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INTRODUCTION
▪ Ab initio description of nuclei

2

1. Interactions from chiral effective field theory  

2. Similarity renormalization group 

3. Many-body method: In-medium similarity renormalization group (IMSRG)

Observables

Machleidt, Entem, Phys. Rep. 503 (2011) 
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INTRODUCTION
▪ Ab initio description of nuclei

2

1. Interactions from chiral effective field theory  

2. Similarity renormalization group 

3. Many-body method: In-medium similarity renormalization group (IMSRG)

Observables

▪ All steps induce uncertainties 

▪ Focus on EFT uncertainties

Machleidt, Entem, Phys. Rep. 503 (2011) 
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MOTIVATION
▪ Many successful applications with 1.8/2.0 (EM) interaction   

▪ Uncertainty quantification (UQ) for this interaction challenging

3

Hebeler et al., PRC 83 (2011) 
Stroberg et al., PRL 126 (2021) 
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NUCLEAR FORCES FROM 
CHIRAL EFT
▪ Chiral EFT provides systematic expansion 

▪ Fit to experiment (uncertainties reside in LECs) 

▪ Uncertainties from missing higher-order 
contributions 

▪ Including truncation uncertainties when fitting to 
avoid overfitting 

▪ Truncation uncertainties also reside in 
parametric uncertainty

4
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LINEAR OPERATOR STRUCTURE
▪ Chiral EFT potentials have linear operator structure: 

▪ EC emulators largely benefit from such a structure 

▪ Similarity-renormalization-group evolution of potentials destroys linear operator structure (non-
linear mixing of terms) 

▪ Want to numerically restore such a structure

5´

V(ci) ∼
N

∑
i=1

ciOi
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SINGULAR VALUE DECOMPOSITION
▪ SVD to recover linear operator structure destroyed by SRG

6

VNN = LΣR† =
N

∑
i=1

si |Li⟩⟨Ri |
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Tichai et al., PLB 821 (2021) 

VNN ≈ s1O1 + s2O2 + s3O3 + s4O4 + s5O5
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SINGULAR VALUE DECOMPOSITION
▪ SVD to recover linear operator structure destroyed by SRG

6

▪ Singular values are the new “LECs”    V(s1, s2, s3)

VNN = LΣR† =
N

∑
i=1

si |Li⟩⟨Ri |

Δδrel =
δ − δref

δref

Tichai et al., PLB 821 (2021) 
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TRUNCATION UNCERTAINTIES
▪ Power series expansion for observables from chiral EFT expansion 

▪ Each term corresponds to a different chiral order

7

δyk(x) = yref(x)
∞

∑
n=k+1

cn(x)( Q(x)
Λb )

n

yk(x) = yref(x)
k

∑
n=0

cn(x)( Q(x)
Λb )

n

EKM: δyk(x) ∼ yref(x)max{cn(x)}( Q(x)
Λb )

k+1

▪ Conservative estimate of  contribution 
to an observable 

▪ We assume the EKM uncertainty to be 
Gaussian

k + 1
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TRUNCATION UNCERTAINTIES

8

▪ Phase shifts to constrain NN interactions

▪ Triton observables to constrain 3N interactions

▪ Bayes’ theorem to propagate uncertainties in 
observables to parameter distributions
pr(α |𝒟) = ℒ(α)pr(α)

PPD = {y(α) : α ∼ pr(α |𝒟)}
▪ Posterior predictive distributions for any nuclear structure observable

Distribution of Hamiltonians H(α)

Data:
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TRUNCATION UNCERTAINTIES

8

▪ Phase shifts to constrain NN interactions

▪ Triton observables to constrain 3N interactions

▪ Bayes’ theorem to propagate uncertainties in 
observables to parameter distributions
pr(α |𝒟) = ℒ(α)pr(α)

Goal: 
Construct likelihood  that allows us to 
capture NN and 3N truncation uncertainties 
within parameter distributions 

ℒ(α)

pr(α |𝒟)

PPD = {y(α) : α ∼ pr(α |𝒟)}
▪ Posterior predictive distributions for any nuclear structure observable

Distribution of Hamiltonians H(α)

Data:
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LIKELIHOODS

▪ Use phase shifts to constrain NN interactions 

▪ Construct Gaussian likelihood 

▪ Two different likelihoods: E1, E2

9

ℒNN(α) ∼ ∏
E

𝒩 (δ(α, E) − δ(αref, E), σ2
EKM)
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Goal: Construct likelihood to capture NN and 3N uncertainties

NN
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LIKELIHOODS

▪ Use phase shifts to constrain NN interactions 

▪ Construct Gaussian likelihood 

▪ Two different likelihoods: E1, E2

9

ℒNN(α) ∼ ∏
E

𝒩 (δ(α, E) − δ(αref, E), σ2
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Goal: Construct likelihood to capture NN and 3N uncertainties

NN

Future work: correlated treatment for NN observables
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3N UNCERTAINTIES

▪ Triton binding energy  and comparative half-
life  as calibration 

E(3H)
f T1/2

10

(Σ)ij =
(yrefc̄( Q

Λb
)k+1)2

1 − ( Q
Λb

)2
δijℒ3N(cD, cE, αNN) = 𝒩(yth, Σ),

▪  and  from order-by-order triton and helium 
observables
c̄ Q /Λb

Wesolowski et al., PRC 104 (2021) 

▪ Vary only  and , not ’scD cE ci

▪ EC Emulators for efficient calculation Thanks to Takayuki Miyagi 

Wesolowski et al., PRC 104 (2021) 
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3N UNCERTAINTIES

▪ Triton binding energy  and comparative half-
life  as calibration 

E(3H)
f T1/2

10

(Σ)ij =
(yrefc̄( Q

Λb
)k+1)2

1 − ( Q
Λb

)2
δijℒ3N(cD, cE, αNN) = 𝒩(yth, Σ),

▪  and  from order-by-order triton and helium 
observables
c̄ Q /Λb

Wesolowski et al., PRC 104 (2021) 

▪ Vary only  and , not ’scD cE ci

▪ EC Emulators for efficient calculation Thanks to Takayuki Miyagi 

Wesolowski et al., PRC 104 (2021) 

ℒ(αNN, cD, cE) = ℒNN(αNN)ℒ3N(αNN, cD, cE)Full likelihood:
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BAYESIAN INFERENCE

9
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▪ Markov chain Monte Carlo sampling

pr(α |𝒟) = ℒ(α)pr(α)
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▪ Markov chain Monte Carlo sampling

pr(α |𝒟) = ℒ(α)pr(α)

PPD = {y(α) : α ∼ pr(α |𝒟)}

▪ Posterior predictive distributions for 
likelihood observables
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MODEL CHECKING

▪ Phase shift posterior 
predictive distributions 
(PPDs) reproduce input   
EKM uncertainties 

▪ Underestimated at high 
energies due to operator 
basis limitations
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MODEL CHECKING

10
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▪ Triton PPDs excellently reproduce input 
uncertainties 

▪ We can capture truncation 
uncertainties within LEC distributions
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48CA OBSERVABLES
▪ Resample from 106 to 100 representative samples 

▪ IMSRG calculations 

▪ PPDs for ground-state energy, charge radius, and neutron 
skin thickness 

▪ Distributed according to NN phase shift and triton 
observable truncation uncertainties

11
Hu et al., Nat. Phys. 18 (2022) 
Hagen et al., Nat. Phys. 12 (2016) 

3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50
Rch(48Ca) (fm) 0.13 0.14 0.15 0.16 0.17 0.18 0.19

Rskin(48Ca) (fm)

pr(Rskin(48Ca)|D)
E1

E2

non-implausible 68% CI
Hagen et al.

≠460 ≠440 ≠420 ≠400 ≠380
E(48Ca) (MeV)

Hu et al. :  δy = δyparam + δytrunc
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CORRELATED TRUNCATION 
UNCERTAINTIES

Assuming perfect correlation:  

▪ Use observable X (and its truncation uncertainty) to infer distribution of parameters 

▪ Parameter distribution should capture full truncation uncertainty of X 

▪ Propagate parameter distribution to observable Y 

Assuming no correlation:  

▪ Use observable X (and its truncation uncertainty) to infer distribution of parameters  

▪ Propagate parameter distribution to observable Y 

▪ Calculate truncation uncertainty of observable Y 

▪ Combine parametric uncertainty of X with truncation observable Y

corr(δX, δY ) = 1

corr(δX, δY ) = 0

14

δy = δyparam + δytrunc

δy = δyparam

constraining observable:               target observable: X Y
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SUMMARY AND OUTLOOK

▪ Method to construct uncertainties for low-resolution 
interactions established 

▪ Built ensemble of Hamiltonian based on MCMC 

▪ Propagated distributions to nuclear structure 
observables

12

Thanks to Takayuki Miyagi, Isak Svensson,  
Dick Furnstahl, and Christian Forssén for helpful discussions

▪ Uncertainties for different observables: excitation energies, 
separation energies, etc. 

▪ Sensitivity analysis to improve understanding of operator basis 

▪ Study correlations in truncation uncertainties of different 
systems
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SUMMARY AND OUTLOOK

▪ Method to construct uncertainties for low-resolution 
interactions established 

▪ Built ensemble of Hamiltonian based on MCMC 

▪ Propagated distributions to nuclear structure 
observables

12

Thanks to Takayuki Miyagi, Isak Svensson,  
Dick Furnstahl, and Christian Forssén for helpful discussions

Thank you for your attention!

▪ Uncertainties for different observables: excitation energies, 
separation energies, etc. 

▪ Sensitivity analysis to improve understanding of operator basis 

▪ Study correlations in truncation uncertainties of different 
systems
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OPEN QUESTIONS
▪ How much missing higher-order physics can we actually capture within LEC distributions? 

▪ What happens if we include  in the inference of LEC distributions 

▪ Do we still need an additional truncation uncertainty on top of the parametric uncertainty? 

▪ What is the relation between parametric uncertainty and truncation uncertainty? 

▪ How to learn/model the correlation between ? 

▪ ? 

▪ How does the correlation between  affect results? 

▪ (How to correlate integrated observables?)

Y

δX, δY
Corr(X, Y ) → Corr(δX, δY )

δX, δY

16
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SRG OPERATOR STRUCTURE

17

Hs = UsHU†
s = Trel + Vs

dHs

ds
= [ηs, Hs]

ηs =
dUs

ds
U†

s

ηs = [Gs, Hs]

Us = 𝒯s exp (−∫
s

0
ηs′￼ds′￼)

Vs = UsHU†
s − Trel

Vs = UsTrelU†
s + UsV1πU†

s + UsV (0)
ct U†

s … − Trel
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 PHASE-SHIFT DISTRIBUTIONS3S1

18
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▪ EKM uncertainties should be reproduced 

▪  as lower bound;  as upper bound for uncertaintiesE1 E2
15.11.2024
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IN-MEDIUM SIMILARITY 
RENORMALIZATION GROUP

▪ Decouple ground state from excitations

19

Tsukiyama, Bogner, Schwenk, PRL 106 (2011)

Goal: Efficiently extract ground-state properties from many-body Schrödinger equation

H |Ψ⟩ = E |Ψ⟩

Output: Ground-state energy  
For each set of singular values 

Egs
α̃ = (s1, s2, s3, s4, s5, …)

▪ Flow equation:

▪ Particle-hole excitations of reference state
dHs

ds
= [ηs, Hs]

Hergert et al., Phys. Rep. 621 (2016)

▪ Normal order with respect to reference state
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OXYGEN ISOTOPES

20
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COMBINING PARTIAL-WAVE 
DISTRIBUTIONS
▪ Gaussian likelihood in 6 partial waves separately:  

▪ Assume charge independence to reduce number of parameters

1S0,3 S1,1 P1,3 P0,3 P1,3 P2

21

 different parameters (singular values) in total (3 for each partial wave)6 × 3 = 18

Vnn ≈ Vnp ≈ Vpp − VC

42 parameters

ℒNN = ℒ1S0ℒ3S1ℒ1P1ℒ3P0ℒ3P1ℒ3P2▪ Combine partial wave likelihoods 

19.11.2025
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CHARGE INDEPENDENCE 
INFLUENCE

▪ SVD causes deviations 

▪ Charge independence assumption 
causes deviation

< 1 %

< 3 %
22
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