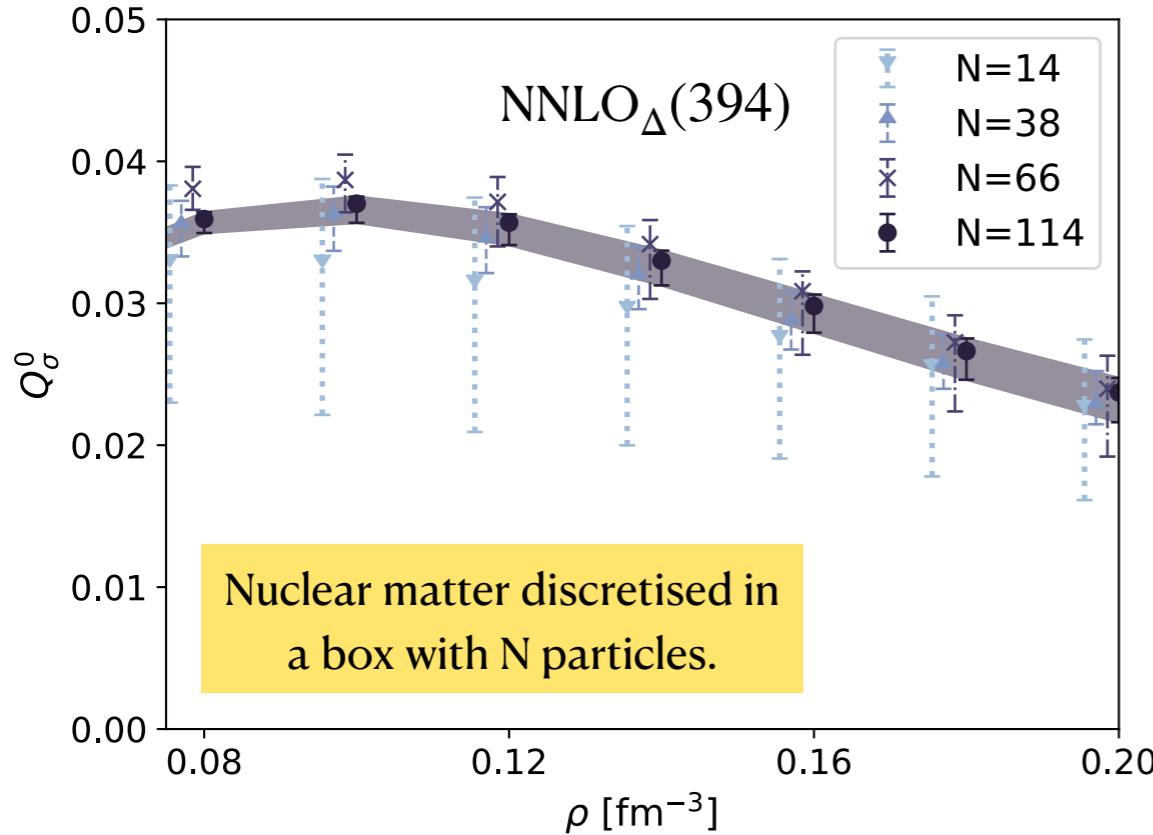
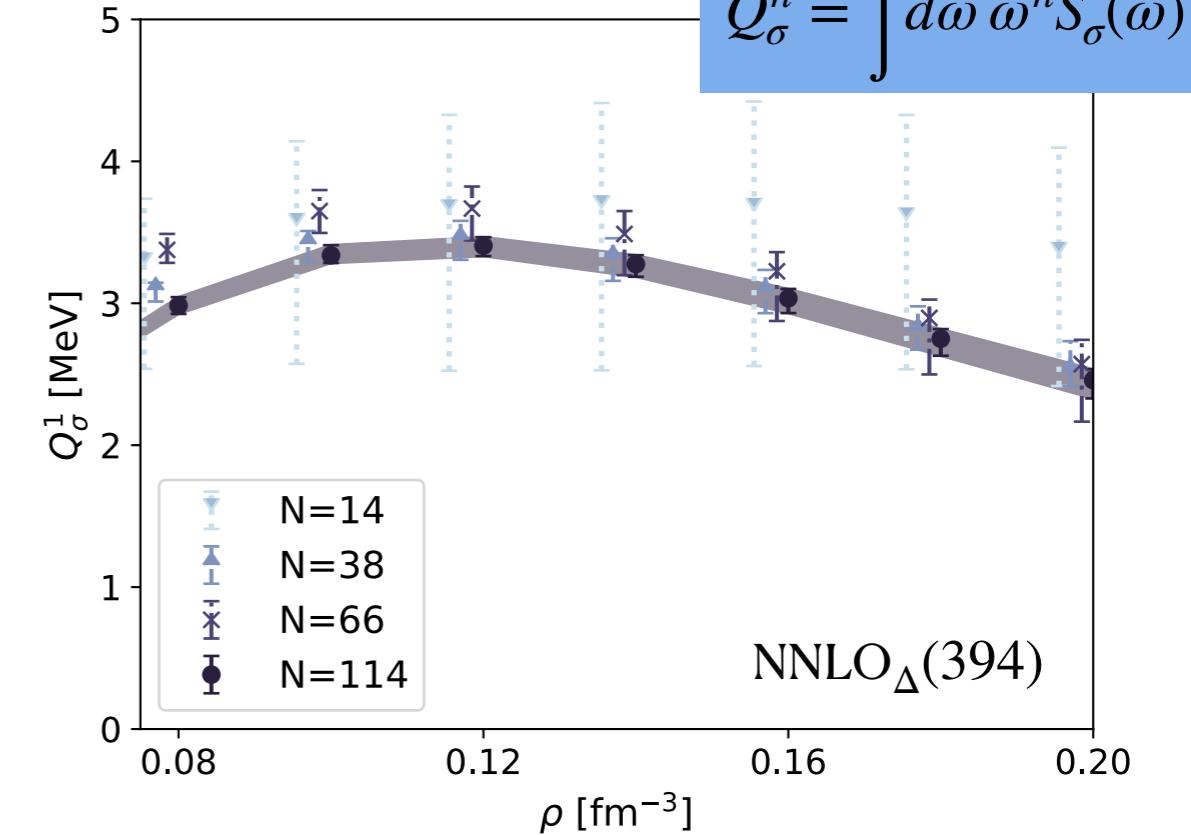
$$Q_\sigma^1 = - \frac{4}{3N} \lim_{q \rightarrow 0} \langle 0 | [H_N, s(q)] \cdot s(-q) | 0 \rangle$$

(Sensitive to tensor and spin-orbit part of Hamiltonian)

$$s(t, q) = V^{-1} \sum_{i=1}^N e^{-i\mathbf{q} \cdot \mathbf{r}_i(t)} \sigma_i$$

Neutrinos in nuclear matter

Coupled cluster + NNLO $_{\Delta}$ (394) interaction



J.E.S., W.Jiang, A. Roggero, *Phys. Rev. Lett.* 134, 192701 (2025)

Sum rules calculation
consistent between
simulations with various N

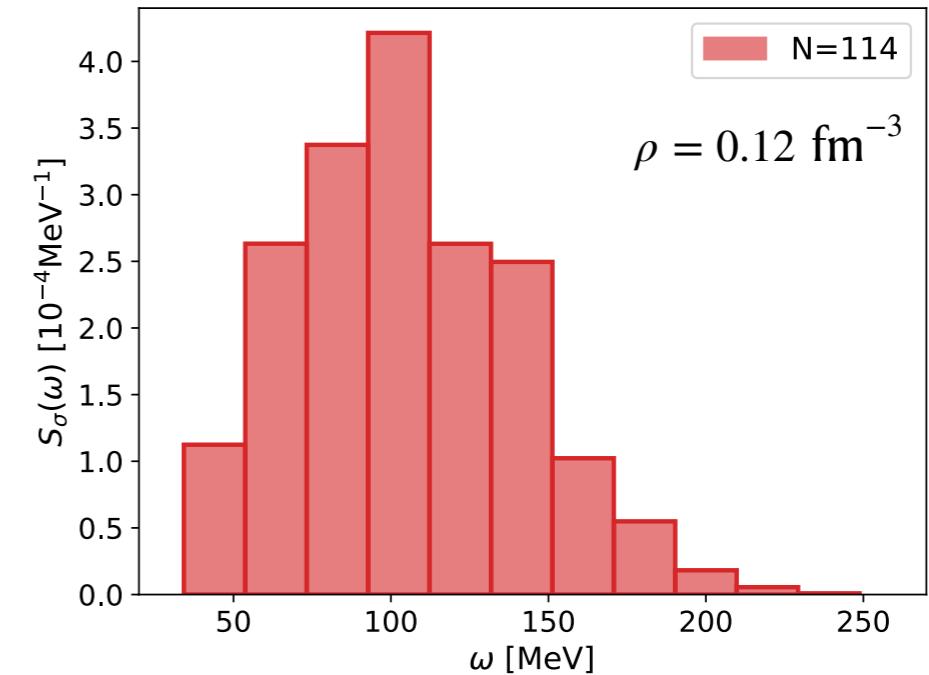
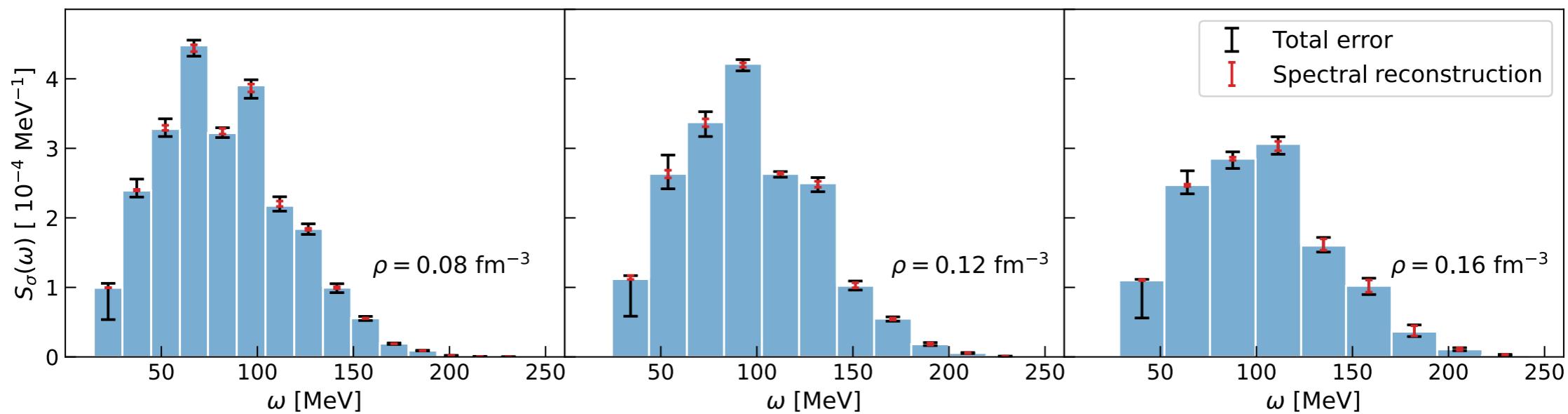
But very different from AV8 results

Density (fm $^{-3}$)	S_{σ}^{-1} (MeV $^{-1}$)	S_{σ}^0	S_{σ}^{+1} (MeV)
$n = 0.12$	0.0057(9)	0.20(1)	8(1)
$n = 0.16$	0.0044(7)	0.20(1)	11(1)
$n = 0.20$	0.0038(6)	0.18(1)	14(1)

Neutrinos in PNM

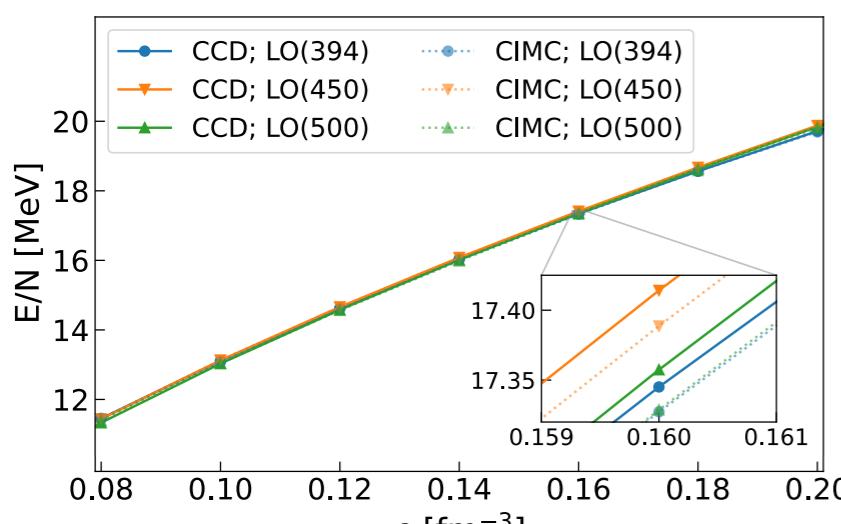
Coupled cluster + Gaussian integral transform

We have tools to get access to the excited spectrum and reconstruct it using **Gaussian integral transform**

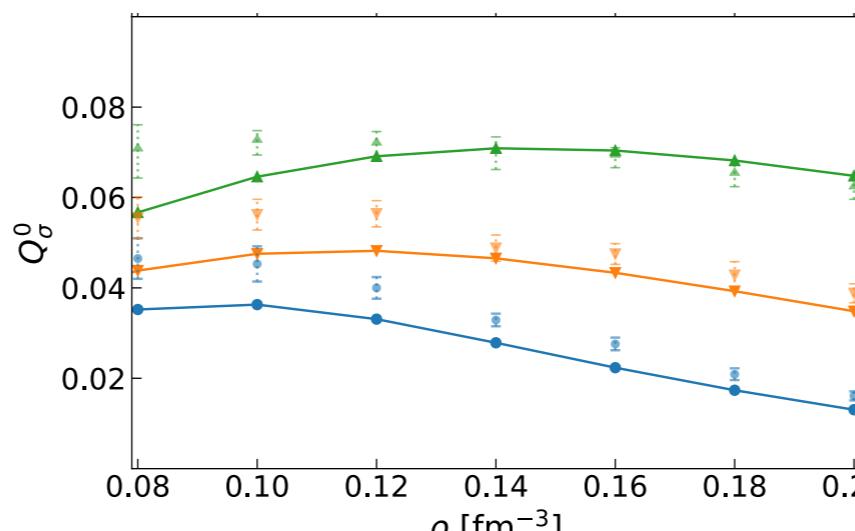


Neutrinos in nuclear matter

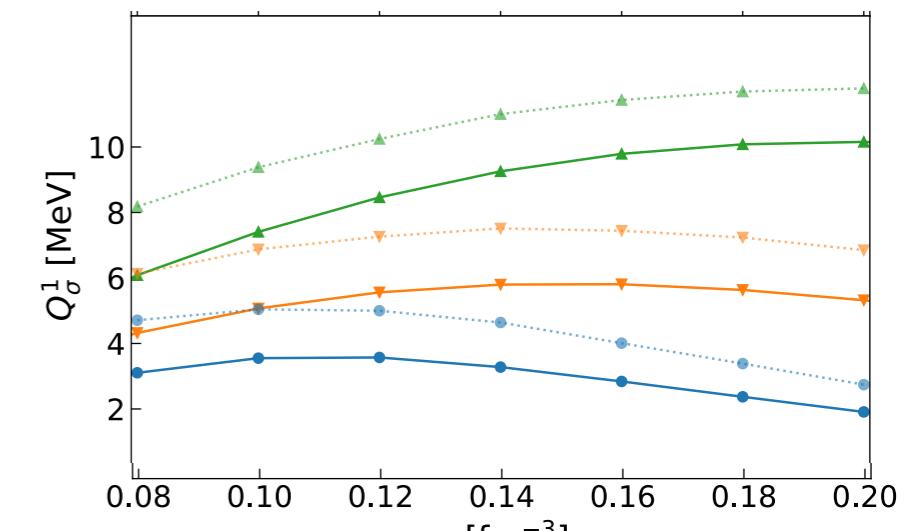
How sensitive to nuclear Hamiltonian & wave function?



Energy per particle



Total strength of spin response



Energy-weighted sum-rule
of spin response

Spin response is a highly sensitive observable (strongly depends on correlations in wave function and nuclear Hamiltonian)

Outlook

- Neutrino-nucleus scattering
 - Towards ${}^{40}\text{Ar}$
 - Include 2-body currents
 - Spectral function -> towards pion production regime
- Nuclear matter:
 - Spin response sum-rules: Hamiltonian dependence + other many-body methods
 - Include temperature dependence
 - Momentum-dependent responses

Thanks to all collaborators

- @ Chalmers: **A. Cavallin**
- @ JGU: **S. Bacca, W. Jiang, F. Marino, I. Reis**
- @ ORNL&UTK: **G. Hagen, T. Papenbrock**
- @ Univ. of Valencia: **J. Nieves, N. Rocco, A. Lovato**
- @ Univ. of Salamanca: **E. Hernandez**
- @ Univ. of Trento: **A. Roggero**

and thank you for attention!

BACKUP

More on QMC

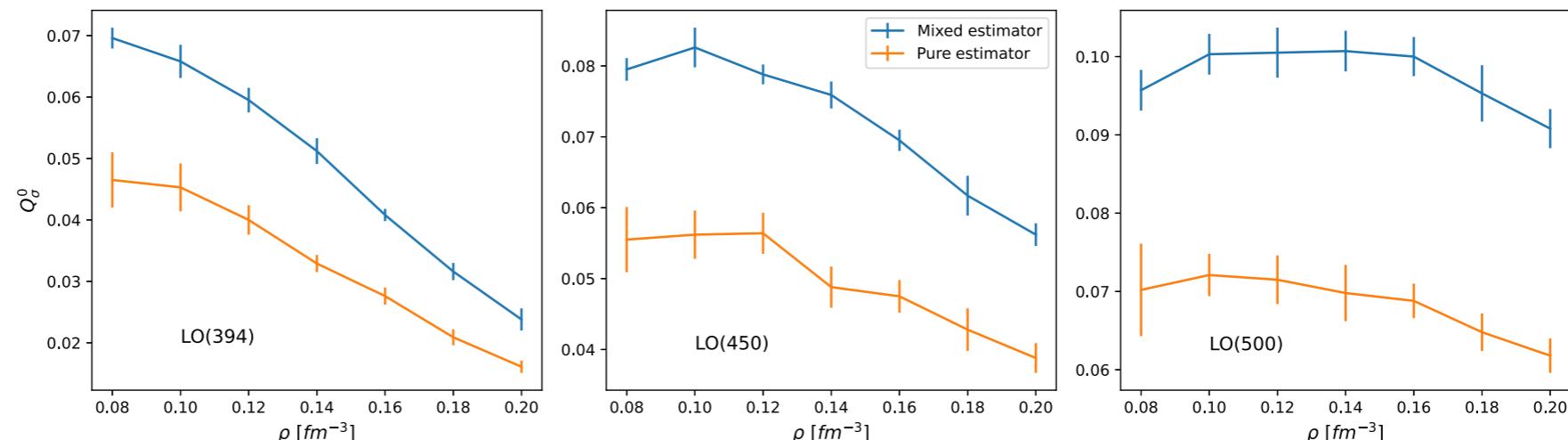
- Mixed estimator:

$$\langle O \rangle_M = \frac{\langle \Psi_T | O | \Psi(\tau) \rangle}{\langle \Psi_T | \Psi(\tau) \rangle} = \frac{\langle \Psi_T | O e^{-\tau H} | \Psi_T \rangle}{\langle \Psi_T | e^{-\tau H} | \Psi_T \rangle} \xrightarrow{\tau \rightarrow \infty} \frac{\langle \Psi_T | O | \Psi_0 \rangle}{\langle \Psi_T | \Psi_0 \rangle}$$

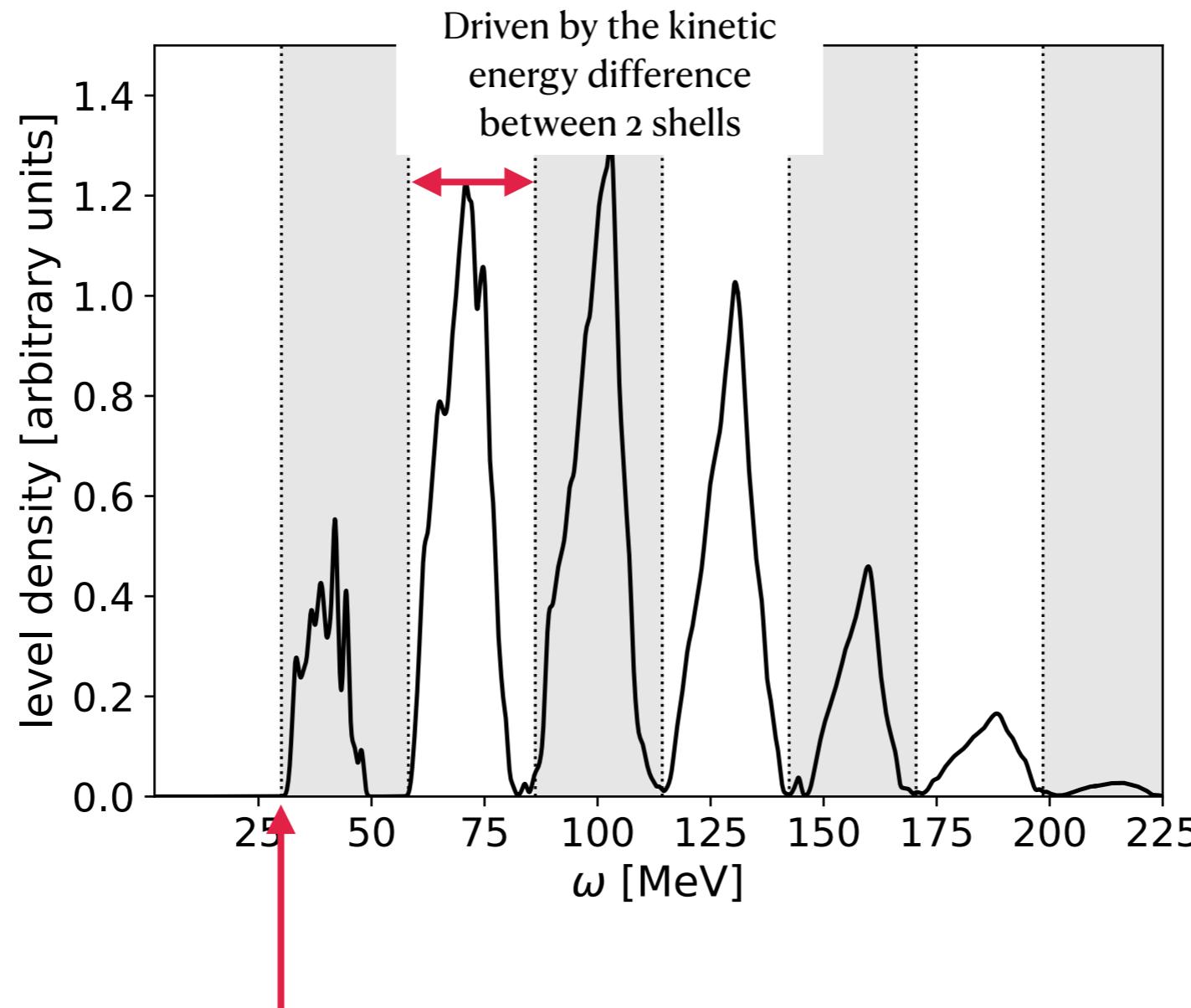
- For observables commuting with Hamiltonian:

$$\langle O \rangle_M = \frac{\langle \Psi_T | O | \Psi(\tau) \rangle}{\langle \Psi_T | \Psi(\tau) \rangle} = \frac{\langle \Psi_T | e^{-\tau H/2} O e^{-\tau H/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-\tau H/2} e^{-\tau H/2} | \Psi_T \rangle} \xrightarrow{\tau \rightarrow \infty} \frac{\langle \Psi_0 | O | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle} = \langle O \rangle_0.$$

- There is a systematic error which we can quantify for Q_σ^0



Binning in nuclear matter



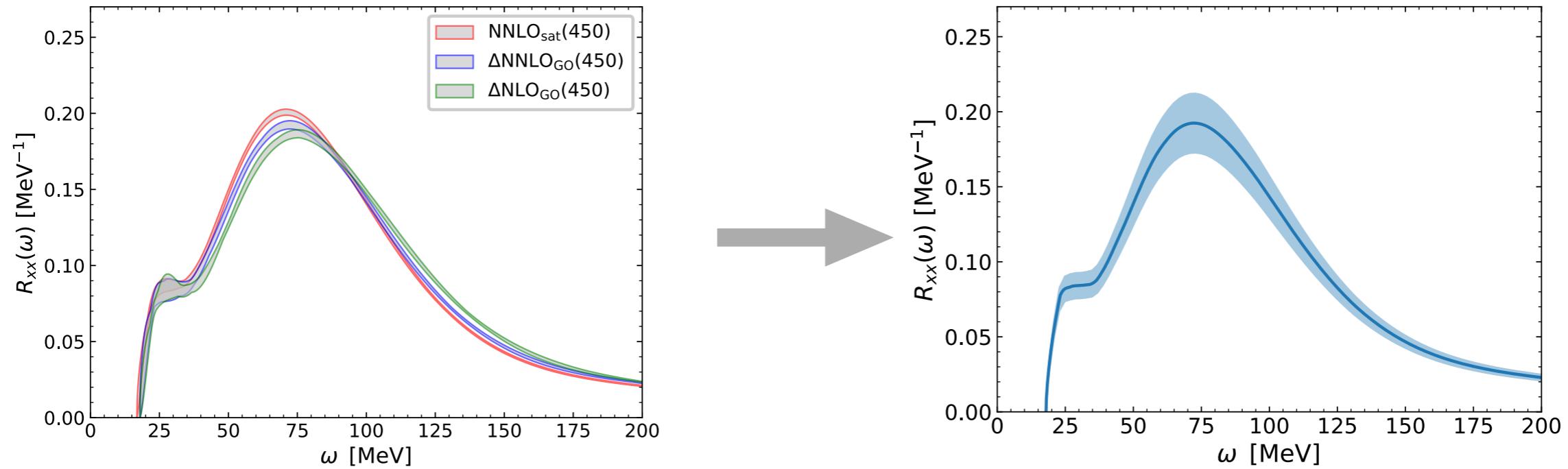
First excitation:
Energy needed to excite 2 nucleons from
the 1st closed-shell configuration
~kinetic energy $\sim(\rho/N)^{2/3}$

$$E_{gap} = \frac{\hbar^2(2\pi/L)^2}{2m}$$

Size of the box: $L = (N/\rho)^{1/3}$

Uncertainty estimation (responses)

Assessing EFT truncation error



Gaussian process (GP) to assess chiral truncation using 2 orders of expansion

Order k EFT prediction: $y_k(p) = y_{\text{ref}}(p) \sum_{n=0}^k c_n(p) \left(\frac{p}{\Lambda}\right)^n$

EFT truncation error: $\delta y_k(p) = y_{\text{ref}}(p) \sum_{n=k+1}^{\infty} c_n(p) \left(\frac{p}{\Lambda}\right)^n$

Draws from an underlying GP

Bayesian neural network

$$P(\mathcal{W}|Y) = \frac{P(Y|\mathcal{W})P(\mathcal{W})}{P(Y)}$$

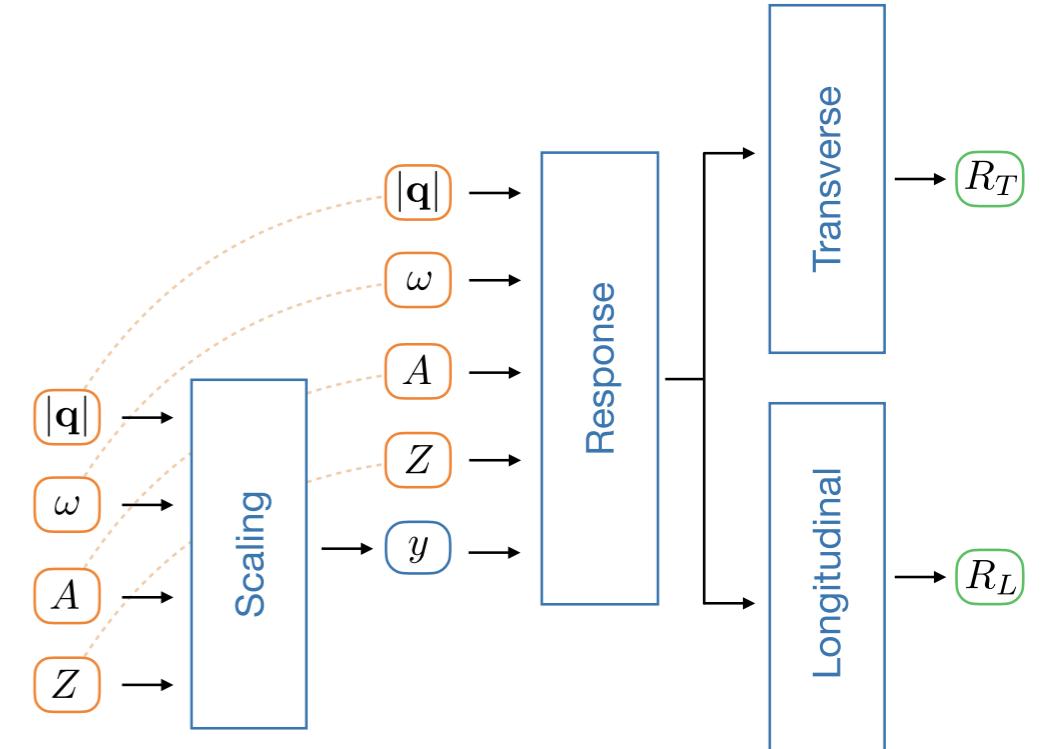
$\mathcal{W} = w_1, \dots, w_{N_p}$ - parameters of BNN treated as probability distribution

Using the Gaussian prior:

$$P(\mathcal{W}) = \frac{1}{(2\pi)^{N_p/2}} \exp\left(\sum_{i=1}^{N_p} -\frac{w_i^2}{2}\right)$$

Assume a Gaussian for the likelihood

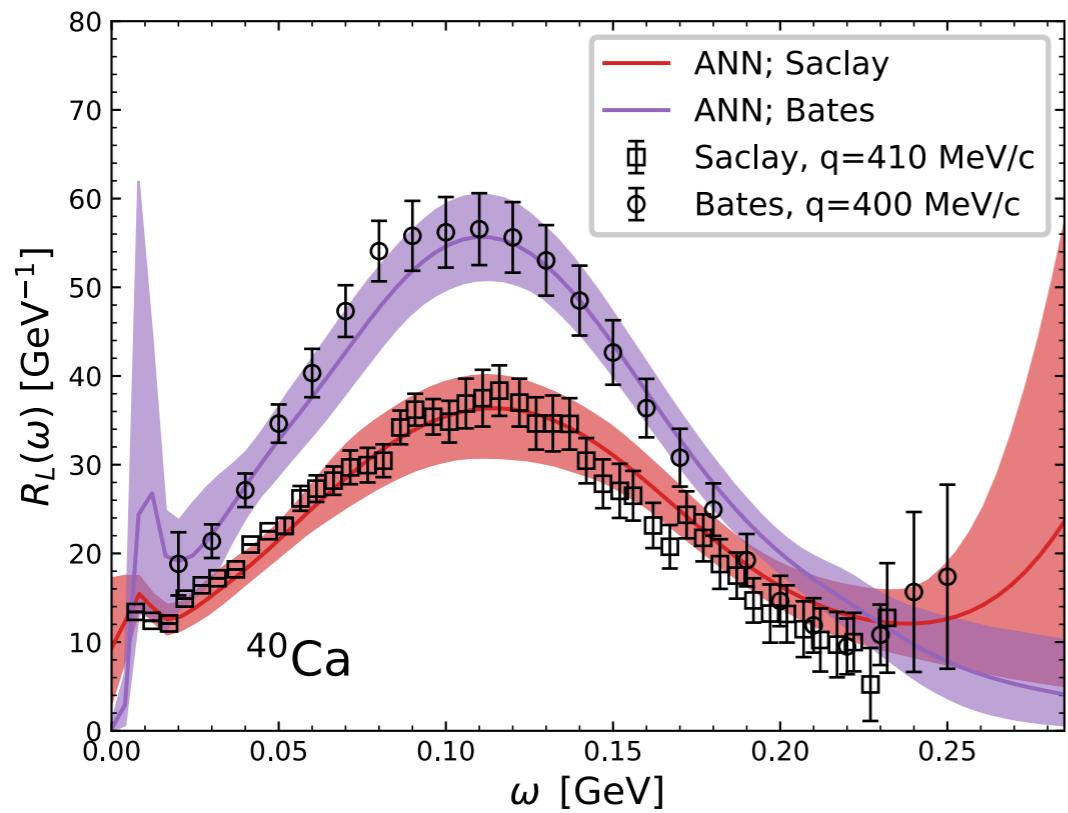
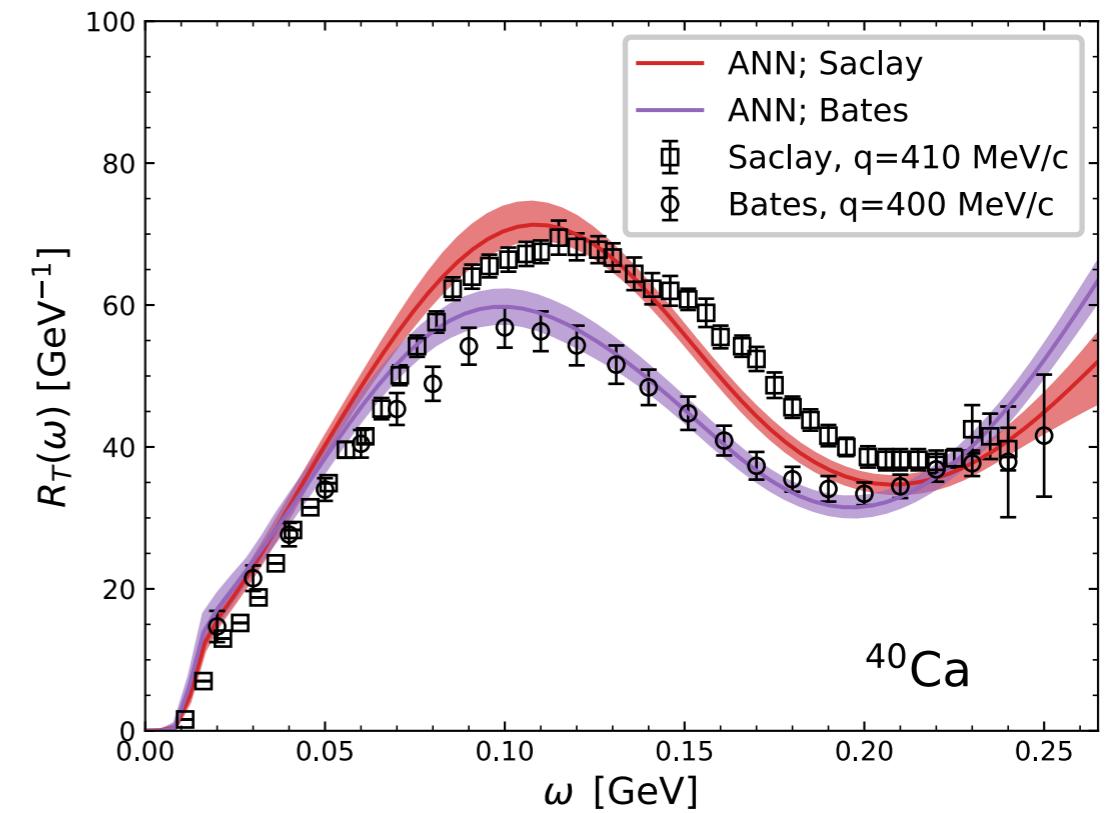
$$P(Y|\mathcal{W}) = \exp\left(-\frac{\chi^2}{2}\right)$$



The loss function is the least-squares fit to data

$$\chi^2 = \sum_{i=1}^{N_t} \frac{[y_i - \hat{y}_i(\mathcal{W})]^2}{\sigma_i^2}$$

BNN responses on ^{40}Ca



BNN responses on ^{40}Ca

