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INTRODUCTION

» Ab initio description of nuclei
1. Interactions from chiral effective field theory

2. Similarity renormalization group

3. Many-body method: In-medium similarity renormalization group (IMSRG)

- Qbservables
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» Ab initio description of nuclei
-----9

1. Interactions from chiral effective field theory

2. Similarity renormalization group

3. Many-body method: In-medium similarity renormalization group (IMSRG)

- Qbservables

= All steps induce uncertainties

= Focus on EFT uncertainties
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MOTIVATION

» Many successful applications with 1.8/2.0 (EM) interaction
» Uncertainty quantification (UQ) for this interaction challenging
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NUCLEAR FORCES FROM

2N Force 3N Force 4N Force 5N Force
CHIRAL EFT o [Ty1]
(Q/Ay)°
= Chiral EFT provides systematic expansion o X’CH‘:]
= Fit to experiment (uncertainties reside in LECs) @/ [:;H:||5’<|
» Uncertainties from missing higher-order
contributions NNLO H H H|
. . .. " (Q/A0° >< >K
» [ncluding truncation uncertainties when fitting to
avoid overfitting ‘) \4 || H }
o | XL !
= Truncation uncertainties also reside in (Q/Ay)" [ [/ [
parametric uncertainty L
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LINEAR OPERATOR STRUC'I;URE

= Chiral EFT potentials have linear operator structure: V(c) ~ Z c,0;

= EC emulators largely benefit from such a structure =1

» Similarity-renormalization-group evolution of potentials destroys linear operator structure (non-
linear mixing of terms)

= Want to numerically restore such a structure
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SINGULAR VALUE DECOMPOSITION

= SVD to recover linear operator structure destroyed by SRG

p' (fm™1)
o1 2 3 01 2 3 01 2 3 01 2 3 01 2 3
0 T T T T T T T e T T T T T T T T 0.1
SVD _f e 1'% 1 jeems
lg 2| _-_ _r_ . . __ _L_o .. _ 0 (fm)
I =35 =56.73 Ts,=318 Ts3=073 Ts, =082 [s5=022 ]
A N NP T PO SN S S NN TN R MU A RPN SR SR R SR S B 01
s 4 5
N VNN ~ 5101 + S202 -+ S303 -+ 5404 + 5505
_ T
VNn = LZR' = $; | L) (R; |
=1
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SINGULAR VALUE DECOMPOSITION

= SVD to recover linear operator structure destroyed by SRG

A5rel = ﬂ
ref
N
Van = LER" = 2 Sil L) (R |
i=1
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= Singular values are the new “LECs” V(s{, 5,, $3)
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TRUNCATION UNCERTAINTIES

» Power series expansion for observables from chiral EFT expansion
= Each term corresponds to a different chiral order

k ( n 0 n
Q(x) Q(x)
V) = Vref®) D ¢,(x) V(%) = Yref®) D, (%)
Ab Ab
n=0 n=k+1
k+1 ISO 351
| 0W) .
EKM: 6y(X) ~ yref(%) A P\\ 150
b 40 |-
20 NLO 100
_ _ _ _ ° oL~ nawo °
= Conservative estimate of k + 1 contribution O ‘ S 5
-20f """
to an observable NLO uncertainty
—40 N2LO uncertainty 0
= We assume the EKM uncertainty to be SO0 N e ol
Gaussian 0 100 200 300 0 100 200 300

E (MeV) E (MeV)
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TRUNCATION UNCERTAINTIES

Data:
= Phase shifts to constrain NN interactions

= Triton observables to constrain 3N interactions

» Bayes’ theorem to propagate uncertainties in
observables to parameter distributions

pr(a | D) = Z(a)pr(@)
- Distribution of Hamiltonians H(a)

» Posterior predictive distributions for any nuclear structure observable
PPD = {y(@) : a« ~ pr(a | )}
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TRUNCATION UNCERTAINTIES

Data:

= Phase shifts to constrain NN interactions

—p  Goal:

Construct likelihood &£ () that allows us to
capture NN and 3N truncation uncertainties

= Bayes’ theorem to propagate uncertainties in within parameter distributions pr(a | )
observables to parameter distributions

pr(a | 2) = Z()pr(a)

= Triton observables to constrain 3N interactions

- Distribution of Hamiltonians H(a)

» Posterior predictive distributions for any nuclear structure observable
PPD = {y(@) : a« ~ pr(a | )}
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Goal: Construct likelihood to capture NN and 3N uncertainties
200 ! ! ! ! : : :
S Bt | L 550 Mev)
NN Loy NSLO EKM :
= Use phase shifts to constrain NN interactions 150 | Enlikelihood grid
_ . _ ----- E, likelihood; grid !
» Construct Gaussian likelihood 125 single energy likelihood | |
. o EN | 7 |
= Two different likelihoods: K, E, e I N R GO
: o e
Zaw@) ~ [ (8@, E) = 50t E). o) T
E S0)pes e e e i ° + + ............. + + + + q
N i i i i — e, drv )
X 5 50 75 100 125 150 175 200
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Goal: Construct likelihood to capture NN and 3N uncertainties
200 ! ! ! ! : : :
S Bt | L 550 Mev)
NN Loy NSLO EKM :
= Use phase shifts to constrain NN interactions 1508 | * Enlikelihood grid
_ . _ ----- E, likelihood; grid !
» Construct Gaussian likelihood 125 single energy likelihood | |
. o EN | 7 |
= Two different likelihoods: E, E, S I R R GO S O OV B
: AT SIS e b
Zaw@) ~ [ (8@, E) = 50t E). o) T
E S0)pes e e e i ° + + ............. + + + + q
N i i i i — e, drv )
X 5 50 75 100 125 150 175 200

—P Future work: correlated treatment for NN observables



HIRSCHEGG 2026

3N UNCERTAINTIES

= Vary only ¢j and ¢, not ¢;'s

= Triton binding energy E(*H) and comparative half-

life fT,,, as calibration

= EC Emulators for efficient calculation

Z3N(Cps Cpr ANN) = N (Y D)

(%), =

-, :
(VrefC (Tb)kH)z

1= (o)

= ¢ and Q/A, from order-by-order triton and helium

observables
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3N UNCERTAINTIES

= Vary only ¢j and ¢, not ¢;'s

= Triton binding energy E(*H) and comparative half-
life fT,,, as calibration
» EC Emulators for efficient calculation

(yrefc( )k+1)2

Zin(ep, cpann) = V(Y D), (2); =

1= ()

= ¢ and Q/A, from order-by-order triton and helium
observables
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BAYESIAN INFERENCE

» Markov chain Monte Carlo sampling

pr(a | 2) = Z(@)pr(a)
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BAYESIAN INFERENCE

4127703
. _ ] 2o
= Markov chain Monte Carlo sampling  s.[&]/i] s
Sogs | R @ Jﬂk 56.77+ 048
or(@| D) = L(@)pr(e) o [olelel s
55183 Jf\k 445tg}§
P 01O 101010 1@] /| 20809
[0l 0loletefe N | 1
= Posterior predictive distributions for ., "I ﬂsfog
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3P151 o011 e1e|le1+e 616 ﬂl.GOGfgjggé
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MODEL CHECKING

NN
= Phase shift posterior

| —10F

| -5t

1 —20r

predictive distributions
(PPDs) reproduce input
EKM uncertainties

» Underestimated at high

J (deg)

energies due to operator f
: P : 0 50 100
basis limitations B, (M)
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MODEL CHECKING

¢D
+0.40
1.2870 41

_ input
uncertainty

68% CI
JT1 /2

CE
+0.13
—0.1375 13

0.1 N 1260:
S o} 7 @ 7 5: 1225
3N 05 J 1190 _
» Triton PPDs excellently reproduce input ' e .
uncertainties T NT T T T Y
CD CE

= We can capture truncation
uncertainties within LEC distributions
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48CA OBSERVABLES

Resample from 106to 100 representative samples
IMSRG calculations

PPDs for ground-state energy, charge radius, and neutron
skin thickness

Distributed according to NN phase shift and triton
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non-implausible 68% CI
Iéél Hagen et al.
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HIRSCHEGG 2026

48CA OBSERVABLES

Resample from 106to 100 representative samples
IMSRG calculations

PPDs for ground-state energy, charge radius, and neutron
skin thickness

Distributed according to NN phase shift and triton
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observable truncation uncertainties

PPD = {y(a) : @ ~ pr(a| D)}
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CORRELATED TRUNCATION
UNCERTAINTIES

constraining observable: X target observable: Y
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Assuming perfect correlation: corr(6X, 6Y) = 1 ——» 0y = 0Vparam

» Use observable X (and its truncation uncertainty) to infer distribution of parameters
» Parameter distribution should capture full truncation uncertainty of X
» Propagate parameter distribution to observable Y

Assuming no correlation: corr(6X, 8Y) = 0—— 0y = 0Vparam + OVirunc

Use observable X (and its truncation uncertainty) to infer distribution of parameters

Propagate parameter distribution to observable Y

Calculate truncation uncertainty of observable Y

Combine parametric uncertainty of X with truncation observable Y
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SUMMARY AND OUTLOOK

= Method to construct uncertainties for low-resolution
interactions established

= Built ensemble of Hamiltonian based on MCMC

» Propagated distributions to nuclear structure
observables

» Uncertainties for different observables: excitation energies, Hﬁ.‘er'“’
separation energies, etc. o

. '","'r_

» Sensitivity analysis to improve understanding of operator basis *}
= Study correlations in truncation uncertainties of different ;'"‘ SFB 1245
systems

Thanks to Takayuki Miyagi, Isak Svensson,
Dick Furnstahl, and Christian Forssén for helpful discussions

19.01.2026 Department of Physics | Institute for Nuclear Physics | Tom Plies 12
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SUMMARY AND OUTLOOK

= Method to construct uncertainties for low-resolution
interactions established Thank you for your attention!

= Built ensemble of Hamiltonian based on MCMC

» Propagated distributions to nuclear structure
observables

» Uncertainties for different observables: excitation energies, Hﬁ.‘«r'“’
separation energies, etc. o }
pr K

= Study correlations in truncation uncertainties of different ,ﬂ‘" SFB 1245
systems

r,..ri"

» Sensitivity analysis to improve understanding of operator basis

Thanks to Takayuki Miyagi, Isak Svensson,
Dick Furnstahl, and Christian Forssén for helpful discussions

19.01.2026 Department of Physics | Institute for Nuclear Physics | Tom Plies 12



HIRSCHEGG 2026 7 TECHNISCHE
UNIVERSITAT

DARMSTADT

OPEN QUESTIONS

» How much missing higher-order physics can we actually capture within LEC distributions?

= What happens if we include Y in the inference of LEC distributions
» Do we still need an additional truncation uncertainty on top of the parametric uncertainty?

= What is the relation between parametric uncertainty and truncation uncertainty?

= How to learn/model the correlation between 60X, 6Y?
« Corr(X,Y) — Corr(oX, 6Y)?
= How does the correlation between 60X, oY affect results?

= (How to correlate integrated observables?)
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SRG OPERATOR STRUCTURE

H =UHU =Ty +V, U, =9 exp <—J Ny ds’>
0
at,
ds B [}/IS, S] Vs — USH Uj _ Trel
_ dUS UT
Ts =g V, = UT Ul + UV, Ul + UVOUS... — T,

ny = Gy, H]
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331 PHASE SHIFT DISTRIBUTIONS

» EKM uncertainties should be reproduced

= I£, as lower bound; E, as upper bound for uncertainties

15.11.2024
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T (1M e 5MeV 20 MeV 1 B, ppd
i ! | R 0 Eoppd
e i —
] 1 N B A R NLO EKM
i L, i | 68% CI E; ppd
— i — — i — 63% CI Ey ppd
1 i 1 1 1 i i 1 1 i 1 i 1
147.6 148.0 148.4 118.0 1184 1188 80.80 80.95 81.10
N 50 MoV N [100MeV u 150 MeV =1 [200MeV
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IN-MEDIUM SIMILARITY

RENORMALIZATION G ROU P Tsukiyama, Bogner, Schwenk, PRL 106 (2011)

Hergert et al., Phys. Rep. 621 (2016)
Goal: Efficiently extract ground-state properties from many-body Schrodinger equation
H | \{J> - F | \P> OpOh ~ 1plh  2p2h  3p3h OpOh  1plh  2p2h  3p3h

>

OpOh
OpOh

= Normal order with respect to reference state

1plh
1plh

= Particle-hole excitations of reference state

2p2h
2p2h

= Flow equation: d_ss = [n,, H,]

3p3h
3p3h

» Decouple ground state from excitations

Output: Ground-state energy Egs (i H(0)]7) (i] H(c0) |7)
For each set of singular values @ = (sy, 55, 3, 84, S5, - . .)

Department of Physics | Institute for Nuclear Physics | Tom Plies
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OXYGEN ISOTOPES

e}
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COMBINING PARTIAL-WAVE
DISTRIBUTIONS

« Gaussian likelihood in 6 partial waves separately: 150,3 Sl,l P1,3 PO,3 P1,3 P, —> 42 parameters

» Assume charge independence to reduce number of parameters

T Yy~ - e

—> 6 X 3 = 18 different parameters (singular values) in total (3 for each partial wave)
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= Combine partial wave likelihoods LNN = L5, L35, L 10, L3, L 30, L 30,
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CHARGE INDEPENDENCE ’
INFLUENCE

Observable Configuration 210 20 8Ca
Value A Value A Value A
E (MeV) Unchanged —164.01 — —162.45 — —415.77 —
SVD —164.12 —0.11 —162.59 —0.14 —416.12 -0.35
CII —168.59 —4.58 —167.39 —4.94 —426.39 -10.62
SVD & CII —168.70 —4.69 —167.53 —5.08 —426.75 -10.98
Rsyin (fm) Unchanged 0.4764 — 0.6713 — 0.1439 —
SVD 0.4762 —0.0002 0.6709 —0.0004 0.1439 0.0000
CII 0.4730 —0.0034 0.6667 —0.0046 0.1444 0.0005
SVD & CII 0.4728 —0.0035 0.6663 —0.0050 0.1444 0.0005
R, (fm) Unchanged 2.611 — 2.765 o 3.290 —
SVD 2.611 0.000 2.764 0.000 3.290 0.000
CII 2.599 —0.012 2.753 —0.012 3.276 —0.013
SVD & CII 2.599 —0.012 2.752 —0.012 3.277 —0.013

« SVD causes < 1 % deviations

» Charge independence assumption
causes < 3 % deviation

Department of Physics | Institute for Nuclear Physics | Tom Plies 22
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CHARGE INDEPENDENCE ’
INFLUENCE

Observable Configuration 210 20 8Ca
Value A Value A Value A
E (MeV) Unchanged —164.01 — —162.45 — —415.77 —
SVD —164.12 —0.11 —162.59 —0.14 —416.12 -0.35
CII —168.59 —4.58 —167.39 —4.94 —426.39 -10.62
SVD & CII —168.70 —4.69 —167.53 —5.08 —426.75 -10.98
Rsyin (fm) Unchanged 0.4764 — 0.6713 — 0.1439 —
SVD 0.4762 —0.0002 0.6709 —0.0004 0.1439 0.0000
CII 0.4730 —0.0034 0.6667 —0.0046 0.1444 0.0005
SVD & CII 0.4728 —0.0035 0.6663 —0.0050 0.1444 0.0005
R, (fm) Unchanged 2.611 — 2.765 o 3.290 —
SVD 2.611 0.000 2.764 0.000 3.290 0.000
CII 2.599 —0.012 2.753 —0.012 3.276 —0.013
SVD & CII 2.599 —0.012 2.752 —0.012 3.277 —0.013

= SVD causes < 1 % deviations —> Easy to fix

» Charge independence assumption
causes < 3 % deviation
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CHARGE INDEPENDENCE ’
INFLUENCE

Observable Configuration 210 20 8Ca
Value A Value A Value A
E (MeV) Unchanged —164.01 — —162.45 — —415.77 —
SVD —164.12 —0.11 —162.59 —0.14 —416.12 -0.35
CII —168.59 —4.58 —167.39 —4.94 —426.39 -10.62
SVD & CII —168.70 —4.69 —167.53 —5.08 —426.75 -10.98
Rsyin (fm) Unchanged 0.4764 — 0.6713 — 0.1439 —
SVD 0.4762 —0.0002 0.6709 —0.0004 0.1439 0.0000
CII 0.4730 —0.0034 0.6667 —0.0046 0.1444 0.0005
SVD & CII 0.4728 —0.0035 0.6663 —0.0050 0.1444 0.0005
R, (fm) Unchanged 2.611 — 2.765 o 3.290 —
SVD 2.611 0.000 2.764 0.000 3.290 0.000
CII 2.599 —0.012 2.753 —0.012 3.276 —0.013
SVD & CII 2.599 —0.012 2.752 —0.012 3.277 —0.013

= SVD causes < 1 % deviations —> Easy to fix

» Charge independence assumption

Not so easy to fix
causes < 3 % deviation y
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