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The dripline in calcium isotopes
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Leo Neufcourt, et al, PRL 122 062502 (2019)

= Existing data, energy density functional and relativistic mean field calculations

suggest the dripline extends well beyond °Ca

= Ab initio computations sets the dripline closer to ®°Ca



The dripline in calcium isotopes

@ N3LOrexas, IMSRG(2)

—@— N3LOreyas, IMSRG(3f,)+Triple
O 1.8/2.0(EM), IMSRG(2)
¢ 1.8/2.0(EM), IMSRG(3f,)+Triple

00 N3LOtexas, CCSDT-3

+ NBLOTexas, J'NCSM
m— X1

Optimized a new chiral interaction
with NN at N3LO and 3NFs at N2LO
Use few - and many-body
emulators to efficiently evaluate
objective function
Observables included in the fit:

> Scattering phase shifts

> Scattering lengths and effective

range

> Deuteron properties,

> 4“He binding energy and radius

> 160 binding energy and radius

Baishan Hu et al, arXiv:2512.11723 (2025)



simulator - emulator

The dripline in calcium isotopes
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The dripline in calcium isotopes
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The dripline in calcium isotopes
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The dripline in oxygen isotopes

1.8/2.0(EM), Stroberg et al.
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Coupled-cluster computations of nuclei

= Compute Hartree-Fock reference state: Wo + W1+ Ws +%
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Inclusion of three-body forces

= The normal ordered 2-body approximation breaks rotational symmetry when normal-ordered with
respect to a broken symmetry reference state
= Perform spherical HF with fractional filling to normal-order three-nucleon force

mE o'®m > ®m 4 6 & b &

5.0 4
o 2B 1/2*
€3max = 12 H [p] 1 5/2"
-7/2
10 A sHOSD —  Exact 7 3//2 f
45 4 5/2
% sHFB 92 1y
32 5

What is the

> p .
§ ) correct spherical
= 8 o« pGOM v filling in very
a S 20 - 52, deformed nuclei?
EE 6 + p 7/2
FTIJ 2t
3.5 4 32*
Dmn 4 A xe+ A X+ 3/2*7
m X0+ 1/2
& 5/2
'Eﬂo-' 2 A X0+ - 3.0 4
A x-@—+ A H=C=F
A X0+ X-@—+ .
A A" A X-0—+ S 172 12

() AxX0+ AXO+ AXO+ AXO+ ﬁ%ﬁ A -0+

20Ne Q4Mg 30Ne 4()Mg 42Ar 48Ar

25 . 12

3/2

172 3/2°
P3/2 -
T T T T T T

T
04 -03 02 01 0 01 02 03 04 Bo

W\

Mikael Frosini et al, Eur. Phys. J. A57 (2021)



Coupled-cluster computations of deformed nuclei

Include short-range correlations via

coupled-cluster theory
— Large contribution to total energy
— Cost increases polynomial with mass

) = Q|0g) = e | )

Include long-range correlations via

symmetry projections

— Small contribution to total energy
— Relevant for rotational bands and

transition matrix elements
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The role of pairing on rotational bands

(v) Moment of inertia: extracted from level spacing in rotational bands

hz

E="J(J+1
g 1)

deviates about a factor of two from the rigid rotor values.
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have a dramatic
Influence on collective
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Clearly visible in
rotational bands, which
are less compressed
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from a rotating
deformed liquid drop
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Stretching of rotational bands

Rotational stretching: Moment of inertia increases with increasing spin

I(I+1)
» Energy levels are lower than expected from E(I) = 2C,
> Reflected in data: EFT at next-to-leading order E(]) = fd+1) — C_24[I(I + 1)]?
2C) 4C,
System C,/C;
N, 0.000 006
H, 0.0015 . " ocul
S O 0.0011 otors from molecules to .« ey
°Yb 00010 deformed nuclei exhibit What d(?es ab initio
w00t rotational stretching calculations of
Dy 00017 because (3 > 0 deformed nuclei say?
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Coello Perez & Papenbrock, Phys Rev C (2015)
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Where is the pairing gone?

A

A. Scalesi et al, unpublished (2026)

Fayans EDF
(density dependent
pairing functional)

Ab initio computations
based on chiral EFT

interactions
A. Scalesi, et al Eur. Phys. J. A 60,
209 (2024).
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Where is the pairing gone?
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Pairing puzzle for ab initio rotational bands

B(E2;2%* - 0%)(e?fm?)

1 1.8/2.0 (EM) has too small radii
[] | | » Moment of inertia too small
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Proton (Z) #

Strongly deformed nuclei around 3°Zr

Tomas R. Rodriguez, J. Luis Egido,
Phys. Lett. B 705 255 (2011)
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Strongly deformed nuclei around 39Zr

Spectrum prefers larger prolate shape
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Ab initio rotational stretching

The verdict is still out in ab initio computations?

» Projection after variation would probably not yield much rotational stretching
» GCM could perhaps remedy this
» Projection after variation at spin-dependent deformations could remedy this
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What drives deformation in nuclei?

= 50’s: surface vibrations of a liquid drop
(Bohr/Mottelson)

= 60’s: competition between pairing and NN NNN
quadrupole interactions from HFB H‘;W '(:Io t:‘e
calculations in two shells (Baranger/Kumar) LO 94¢- Csx Incivigua
;o . . LECs impact
= 70’s: isoscalar neutron-proton interactions :
: . i deformation?
dominate over isovector pairing from shell
model (Federman/Pittel, Dufour/Zuker) w;::i t J ><(11.....7
NLO
I
t: T
o
| 0
o | o
NNLO (.1 2 3 4 ‘----+---{ X---{ X
o + C1.3.4 CpD Cp

Nuclear deformation viewed at different resolution scales
Credit: Giines Ozcan/ORNL, U.S. Dept. of Energy



Global sensitivity analysis

Sensitivity analysis addresses the question ‘How much does each model parameter
contribute to the uncertainty in the prediction?’

Global methods deal with the uncertainties of the outputs due to input variations
over the whole domain.

Computational bottleneck

A global sensitivity analyses of properties of
atomic nuclei typically would require more
than one million model evaluations

Sensitivity analysis of the radius and binding energy of 160
Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)




Reduced order models for ab initio computations

Parameter domain

Latin Hypercube Sampling

Eigenvector continuation method [Frame D. et
al., Phys. Rev. Lett. 121, 032501 (2018), A. Ekstrém, G.
Hagen PRL 123, 252501 (2019), S. Konig et al Phys. Lett.

B 810 (2020) 135814]
Write the Hamiltonian in a linearized form

NLECs:17

H(a) = hg + Z o
i=1

Select “training points” (snap-shots) where
we solve the exact problem

Project a target Hamiltonian onto sub-
space of training vectors and diagonalize
the generalized eigenvalue problem

H(de) ¢ = E(de) N ¢



Emulating ab-initio coupled-cluster calculations

Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)
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Emulating ab-initio coupled-cluster calculations

Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)
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Emulating ab-initio coupled-cluster calculations

Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)
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Emulating ab-initio coupled-cluster calculations

Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)
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Emulating ab-initio coupled-cluster calculations

Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)
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Emulator

—50

—100 A

—200 A

—300 A

Linking deformation to
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Linking deformation to nuclear forces

Varying only one parameter Ch So

| ! | ! | ! | ! 21
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difference in calcium isotopes to increased pairing and reduced deformation

A. Scalesi, et al in preparation (2026)



Towards ab-initio description of Schiff moments

Nature 2013,

. . . 220,224
Computation of Schiff moment in 22°Ra relevant for EDM octupole deformed “""Ra

searches in atoms and molecules. Schiff moment is particularly
sensitive to octupole deformation
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Explicit symmetry breaking as a tool

H'(X) = Hap — ) NiQ
The coupled-cluster bi-variational energy functional:
E'(T, A, X) = (®0|(1 + A)H(X)|®o)
Finding the stationary solution implies:

OE'(T,A,X) o OE'(T, A, X)
oT - OA
Under the condition that the constraints are fulfilled:

(Qio) = (Po|(1 + A)Qi0|Po) = gio

— (0

With the solutions for T', A, X we compute the energy:

E = (Qo|(1+A)Ha|Po)  EV') =

MeV
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Constrained sub-space Coupled-Cluster
H' (A, A2, A3) = Hop — M Q1 — A2Q2 — A\3Q3

Choose a small set of training points (snapshots)

Project the Hamiltonian onto sub-space

of snapshots and diagonalize the { <(I)O ‘ (1 un Ai)e—Ti 7 6qu
generalized eigenvalue problem

Project Hgb, Qio, HQbPﬂ-PJ onto sub-space

<1>0>}

Solve the non-linear least-squares problem in the sub-space:

m/%n{; wi ((Qio(N)) — Qi0)2}-




Constrained sub-space Coupled-Cluster
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Constrained sub-space Coupled-Cluster
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Constrained sub-space Coupled-Cluster

1 15}

—110F

Energy (MeV)

0t min

0 20 40 60 80 100 120
Q30 (fm?)




Energy (MeV)

Constrained sub-space Coupled-Cluster
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Summary

Breaking and restoring symmetries
Exploits separation of scale between collective and specific UV physics

Conceptually simple & computationally affordable

Rotational bands well reproduced. Is the absence of superfluidity (which would
increase moments of inertia) compensated by the too small radii???

Much improved B(E2) values with no effective charges in 3*Ne, 3*Mg, 8°Zr
Connected deformation to microscopic forces
Constrained coupled-cluster for octupole deformed nuclei

Dripline extends to 70Ca from a new chiral interaction



