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Motivation: neutrino oscillations

𝒫α→β = sin2(2θ)sin2 ( Δm2
12L

4E )
source: www.dunescience.org
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Motivation:  
long-baseline oscillation experiments

Erice 09/2017

DUNE, 1300 km HyperK (T2K) 295 km

From:
Diwan et al,
Ann. Rev.
Nucl. Part. Sci 66 
(2016)

Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K)
Ratios of event rates to about 10%

μ−

π+

n

νμEν = ?

T2K/HyperK flux
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✓ CP-violation measurement 
✓ Determining  mass orderingν

Next generation experiments
Long-baseline oscillation experiments

✓ Proton decay searches 
✓ Cosmic neutrino observation
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Nuclear responses

nuclear responses

σ ∝ Lμν Rμν lepton tensor

 
Rμν(ω, q) = ∑

f

⟨Ψ |J†
μ(q) |Ψf⟩⟨Ψf |Jν(q) |Ψ⟩δ(E0 + ω − Ef )
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1 LECTURE 2: NEUTRINO SOURCES AND NEUTRINO DETECTORS

fragments in the fission of uranium and plutonium.

235U+ n ! X1 +X2 + 2n (5)

In average, 6 ⌫e are emitted per fission from the decay of X1 and X2.

• Neutrinos from accelerators: in particle accelerators typically protons are

collided into a target (Be, Al, graphite, carbon). In these reactions ⇡’s and K’s

are emitted and neutrinos appear in their corresponding decays.

1.2. Neutrino detection

Neutrinos can be identified by measuring charged particles produced in their interactions

with matter. These interactions can be classified into neutral current and charged

current.

• Charged current: in these interactions, the lepton partner of the neutrino

appears, as for instance in:

⌫e + n ! e� + p (6)

⌫e + p ! e+ + n. (7)

The reactions happen over the exchange of W± bosons of m(W ) ⇠ 80GeV mass.

Figure 2. Diagrams for the muon decay (left), the muon scattering on electrons
(middle) and the neutral current scattering of ⌫µ on electrons (right).

• Neutral current: The electroweak theory from Glashow, Weinberg & Salam

predicted the existence of neutral current interaction. In 1973, those reactions

were discovered in the Gargamelle experiment (bubble chamber) at CERN.

⌫µ +N ! ⌫µ + hadrons. (8)

Neutral current reactions take place over the exchange of Z0 bosons of m(Z) ⇠
90GeV mass (see figure 2).
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W±

νl /ν̄l l±

|Ψf⟩⟨Ψ |

Cross-section

Challenging sum over 
continuum spectrum



dσ
dE′￼dΩ e

= σM(υLRL(ω, q̄) + υTRT(ω, q̄))

✓ much more precise data 

✓ we can get access to  and  separately (Rosenbluth separation) 

✓ experimental programs of electron scattering in JLab, MAMI, MESA

RL RT

Electrons for neutrinos

dσ
dE′￼dΩ ν/ν̄

= σ0(υCCRCC + υCLRCL + υLLRLL + υTRT ± υT′￼RT′￼)
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Inclusive cross-section

Electron scattering:  
Rosenbluth separation 0
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• Trained on 4He, 6Li, 12C, 16O, 
40Ca 

• Rosenbluth separation 
possible for kinematics and 
nuclei where there is less data

Rosenbluth separation  
with Bayesian neural network

JES, N.Rocco, A.Lovato, Phys. Lett. B 859 (2024) 139142  8

Physics Letters B 859 (2024) 139142
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J.E. Sobczyk, N. Rocco and A. Lovato

and charge number 𝑌 , one obtains 𝑃0 = −(3𝑌𝜋)∕(2𝑙sp). The modulus 
of the effective momentum transfer is obtained as

|!eff | =
√

|"eff |2 + |"′eff |2 − 2|"eff ||"′eff | cos𝜒 . (7)
A focusing factor can be introduced to account for the attractive nucleus, 
focusing the electron wave function in the nuclear region. However, if 
the same 𝑡𝑃 is used for both the effective momentum and the effective 
focusing factors, a cancellation of the focusing factors occurs. Therefore, 
in the effective momentum approximation, we simply replace ' with 'eff
in the cross section expression of Eq. (3). This replacement accounts for 
both the momentum enhancement of the electron near the attractive 
nucleus and the focusing of the electron wave function.

2.1. Neural network architecture

The longitudinal and transverse electromagnetic response functions 
are outputs of the ANN architecture illustrated in Fig. 1. The input of 
the network is a four-dimensional array obtained by concatenating the 
energy and momentum transfer with the number of nucleons and the 
number of protons: ((, |!|, ), 𝑌). The input energies are in GeV, ensur-
ing that their maximum value is of the order of one. To mitigate scale 
differences among the inputs, which could cause certain features to dom-
inate the learning process, we employ a standard score [37] to scale 𝑌
as

𝑌resc =
𝑌 −𝑌avg

Δ𝑌 . (8)
In this equation, 𝑌avg is the average value of 𝑌 , calculated as the sum 
of all 𝑌*=1,…,+nuc values divided by +nuc, the total number of nuclei an-
alyzed. The term Δ𝑌 is defined as the difference between the maximum 
and minimum values of 𝑌 within the range of nuclei considered. The 
same normalization procedure is applied to the particle number ).

Inspired by the scaling properties of electromagnetic responses [23,
24,11], we preprocess the input through a “Scaling” network, whose sin-
gle output is the variable ,((, |!|, ), 𝑌). Note, however, that since we 
do not pretrain the scaling network, , does not necessarily correspond 
to the scaling variable commonly employed in the literature. Leveraging 
the concept of skip-connections [55], the output of the scaling network is 
concatenated with the other inputs, forming the five-dimensional array 
(,, (, ', ), 𝑌), which is then input to a “Response” network. The latter 
produces a 32-dimensional output which is then taken as input to both 
the “Longitudinal” and “Transverse” networks. These latter networks 
are completely independent and each provides a single output corre-
sponding to the longitudinal and transverse responses, respectively. The 
Scaling, Response, Transverse, and Longitudinal networks are multi-
layer perceptrons (MLPs) with two hidden layers, each comprised of 32
neurons and using the hyperbolic tangent activation function. To ensure 
positive definiteness, an exponential function is employed to transform 
the raw outputs of both the longitudinal and transverse MLPs and obtain 
𝑙̂. and 𝑙̂/ . We collectively denote the weights and biases of the ANN 
with  =01,… ,0+1

— there are a total of +1 = 6787 parameters.

2.2. Bayesian training

The double differential cross section corresponding to a given nu-
clear species, incoming energy of the lepton, scattering angle, and en-
ergy transfer, dubbed ,̂*(), is obtained plugging 𝑙̂. and 𝑙̂/ into 
Eq. (3) evaluated at the corresponding energy transfer, while the ef-
fective momentum transfer of Eq. (7) accounts for Coulomb distortion 
effects.

We train our ANN using the quasielastic electron nucleus scatter-
ing archive of [13] on five selected light and medium-mass nuclei, all 
with an equal number of protons and neutrons: 4He, 6Li, 12C, 16O and 
40Ca. Following [36], we remove from our analysis the datasets on 12C 
from [61]. Based on our preliminary analysis they stay in tension with 
all other experiments. For 16O, we add to our analysis the data from 

Fig. 1. Schematic representation of the ANN architecture we employ to represent 
the electromagnetic longitudinal and transverse response functions.

[5], which are not included in quasielastic electron nucleus scattering 
archive of [13].

A critical aspect of this work consists in quantifying the uncertainty 
associated with the ANN predictions. To this aim, we leverage Bayesian 
statistics and treat  as probability distributions [44]. Using Bayes’ the-
orem, the posterior probability of the parameters  given the measured 
cross sections 2 can be written as

3 (|2 ) = 3 (2 |)3 ()
3 (2 ) , (9)

where 3 (2 |) is the likelihood and 3 () is the prior density of the 
parameters [56]. As in [44], we assign a normal Gaussian prior for each 
neural network parameter

3 () = 1
(24)+1∕2

exp
⎛
⎜
⎜⎝

+1∑
*=1

−
02

*
2

⎞
⎟
⎟⎠
. (10)

Note that such prior corresponds to 52 regularization with unit weight.
Following standard practice, we assume a Gaussian distribution for 

the likelihood based on a loss function obtained from a least-squares fit 
to the empirical data

3 (2 |) = exp
(
−62

2

)
, (11)

where

62 =
+7∑
*=1

[
,* − ,̂*())

]2

82*
. (12)

In the above equation, ,* is the *-th experimental value of the cross sec-
tion and the sum runs over the +7 kinematics and nuclei included in the 
training dataset. We augment the experimental errors 8* listed in [13]
including an additional term proportional to the experimental cross sec-
tion value: 8* → 8* + 0.05,*. The primary reason behind this choice is 
that experimental errors are in general small and most experiments re-
port an additional few-percent systematic uncertainty.

All of our numerical simulations are performed using the JAX 
Python library [20]. The posterior distribution is sampled leveraging 
the NumPyro No-U-Turn Sampler extension of Hamiltonian Monte Carlo 
(HMC) [46,17]. Additionally, we implemented the standard HMC algo-
rithm as outlined in Ref. [32] and found results that are consistent with 
those obtained using the NumPyro package. Specifically, in the HMC 
sampling, we used six chains, each with 3,000 samples during the warm-
up phase, followed by 1,000 samples for the final results (6,000 samples 
in total). Each chain corresponds to a distinct random seed used to ini-
tialize the network parameters. To ensure stability and convergence, we 
also performed calculations with ten independent chains, extending the 
warm-up phase to 6,000 samples, followed again by 1,000 samples for 
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Electron scattering on 16O

First ab-initio result for many-body 
system of 16 nucleons

2-body currents missing 
(expected lack of strength)

Lorentz Integral Transform + Coupled Cluster (LIT-CC)

10 B.Acharya, JES, S. Bacca, G. Hagen W. Jiang, 
Phys. Rev. Lett. 134.202501 (2025)



Uncertainty band: 
truncation in chiral 
expansion of Hamiltonian 
+ inversion procedure

Neutrino scattering on 16O
LIT-CC

dσ
dE′￼dΩ ν/ν̄

= σ0(υ00R00 + υ0zR0z + υzzRzz + υTRT ± υxyRxy)
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to estimate truncation
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Electromagnetic responses on 40Ca
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Phys. Rev. Lett. 127 (2021) 7, 072501

12

✓ Coupled cluster singles & doubles 
✓ Two different chiral Hamiltonians 
✓ Uncertainty from LIT inversion

(LIT-CC)

JES, B. Acharya,  S. Bacca, G. Hagen;  
Phys. Rev. C 109 (2024) 2, 025502
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• Inversion of LIT is an ill-posed 
problem + might be unstable. 

• Alternative: reconstruct 
discretised spectrum in terms 
of histograms. 

• Gaussian integral transform 
(GIT) reconstructed via 
Chebyshev polynomials 

• Binning based on the density 
of states. 

• Study on deuteron

Alternative way to reconstruct response

Equal bins

Dipole response on deuteron

Binning  procedure 
 (based on density of states) 
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• Inversion of LIT is an ill-posed 
problem + might be unstable. 

• Alternative: reconstruct 
discretised spectrum in terms 
of histograms. 

• Gaussian integral transform 
(GIT) reconstructed via 
Chebyshev polynomials 

• Binning based on the density 
of states. 

• Study on deuteron

Alternative way to reconstruct response

Equal bins

Dipole response on deuteron
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FIG. 4. Comparison of the reconstructed longitudinal response
(Nmax = 200, h̄! = 8 MeV) to experimental data and a calculation,
both found in Ref. [33].

the breakup.1 Secondly, in our framework we calculate
Rc.m.

L (E c.m.
np , qc.m.) for a fixed qc.m. as a function of E c.m.

np .
Since the experimental data are given in the laboratory

frame while our calculations are performed in the center-of-
mass frame, a Lorentz transformation is required to enable
meaningful comparison. Following Refs. [34,35] we re-
late (ωlab, qlab) to (ωc.m., qc.m.) using a Lorentz boost along
the momentum transfer q. The relevant boost quantities β, γ
are given as [35]

β = qlab

Md + ωlab
, γ = 1

1 − β2
, (22)

where Md is the deuteron mass. The experimentally measured
kinematical quantities then transform as

ωc.m. = γωlab − βγ qlab, qc.m. = βγ Md . (23)

The final state relative energy E cm
np accounts for the recoil

of the deuteron and serves as the relevant energy variable in
our c.m.-frame calculation [34]

E c.m.
np = ωc.m. +

√
(qc.m.)2 + M2

d − 2M. (24)

Following Refs. [36,37], the responses in the two frames are
related according to

Rlab
L (ωlab, qlab) = (qlab)2

(qc.m.)2

E c.m.
i

Md
Rc.m.

L

(
E c.m.

np , qc.m.), (25)

where E c.m.
i =

√
(qc.m.)2 + M2

d is the initial state energy of the
deuteron in the np final state center-of-mass frame.

While either frame could be used for the comparison,
we choose the center-of-mass frame, since the eigenvalue
binning is independent of qc.m., whereas it would vary with
qlab after transformation. To obtain a meaningful compari-
son to experimental data, we define the error as the sum

1To avoid confusion we now label all center-of-mass variables
explicitly, i.e., what was q before is now qc.m. and so on.

of the reconstruction error and the spread of results ob-
tained between the lowest and highest qcm values within
each bin.

In Fig. 4, we show our results for Rc.m.
L (E c.m.

np , qc.m.), the
experimental data and a theoretical calculation by Arenhövel
and Leidemann, both from Ref. [33], considering multipoles
from 0 through 7 and taking the dipole parametrization of the
nucleon form factors [38]. We observe very good agreement
with both the data and the calculation found in Ref. [33],
which is a further proof of the robustness of the proposed
method. The relatively large error bars compared to Fig. 3
arise from the additional uncertainty associated with the vari-
ation of qcm within each bin.

V. CONCLUSIONS

We have presented the first systematic implementation of a
Chebyshev-histogram integral-transform approach to electro-
magnetic response functions in finite nuclei that circumvents
the ill-posed inversion step. Within a bound-state framework,
we treat the discretized eigenvalue spectrum as a proxy of
the continuum, and devise a physically motivated binning
strategy. We highlighted the importance of constructing a
sensible binning strategy. We adaptively choose bins of equal
eigenvalue count per unit width, placing edges at DOS minima
to minimize reconstruction error.

To guide the binning, we introduced a stochastic method
to estimate a regularized density of states using Chebyshev
polynomials. By drawing random vectors and averaging over
many samples, we obtain a smoothed, regularized eigenvalue
distribution without having to resort to full diagonalization.
This method can identify regions with low and high eigen-
value density, which are typical in bound-state methods. By
integrating the curve, we can define equal-area bins with a
similar number of eigenvalues. This allows for the recon-
struction of the response using physically motivated bins that
minimize the reconstruction error without requiring additional
smoothness assumptions.

We benchmarked our approach using the electric dipole re-
sponse function and the longitudinal response of the deuteron
across various momentum transfers, finding excellent agree-
ment with both theoretical calculations and experimental data.
The proposed approach is designed to be conceptually and
computationally general, and is expected to apply across a
wide range of nuclear interactions, many-body systems, and
response functions. Therefore, it paves the way for possi-
ble extensions to general lepton-nucleus cross sections in
medium-mass nuclei, relevant to long-baseline neutrino
experiments.
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the randomized DOS estimation employing λ = 0.5 MeV and
Ndraw = 2000 sampling from the Rademacher distribution.
We observe that generally the eigenvalue density decreases
as ω increases. On a finer scale, the regularized DOS
periodically shows local minima corresponding to regions
with small eigenvalue density in between regions of larger
eigenvalue distribution. In the unbound regime, the Hamil-
tonian is dominated by kinetic energy, causing successive
eigenvalues to differ primarily due to kinetic spacing. As a
result, unbound eigenstates with different quantum numbers
cluster around similar energies, with higher-lying states sep-
arated by discrete kinetic excitations. This also explains why
the distance between local minima grows with energy ω and is
proportional to the oscillator frequency h̄#. Local minima in
the regularized DOS are ideal candidates for bin edges, as they
minimize the reconstruction error. This can be understood
from Eq. (12), where the uncertainty is mainly driven by
a slightly smaller ($ − %) and slightly larger ($ + %) bin
width. The difference of strength between the slightly smaller
and/or larger histogram can be minimized when the bin edges
are positioned in the region with the smallest contribution,
i.e., in the local minima of the regularized DOS. As we are
investigating the deuteron here, we can straightforwardly con-
firm this hypothesis by fully diagonalizing the system and
determining the appropriate bin edges by grouping a con-
stant number of eigenvalues—corresponding to the number
of available channels—into each bin, and placing bin edges
between the final eigenvalue of one group and the first of
the next. These are shown by the red vertical lines in Fig. 1
and they coincide with the local minima of the regularized
DOS. Therefore, we can reliably use this regularized DOS
to determine the binning, with similar accuracy as the full
diagonalization. We choose these minima as our bin edges.

The kernel resolution λ is crucial for determining the bin-
ning precision. For λ = 0.4 MeV in Fig. 1, the high density of
eigenvalues at low ω leads to substantial smearing by the ker-
nel, resulting in significant overlap and the absence of clearly
defined local minima in that region. We include this case
to illustrate how larger kernel widths degrade resolution. As
expected, reducing λ decreases the overlap between smeared
states and enables the visible bin separation in that region. In
our subsequent results, we adopt significantly smaller values
of λ = O(50 keV) to minimize resolution loss. If constraints
on λ exist for computational reasons, and in some ω regions
local minima remain unresolved due to strong smearing, then
the bin edges can alternatively be determined by enforcing
equal area under the regularized DOS in each bin. This, in
fact, would be the case of heavy many-body calculations. Im-
portantly, we have verified that the area under the regularized
DOS in between the red vertical lines in Fig. 1 is constant
to the one percent level. This accuracy can be systematically
improved by increasing Ndraw or decreasing λ, which in turn
requires increasing Ndraw and Nmom.

For consistency, all results shown below use the same
λ both for analyzing the DOS to set the binning and for
reconstructing the response. If computational constraints im-
pose a lower kernel resolution, then equal-area binning in the
low-ω region—as done in Fig. 1—can result in large errors
as the eigenvalues will not only contribute to a single bin.

FIG. 2. Comparison of the reconstructed response (λ =
0.025 MeV, Nmom = 6000), experimental data from Ref. [28]
and the theoretical result of Ref. [29] for different model space
parameters.

To alleviate this problem, one could merge adjacent bins,
which effectively means that we double $ keeping % fixed
in Eq. (12).

Since we are focusing on a single multipole, we can
systematically examine the model space dependence of our
approach. In Fig. 2, we present results for RE1(ω) for different
values of Nmax and h̄#. The number of moments Nmom and
the kernel resolution λ are constant here for all panels, and
all results are well converged. We keep the same number of
eigenvalues per bin in each panel. We observe that decreasing
h̄# at fixed Nmax (second versus third panel) yields a finer
resolution of the response. The same is true if Nmax is in-
creased for fixed h̄# (first versus third panel). In the context
of a HO basis, this dependence can be understood as fol-
lows: Nmax sets the scale for the total number of eigenvalues,
while the product Nmax · h̄# sets the upper energy scale of
the Hamiltonian. Consequently, smaller h̄# at constant Nmax
leads to a denser distribution of eigenvalues as the energy
range of the Hamiltonian shrinks. Increasing Nmax increases
the total number of eigenvalues, but also the energy range of
the Hamiltonian and therefore of the eigenvalues. If both Nmax
and h̄# are increased by roughly the same factor of 2 (first and
second panels), the resolution stays approximately constant.
Although the energy range increases by a factor of 4—since
it is proportional to Nmax · h̄#—the number of eigenvalues,
which is proportional to Nmax, only doubles. Much of the
additional range is dominated by kinetic energy, so the low-
energy eigenvalue density changes little. The spacing there

045502-5
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• Use NN to interpolate SF 

• To be applied for symmetric 
nuclei 

• For low momenta can use 
particle SF 

• Can be interfaced with intra-
nuclear cascade

Towards semi-exclusive cross-sections

= x x

Initial 
nuclear state

Vertex of 
interaction

Final state 
interactions

Spectral function for nuclear matter

+Local density approximation
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• Quasi-elastic process, 

• Pion production,  

• Strangeness production 

• …
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Effective Lagrangian (SMEFT): 
ℒ = −

4GF

2
Vcd[(1−gL

V)𝒪L
V + gR

V𝒪R
V + gL

S 𝒪L
S + gR

S 𝒪R
S + gL

T𝒪L
T] + h . c .

• Charge-current transition on the quark level 
 : is there new physics there?  

• Constraints on Wilson coefficients from 
experimental observations (decays of 
charmed mesons; proton-proton collisions at 
high energy) 

• Could we constrain them looking at 
? 

• NEED TO ACCOUNT FOR NUCLEAR 
EFFECTS: spectral function for initial 
nucleon; binding energy for produced 

ντd → τ−c

ντn → τ−Λc

ΛC

16O spectral function: probing new physics

High precision of  properties in nuclear 
medium needed to gain sensitivity to BSM

ΛC

𝒪L,R
V = (c̄γμPL,Rd)(τ̄γμPLντ)

𝒪L,R
S = (c̄PL,Rd)(τ̄PLντ)

𝒪L,R
T = (c̄σμνPLd)(τ̄σμνPLντ)
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gR
V = 0
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Neutrinos in nuclear matter

✓ Neutrino interaction rate driven by nuclear 
responses 

✓ neutrino emission — mechanism of cooling 
in neutron stars 

✓ Dynamics of supernova core collapse

Source: https://www.nature.com/articles/s42254-022-00420-y
Spin fluctuation in the long 

wavelength approximation  q → 0

What can we learn about 
neutrino interactions in 
nuclear matter from first 

principles?

Sσ(ω) = ∑
f

|⟨Ψf |σ |Ψ0⟩ |2 δ(E0 + ω − Ef )
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• Response reconstructed from 3 energy-
weighted sum-rules 
        

 

• AFDMC calculation, using AV8’

Qn
σ = ∫ dω ωnSσ(ω)

n = − 1, 0, 1

Neutrinos in PNM
PHYSICAL REVIEW C 87, 025802 (2013)

Spin response and neutrino emissivity of dense neutron matter

G. Shen,1 S. Gandolfi,1 S. Reddy,1,2 and J. Carlson1
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We study the spin response of cold dense neutron matter in the limit of zero momentum transfer and show
that the frequency dependence of the long-wavelength spin response is well constrained by sum rules and
the asymptotic behavior of the two-particle response at high frequency. The sum rules are calculated using
an auxiliary field diffusion Monte Carlo technique and the high-frequency two-particle response is calculated
for several nucleon-nucleon potentials. At nuclear saturation density, the sum rules suggest that the strength
of the spin response peaks at ω ! 40–60 MeV, decays rapidly for ω ! 100 MeV, and has a sizable strength
below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense
neutron-rich matter at temperatures of relevance to core-collapse supernova.

DOI: 10.1103/PhysRevC.87.025802 PACS number(s): 97.60.Bw, 26.50.+x, 95.30.Cq, 26.60.−c

I. INTRODUCTION

The spin response of dense neutron matter plays an essential
role in determining neutrino interaction rates in neutron stars
and supernovae [1–5]. (For the effect of spin response on
photon interaction with nucleon magnetic moments, see the
discussion in Ref. [6].) Since the energy and momentum
transfer between neutrinos and matter is small compared to
the Fermi energy and momentum, degeneracy and many-body
effects can strongly modify interaction rates. The spin response
of neutron matter is an intriguing problem in that a nonzero
response requires the coupling of spin and space through the
tensor and spin-orbit components of the nuclear force.

We study the response in the specific limit of zero
temperature and zero momentum transfer, and we discuss
how this limiting case will be useful to understand the more
general behavior encountered at finite temperatures in neutron
stars and supernovas. At zero temperature the spin response
can be obtained through a combination of sum rules and a
calculation of the high-energy part of the response. The sum
rules and the high-energy behavior resolve nuclear interactions
with momenta of the order of the pion wavelength, and we
use nuclear Hamiltonians previously found to be reliable in
describing relevant excitations and their coupling to the ground
state in the other contexts.

Bremsstrahlung reactions such as n + n → n + n + ν + ν̄
are an important source of neutrino pair production in dilute
neutron matter. When neutrons are nonrelativistic, neutrino
emission occurs primarily due to fluctuations of the nucleon
spin. Density and current fluctuations are suppressed by the
velocity due to particle number and momentum conservation.
This dominance of spin fluctuations is a unique feature of
nuclear systems because strong noncentral tensor and spin-
orbit forces that do not commute with the spin operator lead to
enhanced spin fluctuations even in the long-wavelength limit
(q → 0). Its importance in neutrino production rates was first
realized in pioneering work by Friman and Maxwell [1]. They
calculated the neutrino production rate in the long-wavelength
limit using the one-pion-exchange (OPE) potential in leading-
order perturbation theory (Born approximation). In subsequent
work, Hanhart et al. [7] calculated the neutrino production

rate in neutron matter using a low-energy approximation that
relates the rate directly to observed nucleon-nucleon phase
shifts, obviating the need to rely on either perturbation theory
or a specific choice for the nucleon-nucleon potential. While
these calculations have provided a useful benchmark, they
neglect many-body effects and their regime of validity is
restricted to weakly correlated dilute systems.

The inclusion of many-body effects has relied on diagram-
matic perturbation theory where specific corrections to long-
distance and long-time behavior of nucleon propagation in the
medium are incorporated. The finite lifetime of quasiparticles,
screening of the weak axial charge, as well as screening of
nucleon-nucleon interactions due to particle-hole polarization
effects at finite density have been investigated by several
authors [5,8–12]. These calculations have shown that these
corrections are important and generically tend to decrease neu-
trino production rates. On the other hand, attempts to include
in-medium softening of the pion propagator and corrections
to the nucleon propagators and weak vertices [13–15] have
shown that the neutrino emissivity can be enhanced. However,
these methods neglect terms in many-body perturbation theory
and it is presently difficult to estimate associated errors. To
overcome this shortcoming, we adopt a different strategy, using
a quantum Monte Carlo (QMC) method to compute the three
lowest order sum rules, which are described below in Sec. III.
We supplement these sum rules with the asymptotic form of
the two-particle response valid at high frequency to deduce the
distribution of strength of the spin response function at lower
energies of relevance to astrophysics.

II. NEUTRINO EMISSIVITY AND THE SPIN
STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino
interaction rates in the medium can be factored into a product
of two terms: (i) the correlation functions of the dense medium
and (ii) kinematical factors and coupling constants associated
with neutrino currents. The latter are well known and relatively
simple functions of the neutrino energy and momentum. In
contrast, the spin, density, and current correlation functions
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Q0
σ = 1 + lim

q→0

4
3N

N

∑
i≠j

⟨0 |e−iq(ri−rj) σi ⋅ σj |0⟩

Q1
σ = −

4
3N

lim
q→0

⟨0 | [HN, s(q)] ⋅ s(−q) |0⟩
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are complex functions of temperature, density, and the energy
and momentum transfer because multiparticle dynamics and
correlations in the ground state of the strongly interacting
system play a critical role.

The dynamic spin structure factor Sσ (ω, q) of neutron
matter encodes the linear response of neutron matter to spin
fluctuations and is defined as [2]

Sσ (ω, q) = 4
3n

1
2π

∫ ∞

−∞
dt eiωt 〈s(t,q) · s(0,−q)〉

= 4
3n

∑

f

〈0|s(q)|f 〉 · 〈f |s(−q)|0〉δ[ω − (Ef − E0)],

(2.1)

where s(t,q) = V −1 ∑N
i=1 e−iq·r i (t)σ i and σ i is the spin op-

erator acting on the ith nucleon at time t . The second line
expresses the same response as a sum over final states |f 〉
coupled to the ground state through the time-independent spin
operator.

Alternatively, in terms of the field operators, s(t,q) is
the Fourier transform of the spin density operator s(x) =
1
2ψ+(x)τψ(x) with τ being the usual Pauli matrix and ψ(x)
is the nonrelativistic field operator. The normalization factor
4/3n, where n is the neutron number density, ensures that
the dynamic form factor is canonically normalized such that
S(q → ∞) = 1 for the noninteracting Fermi systems and
conforms to the standard definitions of the sum rules discussed
below in Sec. III.

The rate of neutrino pair production can be expanded in
powers of the nucleon velocity and the momentum of the
neutrino pair [1]. The neutrino emissivity of neutron matter
denoted by Q, and defined as the rate of energy loss due to
neutrino pair production per unit volume and per unit time, to
leading order in the neutron velocity and neutrino momentum
is given by [9]

Q = C2
AG2

F n

20π3

∫ ∞

0
dω ω6e−ω/T Sσ (ω), (2.2)

where GF = 1.18 × 10−11 MeV−2 is the Fermi constant of the
weak interaction and CA = −1.26/2 is the neutron neutral-
current axial coupling constant. Note that, due to the strange-
quark contribution to the nucleon spin, CA may be modified in
neutral current processes by a few percent in the energy range
of interest to supernova [16]. Here we have not included this
modification for simplicity. At low temperature, when T '
EFn, where EFn is the neutron Fermi energy, the neutrino pair
momentum q is small compared to both the Fermi momentum
kFn and the intrinsic momentum scales associated with the
strong interaction, and it may be neglected and Sσ (ω) =
Sσ (ω,q = 0). Hence in Eq. (2.2) only Sσ (ω) appears and it is a
function of both density and temperature as implied by the en-
semble average denoted on the right-hand side of the equation.

III. SUM RULES

The spin response describes the coupling to the ensemble
of final states obtained by flipping all the ground-state spins
in neutron matter. If spin and space are uncoupled, spin is

a good quantum number and there would be no response at
zero momentum transfer. However, the spin-orbit and tensor
interactions (acting only in relative p waves and higher in
neutron matter) induce a finite expectation value of 〈S2〉 even
at T = 0 and finite response results. The spin-orbit and tensor
interactions are of pion range or less, so they predominantly
affect neutrons coupled to spin 1 at a pair separation typical
for nearest neighbors at that density. Although there is zero
total momentum transfer, the two interacting particles can
nevertheless have significant relative momenta in the relevant
final states.

The overall strength and energy distribution of the response
can be characterized through the relevant sum rules. We
employ a QMC method to compute the low-order sum rules
that relate moments of Sσ (ω,q) to its ground-state properties.
We then combine these sum-rule constraints with asymptotic
high-energy behavior expected in the two-particle system to
obtain constraints on the distribution of strength Sσ (ω) as a
function of ω at q = 0. For the same reason, the response in
Eq. (2.1) is solely due to the excitation of multiparticle states
as single-particle excitations vanish for these kinematics.

Though we ultimately desire information about the spec-
trum and coupling to the excited states of the system, the
moments of the sum rules defined by the relation

Sn
σ =

∫ ∞

0
Sσ (ω,q = 0)ωn dω (3.1)

are calculable as ground-state properties. The sum rules
provide a simple and systematic means to eliminate explicit
dependence on the intermediate excited states of the system.
The relevant excited-state information is sampled by operators
contained in the nuclear Hamiltonian. In this study we use the
following sum-rule relations:

S−1
σ = χσ

2n
, (3.2)

S0
σ = 1 + lim

q→0

4
3N

N∑

i (=j

〈0|e−iq·(ri−rj)σ i · σ j |0〉, (3.3)

S+1
σ = − 4

3N
lim
q→0

〈0|[HN, s(q)] · s(−q)|0〉, (3.4)

where χσ = ∂nσ /∂µσ is the spin susceptibility of the interact-
ing ground state |0〉 of the nuclear Hamiltonian HN , and nσ and
µσ are number density and chemical potential of particles with
spin σ (±1/2). Our strategy here is to evaluate the right-hand
side of Eqs. (3.2), (3.3), and (3.4) using a QMC method and use
this information to constrain the behavior of S(ω) for values
of ω relevant to the calculation of neutrino production.

This strategy is not new; in Ref. [8] estimates of the S0
σ

and S1
σ sum rules were used to argue that spin response

function must saturate at high density, and in Ref. [17],
sum rules were used to estimate the relative importance
of multiparticle excitations to the response function in the
kinematical regime where ω ! q. Our work improves upon
these earlier studies in two respects: (i) we compute and
combine for the first time all three sum rules to constrain both
low-frequency and high-frequency behavior of S(ω,q = 0);
and (ii) we deduce the high-frequency response or short-time
behavior of the two-particle dynamics where they dominate in
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for the frequency dependence of Sσ (ω) given by the form
S low

σ (ω) but the with a more complex behavior of τ (ω) given
by the following forms:

1
τ (ω)

=
(

C̃σω2 + α
ω2+n

(ω + ω0)2

) (
ωc

ω + ωc

)m

, (6.1)

where the constants α and ω0 and indices n and m are fit to
ensure that the three sum rules and the asymptotic forms are
satisfied. At low frequency, this ansatz ensures that out results
coincide with the results obtained in Ref. [5] by Lykasov,
Pethick, and Schwenk, where only the first term containing
C̃σ contributes. On general grounds (unitarity of scattering
amplitudes) at large frequency, pair excitation should be
quenched due to the retarded nature of nuclear interaction,
and this quenching is naturally incorporated through the
asymptotic form discussed in relation to Eq. (4.3).

To better understand the sensitivity of our results to
the choice of parametrization, we have also used a simple
phenomenological form for the spin response:

Sσ (ω) = α
ωj

[1 + (ω/ωc)i]4
. (6.2)

The high-frequency tail is forced to fall off appropriately by
choosing 4i − j = 9. The parameters α, ωc, and i are then
fitted to the three sum rules. This simple form ensures that the
response goes to zero at low frequency, has the correct high-
frequency tail, and has a single-peak structure. Comparisons
of the two parametrizations provide some information on the
reliability of the extracted spin response.

Figure 2 shows the response function obtained by fitting
the sum rules and the high-energy response at saturation
density using the two different parametrizations, Eqs. (5.5)
and (6.2). For comparison, the low-frequency forms of the
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FIG. 2. (Color online) The spin response function Sσ (q = 0,ω)
of neutron matter at saturation density obtained by fitting to AFDMC
sum rules using two different ansatze (shown as the black solid and
dashed curves). The inset compares the fits and the two-particle
response at high energy obtained by confining two neutrons in a
spherical cavity of radius = 7 fm (red) or 8 fm (green). The linear,
low-frequency forms predicted in Ref. [36], labeled as OPE and χPT,
are shown for comparison. The dot-dot-dashed curve is obtained by
using the two-body approach in Eq. (5.6) with OPE.
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FIG. 3. (Color online) The spin response function Sσ (q = 0,ω) of
neutron matter at ρ = 0.12, 0.16, and 0.20 fm−3 from fits to AFDMC
sum-rule results at zero temperature.

structure function obtained in Ref. [36] are shown for the two
choices of C̃σ corresponding to the OPE and χPT potentials
discussed earlier. The form of the low-frequency response in
Eq. (5.1) is valid only at ω " EF . In the figure we also show
the results from the two-body approach [described in Eq. (5.6)]
in the Born approximation with OPE. At low frequency
ω ! EF /2, it gives similar results to the quasiparticle picture,
then becomes larger at higher frequency since it includes the
exact phase-space integrals. The inset compares the fits and
the two-particle response at high energy obtained by confining
two neutrons in a spherical cavity of radius = 7 fm (red)
or 8 fm (green). The asymptotic forms and sum rules force
significantly more strength at lower energy than obtained
previously.

The simple phenomenological fit [dashed line; Eq. (6.2)]
and the fit to the quasiparticle form [solid line; Eqs. (5.5) and
(6.1)] produce very similar response functions. In addition to
the sum-rule constraints, we are forcing the response to go
to zero at low frequency, have a single-peak structure, and to
fall off fairly rapidly at high energy as obtained from the two-
neutron response. When combined, these considerations place
fairly tight constraints on the spin response of neutron matter.

In Fig. 3 we compare the response functions obtained over a
range of densities ρ = 0.12, 0.16, and 0.20 fm−3. As expected
from the sum rules, the peak of the response functions shifts
to larger energy with increasing density. The tensor and spin-
orbit correlations are naturally of shorter range at the higher
densities where the mean interparticle spacing is shorter, and
hence the peak shifts to higher energy. The total strength in the
response is fairly flat over the regime of densities we consider
as obtained in the sum-rule calculations for S0.

Finally, at higher density the distribution is somewhat
broader as ω1 increases more rapidly with density than ω0.
Both ω0 and ω1 increase rapidly, presumably associated with
the increasing importance of the shorter range components of
the nuclear force at and above saturation density. While we
expect this trend to be qualitatively correct, contributions due
to three-body forces and from two-body currents are able to
play a role in modifying this behavior.
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TABLE I. AFDMC results for the sum rules.

Density S−1
σ (MeV−1) S0

σ S+1
σ (MeV) ω̄0 (MeV) ω̄1 (MeV)

(fm−3)

n = 0.12 0.0057(9) 0.20(1) 8(1) 35(9) 40(8)
n = 0.16 0.0044(7) 0.20(1) 11(1) 46(11) 55(8)
n = 0.20 0.0038(6) 0.18(1) 14(1) 47(12) 78(10)

pair recombination processes and the decay of finite-energy
collective modes [27,28]. It may be possible in the future to
examine this regime more critically using techniques similar
to those developed here.

The AFDMC results for the sum rules are shown in Table I,
where the individual sum rules and average excitation energies
defined by ω̄0 = S0

σ /S−1
σ and ω̄1 = S1

σ /S0
σ are listed. The

density dependence of the S0
σ sum rule is quite modest over

the range of densities considered.
The spin susceptibilities shown in Table I correspond

to χ/χF = 0.37, 0.34, and 0.34 for ρ = 0.12, 0.16, and
0.20 fm−3, respectively, where χF = mkF /π2 is the spin
susceptibility for a free Fermi gas. At the lowest density
this is very similar to results obtained in [21], whereas
at the highest density our result is approximately 20% lower
for the susceptibility. The difference may lie in the fact that
the three-nucleon force used in [21] is repulsive in unpolarized
neutron matter, and less so in spin-polarized matter.

The average energies ω̄0 and ω̄1 are extracted from the
sum rules as estimates for the energy of the peak of the
response, and their difference is a measure of the width of
the distribution. The fact that the calculated ω̄0 and ω̄1 values
are fairly similar indicates a moderately narrow peak in the
response. A positive definite response requires ω̄1 ! ω̄0.
The peaks shift to higher energy with increasing density, as
expected. The tables also indicate that the strength distribution
gets more diffuse with increasing density, with strength being
pushed out to higher energy.

IV. ASYMPTOTIC FORM AT HIGH ENERGY

In order to constrain the low-energy response relevant for
astrophysical applications using sum rules we need some
knowledge of the behavior of Sσ (ω) at large ω. In this
regime the response probes the short-time behavior of the
many-body correlation function and on general grounds we
can expect this to be dominated by two-particle dynamics.
This intuitive expectation can be cast in more formal terms
by using the operator product expansion originally developed
by Wilson as a standard technique in quantum field theory.
The operator product expansion has been used to analyze
short-time behavior of the density-density correlation function
in a strongly interacting nonrelativistic Fermi gas [29,30].
By adapting this to the spin-density operator, the relevant
expansion in this case organizes Sσ (ω) in terms of local
operators in inverse powers ω and is given by

∫
dt eiωt

∫
d3x ψ†σψ(t,R + x)ψ†σψ(0,R − x)

= iW1(ω)O(1)(R) + iW2(ω)O(2)(R) + · · · , (4.1)

where the expectation value of the local operators O(n)(R)
depends on the many-body ground state but the Wilson
coefficients Wi(ω) depend only on few-body physics with
i incoming and outgoing asymptotic states. For q = 0 the
Wilson coefficient W1(ω) vanishes identically in spin-saturated
systems and the leading contribution is due to W2(ω). The
functional form of W2(ω) is determined by the matrix elements
of the spin operator between two-body scattering states. This
implies that up to an overall constant, which depends only on
the ground state, Sσ (ω) at high frequency is determined by
the the two-body matrix elements. In general, this will depend
sensitively on the short-distance behavior of the two-nucleon
interaction and will be model dependent. However, to extract
the response at low energy in a model-independent fashion
it suffices to use, in the two-body calculation, the same
Hamiltonian employed in the calculation of the sum rules in
the many-body calculation.

The spin response function S(q,ω) for two neutrons are
evaluated as follows:

S(q,ω) = |〈ψF |ÔA|ψI 〉|2δ(ω + EI − EF ). (4.2)

For spin response at q = 0, the operator is the sum of spins,
ÔA = $σ1 + $σ2. ψI and ψF are the eigenstates of two neutrons
in spin-triplet states and we take ψI to be the ground state.

We have calculated these matrix elements using the same
nuclear Hamiltonian employed in the AFDMC by solving
the Schrödinger equation for two neutrons with a simple
box boundary condition. These results indicate that the high-
frequency behavior denoted as S

high
σ (ω) is determined by

two-body physics and has the following asymptotic behavior:

Shigh
σ (ω) %

(
ωc

ω

)i

, (4.3)

where the density-dependent quantity ωc % 100–150 MeV for
the range of densities considered here, and for the nuclear
interaction used we find that i ≈ 9.

As mentioned earlier the high-frequency response will
depend on the model for nucleon-nucleon interactions at short
distance. For a correct description of the response at ω !
100 MeV, the inclusion of two-body currents and explicit pion
and ( isobar degrees of freedom is likely to become important.
However, since they are absent in both the many-body and
two-body calculation, their consistent omission ensures that
we can still obtain useful constraints on Sσ (ω) at lower ω
values of interest without these ingredients.

Using the two-body axial currents adjusted to reproduce
measured tritium β decay [31], we calculated the contributions
to the static spin sum rule of Eq. (4.2) at q = 0 due to the
most important two-body currents—the axial π -exchange (-
excitation current and the π -exchange (pair) current. These
contributions were found to be a few percent of the total static
spin sum rule. Therefore we expect the contribution of two-
body currents to the dynamic spin response function at zero
momentum transfer to be around a few percent as well.

V. LOW-ENERGY FORMS FOR THE RESPONSE

In the regime where neutron matter behaves like a Fermi
liquid, the low-energy form of the response should be
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ρ = 0.12 fm−3

Simulations with 114 particles allow us to reconstruct the
response in bins of 15 MeV for ρ ¼ 0.08 fm−3, up to
24 MeV for ρ ¼ 0.16 fm−3. In Fig. 3 we show these results,
together with the error estimation summing contributions
from two sources. The first one is related to our procedure of
constructing a histogram from a discretized spectrum. We
follow here closely the error estimation for GIT, which we
derived in Ref. [35] and explained in more detail in
Supplemental Material [50]. It depends on the type of
the kernel, its width λ, the number of Chebyshev moments,
and the size of the bins. For our choice of GIT parameters,
λ ¼ 0.3 MeV andN ¼ 5000 Chebyshev moments, we keep
it on average at the level of a few percent. This error could
be even further reduced by applying a higher resolution
kernel which translates into the need of calculating more
Chebyshev moments, i.e., higher computational cost.
Secondly, we estimate the uncertainty coming from the
finite-size effects, using TABC for three twist angles.
Similarly to the sum rule estimation, we report the mean
value and standard deviation. As can be observed in Fig. 3,
it is most pronounced in the lower part of the spectrum,
primarily affecting the first two or three bins, depending on
the density. This error is an inherent feature of simulations
performed with N ¼ 114 particles.
Summary and outlook—We have conducted the first

consistent calculation of the spin response in pure neutron
matter employing the nuclear ab initio approach. The
devised prescription for setting the energy resolution
enabled us to reconstruct the excitation spectrum in terms
of the GIT. This general approach, here used in conjuncture
with the CC theory, provides a robust error estimation of
nuclear responses, an aspect that has not been fully explored
in the past. In this first calculation, we focused on two
sources of theoretical uncertainty inherent to the nuclear
responses: stemming from the treatment of finite-size effects
and from the spectral reconstruction procedure. We did not
attempt to estimate the systematic uncertainty coming from
the choice of the nuclear interaction, which we strongly
expect to be the dominant residual source of systematic
error in our present calculations. In fact, we found that
already at the level of sum rules, the spin response is highly

sensitive to the nuclear Hamiltonian. This opens a new
promising avenue for investigating nuclear dynamics in
infinite systems, which we plan to explore further in follow-
up work. We note that besides performing simulations with
different Hamiltonians, the calculation strategy laid out in
the present work will remain unchanged.We believe that the
present framework holds significant potential for advancing
studies of neutrino interactions in astrophysical environ-
ments and finding possible applications in other complex
many-body systems.
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• Mixed estimator:

More on QMC
Systematic errors in quantum Monte Carlo

calculations—We briefly review the main sources of
systematic errors in projection quantum Monte Carlo
(QMC) calculations, such as the CIMC method used in
this work and the auxiliary field diffusion Monte Carlo
method (hereafter, the AFDMC) used in Ref. [14]. The
main goal is to show the sensitivity of calculations of
the sum rules Q0

σ and Q1
σ to the common approximations

employed with these techniques. For more details
Ref. [18] is a recent comprehensive review of continuum
quantum Monte Carlo methods such as the AFDMC, for
Fock space QMC methods like the CIMC the reader can
consult Refs. [51,52]. The fundamental idea of QMC
methods like the AFDMC and the CIMC is to obtain an
approximation of the ground state of a many-body
system using imaginary time evolution on an initial trial
state jΨTi obtaining jΨðτÞi ¼ expð−τHÞjΨTi. For long
imaginary times τ one then prepares the ground state of
the system. An estimate for the expectation value of an
observable O is then obtained, for large τ, as a “mixed
estimator,”

hOiM ¼ hΨT jOjΨðτÞi
hΨT jΨðτÞi

¼ hΨT jOe−τHjΨTi
hΨT je−τHjΨTi

⟶
τ→∞¼ hΨT jOjΨ0i

hΨT jΨ0i
:

ðB1Þ

Notably, for observables such that ½O;H% ¼ 0, the
estimator OM coincides with the exact expectation value
since

hOiM ¼ hΨT jOjΨðτÞi
hΨT jΨðτÞi

¼ hΨT je−τH=2Oe−τH=2jΨTi
hΨT je−τH=2e−τH=2jΨTi

⟶
τ→∞ ¼ hΨ0jOjΨ0i

hΨ0jΨ0i
¼ hOi0: ðB2Þ

The correct expectation value hOi0 is usually called a
“pure estimator” in the QMC literature. This property is,
however, not satisfied for general observables, and in
particular for those leading to the sum rules Q0

σ and Q1
σ

that we are interested in here. These are

Q0
σ ¼ 1þ 2

3N

*
XN

i<j

σi · σj

+

0

¼ 1þ 2

N

*
XN

i<j

σziσ
z
j

+

0

Q1
σ ¼ −

4

N
hHTi0; ðB3Þ

where for the Q0
σ sum rule we used the rotational

symmetry of our system in order to only use σzi , the
Pauli z matrix acting on particle i. For Q1

σ instead we
used the fact that at LO in the chiral expansion only
the tensor contribution HT from one-pion exchange

FIG. 5. Spin response at ρ ¼ 0.12 fm−3 for N ¼ 14, 38, 66, 114 neutrons reconstructed in terms of histograms.
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method (hereafter, the AFDMC) used in Ref. [14]. The
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σ and Q1
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employed with these techniques. For more details
Ref. [18] is a recent comprehensive review of continuum
quantum Monte Carlo methods such as the AFDMC, for
Fock space QMC methods like the CIMC the reader can
consult Refs. [51,52]. The fundamental idea of QMC
methods like the AFDMC and the CIMC is to obtain an
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• There is a systematic error which we can quantify for Q0
σ
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and charge number ! , one obtains "0 = −(3!#)∕(2$sp). The modulus 
of the effective momentum transfer is obtained as

|!eff | =
√

|"eff |2 + |"′eff |2 − 2|"eff ||"′eff | cos% . (7)
A focusing factor can be introduced to account for the attractive nucleus, 
focusing the electron wave function in the nuclear region. However, if 
the same "̄ is used for both the effective momentum and the effective 
focusing factors, a cancellation of the focusing factors occurs. Therefore, 
in the effective momentum approximation, we simply replace ' with 'eff
in the cross section expression of Eq. (3). This replacement accounts for 
both the momentum enhancement of the electron near the attractive 
nucleus and the focusing of the electron wave function.

2.1. Neural network architecture

The longitudinal and transverse electromagnetic response functions 
are outputs of the ANN architecture illustrated in Fig. 1. The input of 
the network is a four-dimensional array obtained by concatenating the 
energy and momentum transfer with the number of nucleons and the 
number of protons: ((, |!|, ), !). The input energies are in GeV, ensur-
ing that their maximum value is of the order of one. To mitigate scale 
differences among the inputs, which could cause certain features to dom-
inate the learning process, we employ a standard score [37] to scale !
as

!resc =
! −!avg

Δ! . (8)
In this equation, !avg is the average value of ! , calculated as the sum 
of all !*=1,…,+nuc values divided by +nuc, the total number of nuclei an-
alyzed. The term Δ! is defined as the difference between the maximum 
and minimum values of ! within the range of nuclei considered. The 
same normalization procedure is applied to the particle number ).

Inspired by the scaling properties of electromagnetic responses [23,
24,11], we preprocess the input through a “Scaling” network, whose sin-
gle output is the variable ,((, |!|, ), !). Note, however, that since we 
do not pretrain the scaling network, , does not necessarily correspond 
to the scaling variable commonly employed in the literature. Leveraging 
the concept of skip-connections [55], the output of the scaling network is 
concatenated with the other inputs, forming the five-dimensional array 
(,, (, ', ), !), which is then input to a “Response” network. The latter 
produces a 32-dimensional output which is then taken as input to both 
the “Longitudinal” and “Transverse” networks. These latter networks 
are completely independent and each provides a single output corre-
sponding to the longitudinal and transverse responses, respectively. The 
Scaling, Response, Transverse, and Longitudinal networks are multi-
layer perceptrons (MLPs) with two hidden layers, each comprised of 32
neurons and using the hyperbolic tangent activation function. To ensure 
positive definiteness, an exponential function is employed to transform 
the raw outputs of both the longitudinal and transverse MLPs and obtain 
$̂. and $̂/ . We collectively denote the weights and biases of the ANN 
with  =01,… ,0+1

— there are a total of +1 = 6787 parameters.

2.2. Bayesian training

The double differential cross section corresponding to a given nu-
clear species, incoming energy of the lepton, scattering angle, and en-
ergy transfer, dubbed ,̂*(), is obtained plugging $̂. and $̂/ into 
Eq. (3) evaluated at the corresponding energy transfer, while the ef-
fective momentum transfer of Eq. (7) accounts for Coulomb distortion 
effects.

We train our ANN using the quasielastic electron nucleus scatter-
ing archive of [13] on five selected light and medium-mass nuclei, all 
with an equal number of protons and neutrons: 4He, 6Li, 12C, 16O and 
40Ca. Following [36], we remove from our analysis the datasets on 12C 
from [61]. Based on our preliminary analysis they stay in tension with 
all other experiments. For 16O, we add to our analysis the data from 

Fig. 1. Schematic representation of the ANN architecture we employ to represent 
the electromagnetic longitudinal and transverse response functions.

[5], which are not included in quasielastic electron nucleus scattering 
archive of [13].

A critical aspect of this work consists in quantifying the uncertainty 
associated with the ANN predictions. To this aim, we leverage Bayesian 
statistics and treat  as probability distributions [44]. Using Bayes’ the-
orem, the posterior probability of the parameters  given the measured 
cross sections 2 can be written as

3 (|2 ) = 3 (2 |)3 ()
3 (2 ) , (9)

where 3 (2 |) is the likelihood and 3 () is the prior density of the 
parameters [56]. As in [44], we assign a normal Gaussian prior for each 
neural network parameter

3 () = 1
(24)+1∕2

exp
⎛
⎜
⎜⎝

+1∑
*=1

−
02

*
2

⎞
⎟
⎟⎠
. (10)

Note that such prior corresponds to 52 regularization with unit weight.
Following standard practice, we assume a Gaussian distribution for 

the likelihood based on a loss function obtained from a least-squares fit 
to the empirical data

3 (2 |) = exp
(
−62

2

)
, (11)

where

62 =
+7∑
*=1

[
,* − ,̂*())

]2

82*
. (12)

In the above equation, ,* is the *-th experimental value of the cross sec-
tion and the sum runs over the +7 kinematics and nuclei included in the 
training dataset. We augment the experimental errors 8* listed in [13]
including an additional term proportional to the experimental cross sec-
tion value: 8* → 8* + 0.05,*. The primary reason behind this choice is 
that experimental errors are in general small and most experiments re-
port an additional few-percent systematic uncertainty.

All of our numerical simulations are performed using the JAX 
Python library [20]. The posterior distribution is sampled leveraging 
the NumPyro No-U-Turn Sampler extension of Hamiltonian Monte Carlo 
(HMC) [46,17]. Additionally, we implemented the standard HMC algo-
rithm as outlined in Ref. [32] and found results that are consistent with 
those obtained using the NumPyro package. Specifically, in the HMC 
sampling, we used six chains, each with 3,000 samples during the warm-
up phase, followed by 1,000 samples for the final results (6,000 samples 
in total). Each chain corresponds to a distinct random seed used to ini-
tialize the network parameters. To ensure stability and convergence, we 
also performed calculations with ten independent chains, extending the 
warm-up phase to 6,000 samples, followed again by 1,000 samples for 
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In the above equation, ,* is the *-th experimental value of the cross sec-
tion and the sum runs over the +7 kinematics and nuclei included in the 
training dataset. We augment the experimental errors 8* listed in [13]
including an additional term proportional to the experimental cross sec-
tion value: 8* → 8* + 0.05,*. The primary reason behind this choice is 
that experimental errors are in general small and most experiments re-
port an additional few-percent systematic uncertainty.

All of our numerical simulations are performed using the JAX 
Python library [20]. The posterior distribution is sampled leveraging 
the NumPyro No-U-Turn Sampler extension of Hamiltonian Monte Carlo 
(HMC) [46,17]. Additionally, we implemented the standard HMC algo-
rithm as outlined in Ref. [32] and found results that are consistent with 
those obtained using the NumPyro package. Specifically, in the HMC 
sampling, we used six chains, each with 3,000 samples during the warm-
up phase, followed by 1,000 samples for the final results (6,000 samples 
in total). Each chain corresponds to a distinct random seed used to ini-
tialize the network parameters. To ensure stability and convergence, we 
also performed calculations with ten independent chains, extending the 
warm-up phase to 6,000 samples, followed again by 1,000 samples for 
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and charge number ! , one obtains "0 = −(3!#)∕(2$sp). The modulus 
of the effective momentum transfer is obtained as

|!eff | =
√

|"eff |2 + |"′eff |2 − 2|"eff ||"′eff | cos% . (7)
A focusing factor can be introduced to account for the attractive nucleus, 
focusing the electron wave function in the nuclear region. However, if 
the same "̄ is used for both the effective momentum and the effective 
focusing factors, a cancellation of the focusing factors occurs. Therefore, 
in the effective momentum approximation, we simply replace ' with 'eff
in the cross section expression of Eq. (3). This replacement accounts for 
both the momentum enhancement of the electron near the attractive 
nucleus and the focusing of the electron wave function.

2.1. Neural network architecture

The longitudinal and transverse electromagnetic response functions 
are outputs of the ANN architecture illustrated in Fig. 1. The input of 
the network is a four-dimensional array obtained by concatenating the 
energy and momentum transfer with the number of nucleons and the 
number of protons: ((, |!|, ), !). The input energies are in GeV, ensur-
ing that their maximum value is of the order of one. To mitigate scale 
differences among the inputs, which could cause certain features to dom-
inate the learning process, we employ a standard score [37] to scale !
as

!resc =
! −!avg

Δ! . (8)
In this equation, !avg is the average value of ! , calculated as the sum 
of all !*=1,…,+nuc values divided by +nuc, the total number of nuclei an-
alyzed. The term Δ! is defined as the difference between the maximum 
and minimum values of ! within the range of nuclei considered. The 
same normalization procedure is applied to the particle number ).

Inspired by the scaling properties of electromagnetic responses [23,
24,11], we preprocess the input through a “Scaling” network, whose sin-
gle output is the variable ,((, |!|, ), !). Note, however, that since we 
do not pretrain the scaling network, , does not necessarily correspond 
to the scaling variable commonly employed in the literature. Leveraging 
the concept of skip-connections [55], the output of the scaling network is 
concatenated with the other inputs, forming the five-dimensional array 
(,, (, ', ), !), which is then input to a “Response” network. The latter 
produces a 32-dimensional output which is then taken as input to both 
the “Longitudinal” and “Transverse” networks. These latter networks 
are completely independent and each provides a single output corre-
sponding to the longitudinal and transverse responses, respectively. The 
Scaling, Response, Transverse, and Longitudinal networks are multi-
layer perceptrons (MLPs) with two hidden layers, each comprised of 32
neurons and using the hyperbolic tangent activation function. To ensure 
positive definiteness, an exponential function is employed to transform 
the raw outputs of both the longitudinal and transverse MLPs and obtain 
$̂. and $̂/ . We collectively denote the weights and biases of the ANN 
with  =01,… ,0+1

— there are a total of +1 = 6787 parameters.

2.2. Bayesian training

The double differential cross section corresponding to a given nu-
clear species, incoming energy of the lepton, scattering angle, and en-
ergy transfer, dubbed ,̂*(), is obtained plugging $̂. and $̂/ into 
Eq. (3) evaluated at the corresponding energy transfer, while the ef-
fective momentum transfer of Eq. (7) accounts for Coulomb distortion 
effects.

We train our ANN using the quasielastic electron nucleus scatter-
ing archive of [13] on five selected light and medium-mass nuclei, all 
with an equal number of protons and neutrons: 4He, 6Li, 12C, 16O and 
40Ca. Following [36], we remove from our analysis the datasets on 12C 
from [61]. Based on our preliminary analysis they stay in tension with 
all other experiments. For 16O, we add to our analysis the data from 
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the electromagnetic longitudinal and transverse response functions.
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archive of [13].

A critical aspect of this work consists in quantifying the uncertainty 
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statistics and treat  as probability distributions [44]. Using Bayes’ the-
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All of our numerical simulations are performed using the JAX 
Python library [20]. The posterior distribution is sampled leveraging 
the NumPyro No-U-Turn Sampler extension of Hamiltonian Monte Carlo 
(HMC) [46,17]. Additionally, we implemented the standard HMC algo-
rithm as outlined in Ref. [32] and found results that are consistent with 
those obtained using the NumPyro package. Specifically, in the HMC 
sampling, we used six chains, each with 3,000 samples during the warm-
up phase, followed by 1,000 samples for the final results (6,000 samples 
in total). Each chain corresponds to a distinct random seed used to ini-
tialize the network parameters. To ensure stability and convergence, we 
also performed calculations with ten independent chains, extending the 
warm-up phase to 6,000 samples, followed again by 1,000 samples for 
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cross sections 2 can be written as
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In the above equation, ,* is the *-th experimental value of the cross sec-
tion and the sum runs over the +7 kinematics and nuclei included in the 
training dataset. We augment the experimental errors 8* listed in [13]
including an additional term proportional to the experimental cross sec-
tion value: 8* → 8* + 0.05,*. The primary reason behind this choice is 
that experimental errors are in general small and most experiments re-
port an additional few-percent systematic uncertainty.

All of our numerical simulations are performed using the JAX 
Python library [20]. The posterior distribution is sampled leveraging 
the NumPyro No-U-Turn Sampler extension of Hamiltonian Monte Carlo 
(HMC) [46,17]. Additionally, we implemented the standard HMC algo-
rithm as outlined in Ref. [32] and found results that are consistent with 
those obtained using the NumPyro package. Specifically, in the HMC 
sampling, we used six chains, each with 3,000 samples during the warm-
up phase, followed by 1,000 samples for the final results (6,000 samples 
in total). Each chain corresponds to a distinct random seed used to ini-
tialize the network parameters. To ensure stability and convergence, we 
also performed calculations with ten independent chains, extending the 
warm-up phase to 6,000 samples, followed again by 1,000 samples for 
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port an additional few-percent systematic uncertainty.
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Fig. 5. Electromagnetic responses on 16O for ! = 400 MeV/c.

commodate electromagnetic longitudinal and transverse transition op-
erators.

The ANN results for 40Ca, shown in Fig. 6, differ from the experi-
mental data obtained from Rosenbluth separation, especially for "# . It 
is interesting to note that the ANN uncertainties increase significantly 
in the high energy transfer region. This behavior, in contrast to what 
is observed in lighter nuclei, reflects the fact that there is little high 
energy-momentum transfer data available for 40Ca. Consequently, the 
ANN performs an extrapolation based on data available for other nuclei 
at high energies. The Bayesian training is fundamental in this regard, as 
it allows us to estimate the uncertainties associated with this extrapola-
tion. The LIT-CC calculations for the longitudinal response are very close 
with both Rosenbluth-separation data and ANN predictions. In the trans-
verse channel, it appears that including only the one-body current op-
erator suffices to reproduce the Rosenbluth-separation data adequately, 
which is in contrast with what has been observed for 4He (and with the 
GFMC findings). However, it is noteworthy that the ANN predictions ex-
hibit a 10 − 15% enhancement compared to the experimental points. In 
this regard, we note that principally two experiments [59,42] measured 
electron scattering on 40Ca and performed the Rosenbluth separation 
(there is one additional dataset [58]). As discussed in detail in the Sup-
plemental Material, the results reported by these two analysis disagree 
substantially.

4. Conclusions

In this work, we performed the first extraction of electromagnetic 
longitudinal and transverse response functions using machine learn-
ing techniques for symmetric nuclei across a broad range of masses, 
$ = 4 − 40. A critical difference between our work and earlier stud-
ies [1,36], which employed ANNs to directly model the (%, %′) inclusive 
scattering cross-sections, is that our ANN architecture outputs the lon-
gitudinal and transverse responses. These responses are then combined 
with the appropriate kinematic factors, which do not have to be learned, 
to obtain the inclusive (%, %′) cross section for a given incoming energy, 
scattering angle, and energy transfer. This procedure enables us to pro-
vide accurate predictions for (%, %′) inclusive cross sections on different 
nuclear targets, as well as to extract the longitudinal and transverse elec-
tromagnetic responses for various kinematics.

Our approach leverages Bayesian statistics to rigorously quantify the 
uncertainties in the ANN predictions. Specifically, we employ Hamilto-
nian Monte Carlo techniques to sample the posterior distribution of the 
ANN parameters, yielding a set of ANNs that are consistent with (%, %′)
inclusive cross sections and fully account for the associated experimen-
tal errors. This Bayesian protocol also addresses epistemic uncertainties, 
automatically resulting in larger errors when extrapolating.

Fig. 6. Electromagnetic responses on 40Ca for ! = 380 MeV/c. Our prediction 
compared with theoretical calculations [53]. Data taken from [34].

We obtained highly accurate results for 4He and 12C inclusive cross 
sections, benefiting from the availability of extensive training datasets. 
The algorithm successfully reproduces the test datasets for these cross 
sections across a wide range of energies, encompassing various reaction 
mechanisms and degrees of freedom. The ANN also reproduces well the 
test datasets for the other nuclei we considered: 6Li, 16O, and 40Ca. How-
ever, the theoretical uncertainties are larger due to the fact that there 
are fewer experimental data available for these nuclei compared to 4He 
and 12C.

As a second step, we utilized the entire (%, %′) inclusive cross sec-
tion dataset to perform the first ANN-based extraction of longitudinal 
and transverse electromagnetic response functions. The ANNs are, in 
general, in good agreement with previous Rosenbluth separation analy-
ses found in the literature [34,22]. The availability of longitudinal and 
transverse responses enables us to make a direct comparison with the 
GFMC and LIT-CC ab-initio quantum many-body methods. We find that 
both the GFMC and LIT-CC reproduce the ANN responses well, in both 
the longitudinal and transverse channels. Notably, our ANN analysis of 
40Ca suggests a potential underestimation of the "# strength in pre-
vious Rosenbluth-separation extractions, confirming a tension between 
the Saclay [42] and Bates [59] data for 40Ca, and will likely resolve 
the tension with LIT-CC calculations. New experimental measurements 
would be extremely valuable to resolve this tension.

The approach presented in this work allows us to predict electro-
magnetic responses in scenarios where traditional methods fail due to 
the lack of data. A chief example is 16O, where no traditional Rosen-
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Fig. 5. Electromagnetic responses on 16O for ! = 400 MeV/c.
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sections, benefiting from the availability of extensive training datasets. 
The algorithm successfully reproduces the test datasets for these cross 
sections across a wide range of energies, encompassing various reaction 
mechanisms and degrees of freedom. The ANN also reproduces well the 
test datasets for the other nuclei we considered: 6Li, 16O, and 40Ca. How-
ever, the theoretical uncertainties are larger due to the fact that there 
are fewer experimental data available for these nuclei compared to 4He 
and 12C.

As a second step, we utilized the entire (%, %′) inclusive cross sec-
tion dataset to perform the first ANN-based extraction of longitudinal 
and transverse electromagnetic response functions. The ANNs are, in 
general, in good agreement with previous Rosenbluth separation analy-
ses found in the literature [34,22]. The availability of longitudinal and 
transverse responses enables us to make a direct comparison with the 
GFMC and LIT-CC ab-initio quantum many-body methods. We find that 
both the GFMC and LIT-CC reproduce the ANN responses well, in both 
the longitudinal and transverse channels. Notably, our ANN analysis of 
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