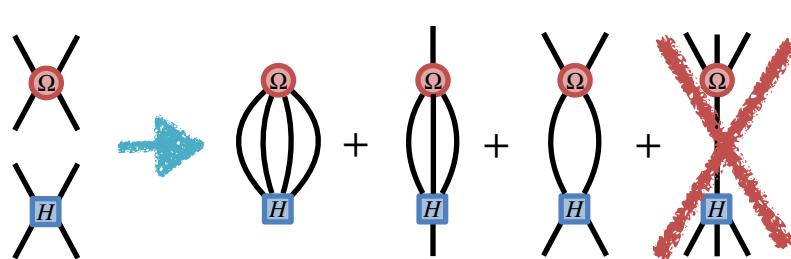
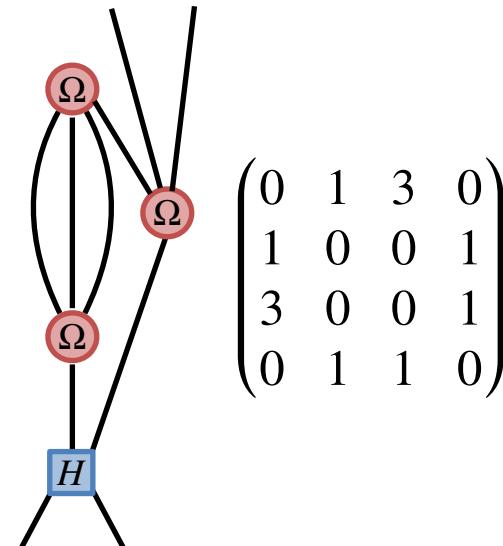


Towards an understanding of truncation errors in the IMSRG



Ragnar Stroberg

Challenges in Effective Field Theory
Descriptions of Nuclei
Hirschegg, Austria
January 18-24 2026



Work done with Bingcheng He, Andre Johnson, and Victor Vaida

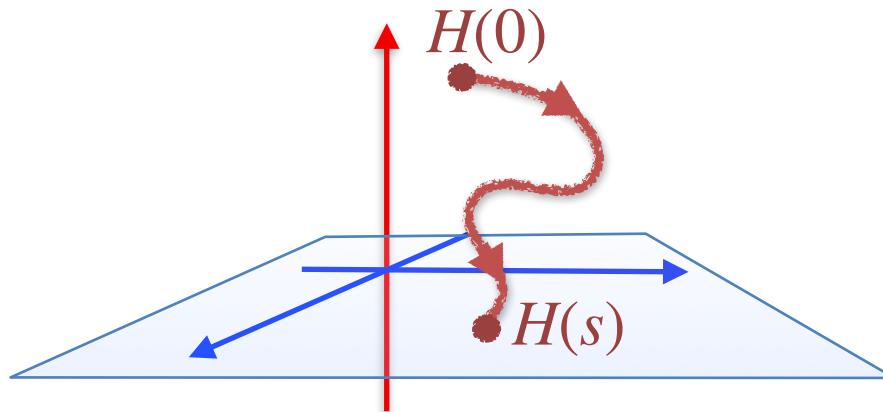
In-Medium Similarity Renormalization Group (IMSRG)

unitary
transformation

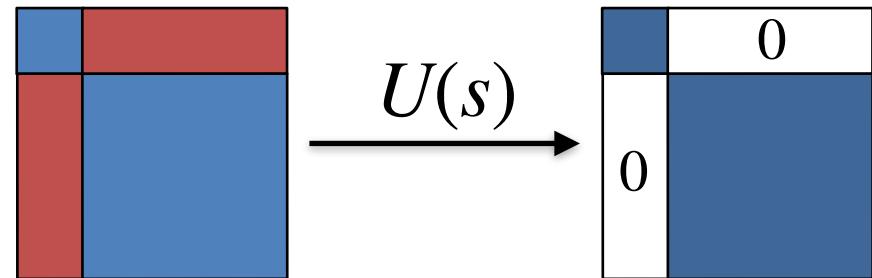
$$H(s) = U(s)H U^\dagger(s)$$

SRG flow
equation

$$\frac{dH}{ds} = [\eta(s), H(s)]$$



$$H = H^d + H^{od}$$



$$H^{od}(s) \rightarrow 0$$

How do we estimate the truncation error?

Flow

$$\frac{dH}{ds} = [\eta, H] \quad \longleftrightarrow \quad H(s) = e^{\Omega(s)} H e^{-\Omega(s)}$$

$$= H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \dots$$

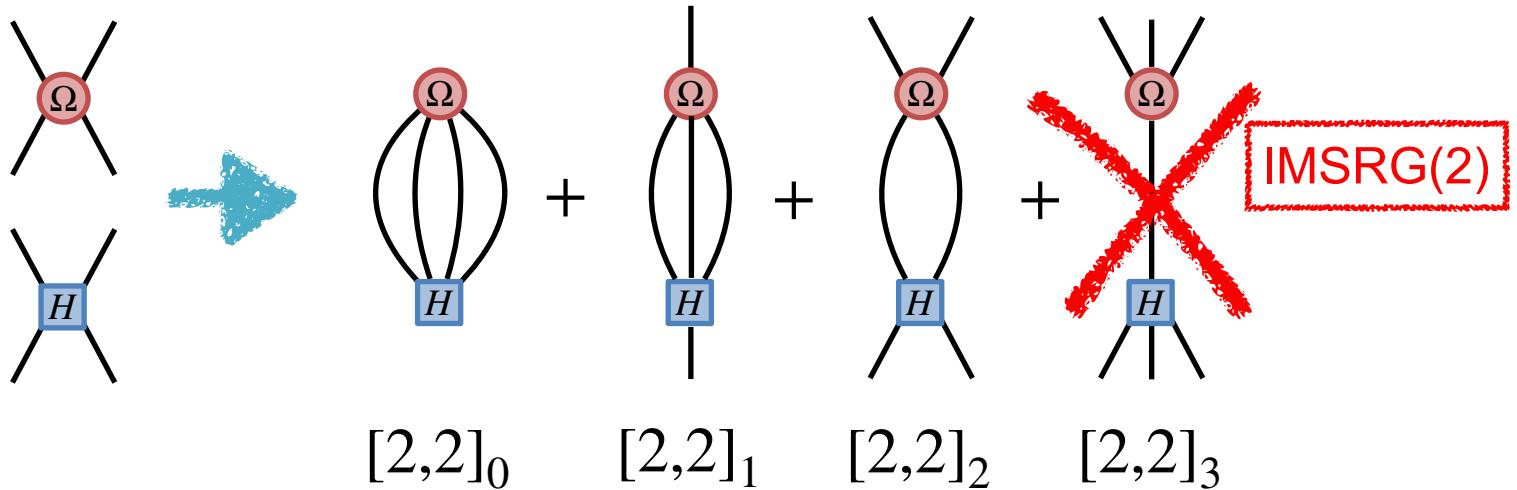
Magnus

Assume Ω is given (and only 2-body).
How accurately are we evaluating $H(s)$?

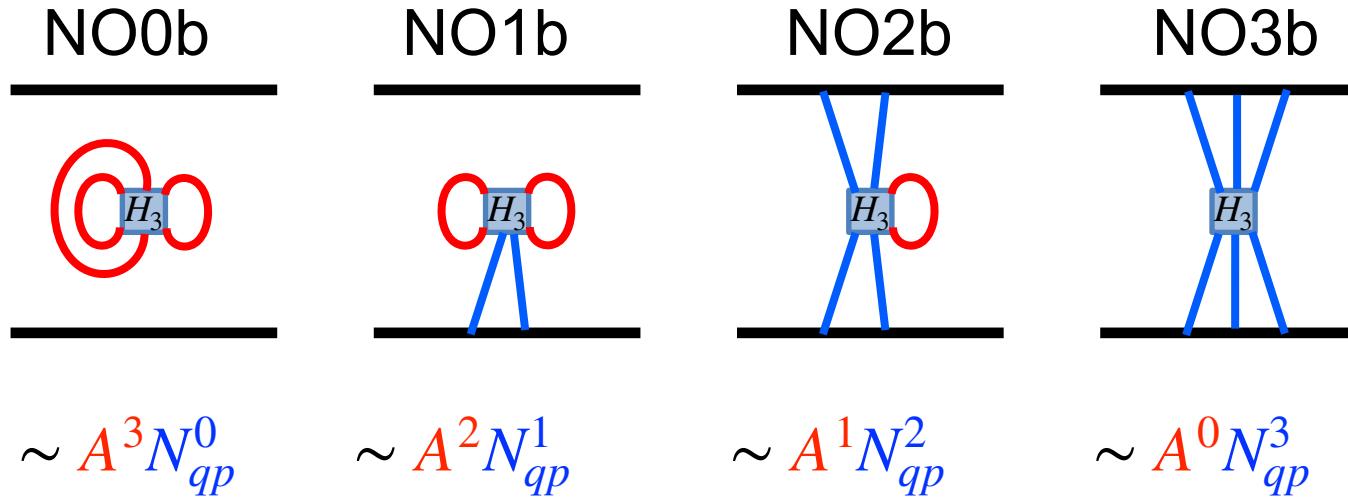
Magnus IMSRG

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)}$$

$$= H + [\Omega, H] + \frac{1}{2!} [\Omega, [\Omega, H]] + \frac{1}{3!} [\Omega, [\Omega, [\Omega, H]]] + \dots$$



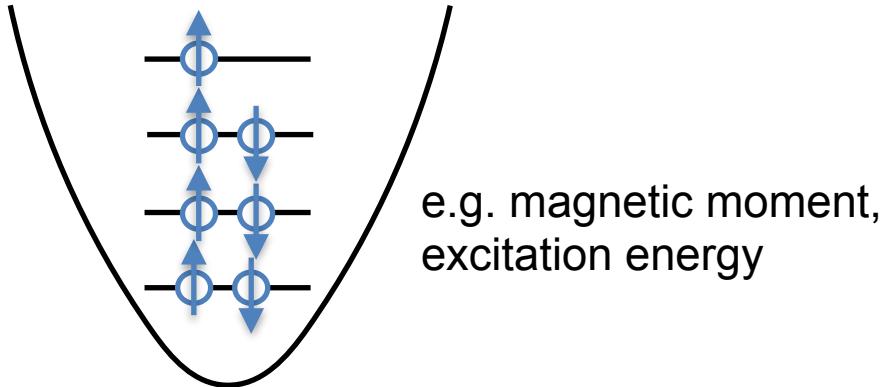
Why is it ok to throw away 3-body terms?



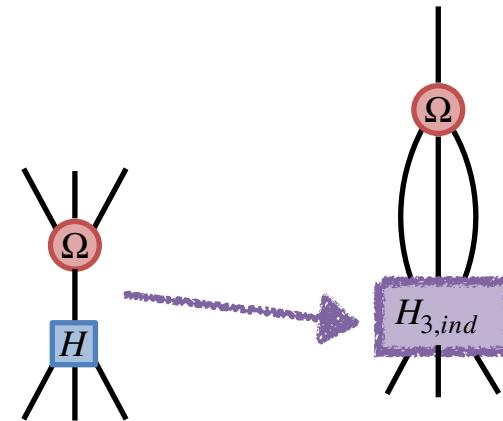
Systematic if $N_{qp} \ll A$

When doesn't that work?

1) Bulk contribution is not additive



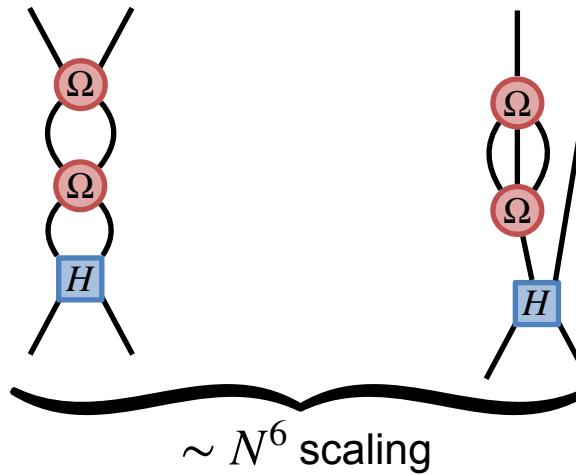
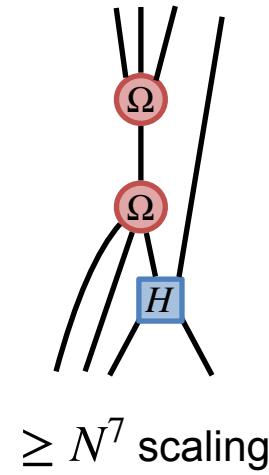
2) Flowing 3b feeds back into 0,1,2b



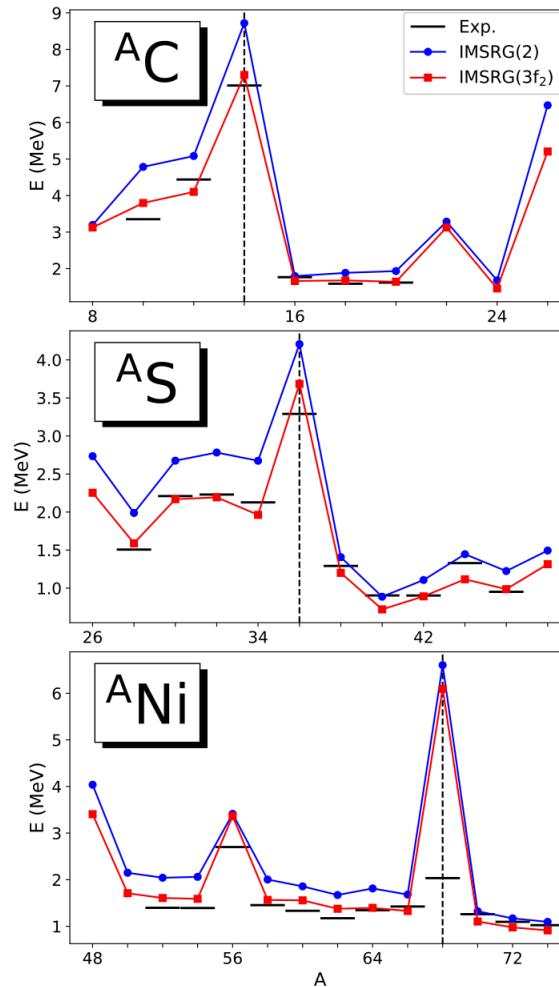
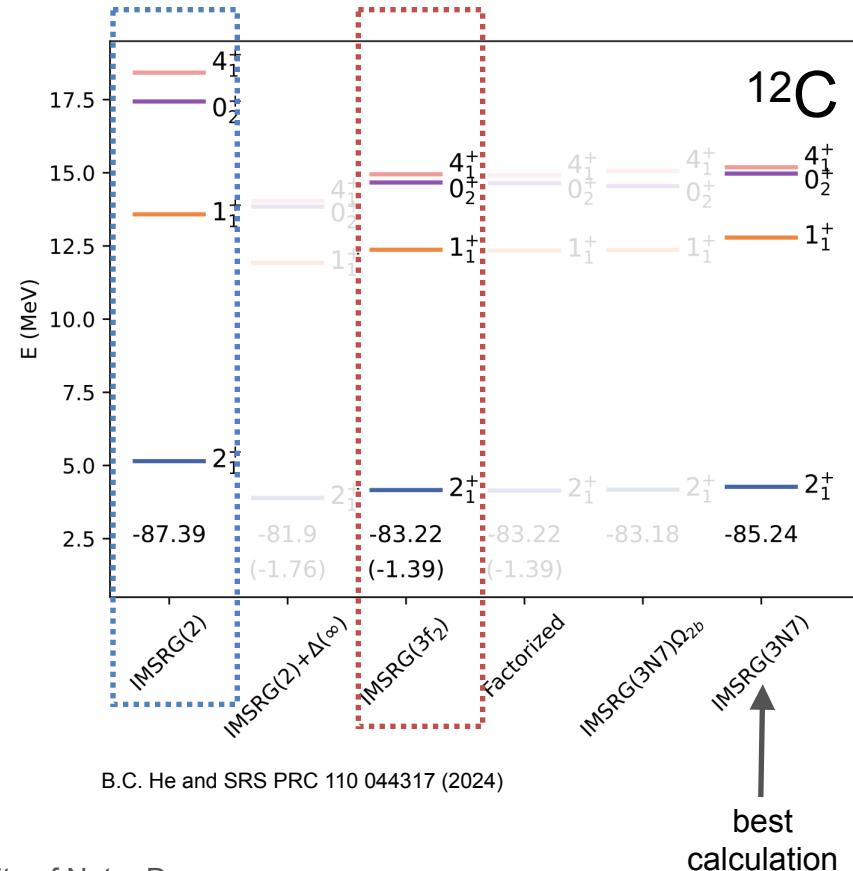
The IMSRG($3f_2$) approximation

$$[\Omega, [\Omega, H]] = \underbrace{[\Omega, [\Omega, H]_{1,2}]_{0,1,2}}_{\text{IMSRG(2)}} + \underbrace{[\Omega, [\Omega, H]_3]_{1,2}}_{\text{IMSRG}(3f_2)} + \cancel{[\Omega, [\Omega, H]_3]_{3,4}}$$

Bingcheng He

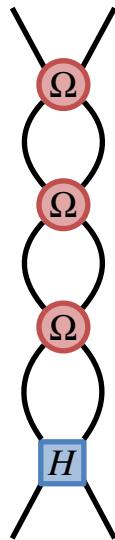


The IMSRG($3f_2$) approximation

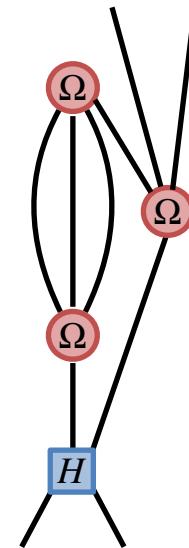


Beyond 2 nested commutators: assessing importance

$$[\Omega, [\Omega, [\Omega, H]]]$$



$$[2, [2, [2, 2]_2]_2]_2 \\ \sim N^6$$



$$[2, [2, [2, 2]_3]_4]_2 \\ \sim N^9$$

Expensive!
But is it
negligible?

(Actually, it can be factorized to $N^5 + N^5 + N^6$, but there are **hundreds** of different diagrams.)

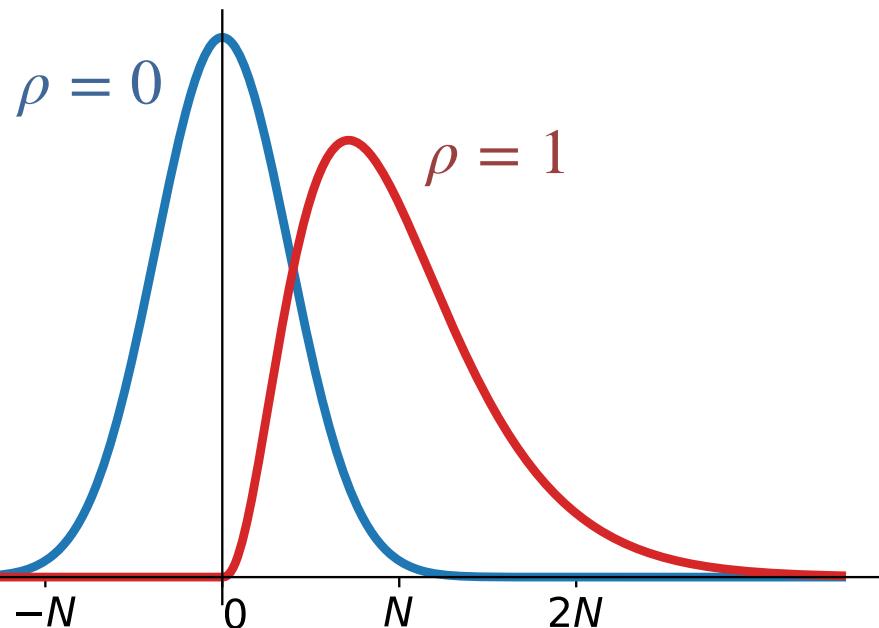
Features that may affect the importance a diagram

- Topological coherence (independent of H)
- Dynamical coherence (depends on H)
- Compatibility with form of Ω (e.g. $pphh$)
- (Approximate) symmetries like $SU(4) \Rightarrow$ loop enhancement

Coherent enhancement

x_i, y_i are Gaussian random variables with $\sigma^2 = 1$, covariance ρ

$$z = \sum_{i=1}^N x_i y_i \quad \longrightarrow \quad \langle z \rangle = \rho N$$
$$\sigma_z^2 = (1 + \rho^2)N$$



$$\langle z^2 \rangle = \langle z \rangle^2 + \sigma_z^2$$

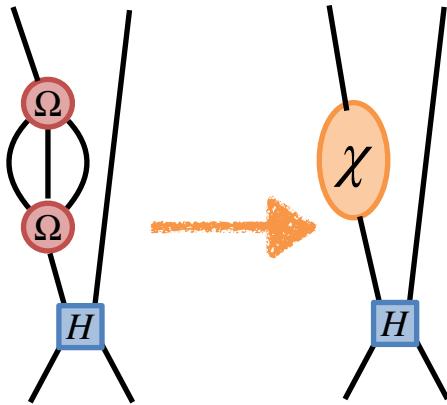
Expected size of z :

$$\langle z^2 \rangle^{1/2} = \begin{cases} \sqrt{N}, & \rho = 0 \\ \sim N, & \rho = 1 \end{cases}$$

\Rightarrow enhancement by \sqrt{N}

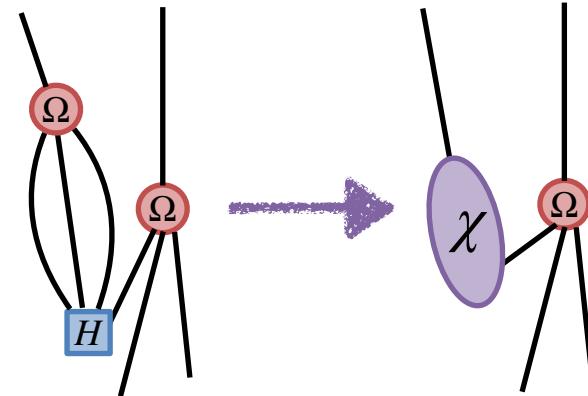
Topological coherence (plus some symmetry)

⇒ enhance triple connections



$$\chi_{ii} \sim \sum_{abc} \Omega_{iabc} \Omega_{bcia} = - \sum_{abc} |\Omega_{iabc}|^2$$

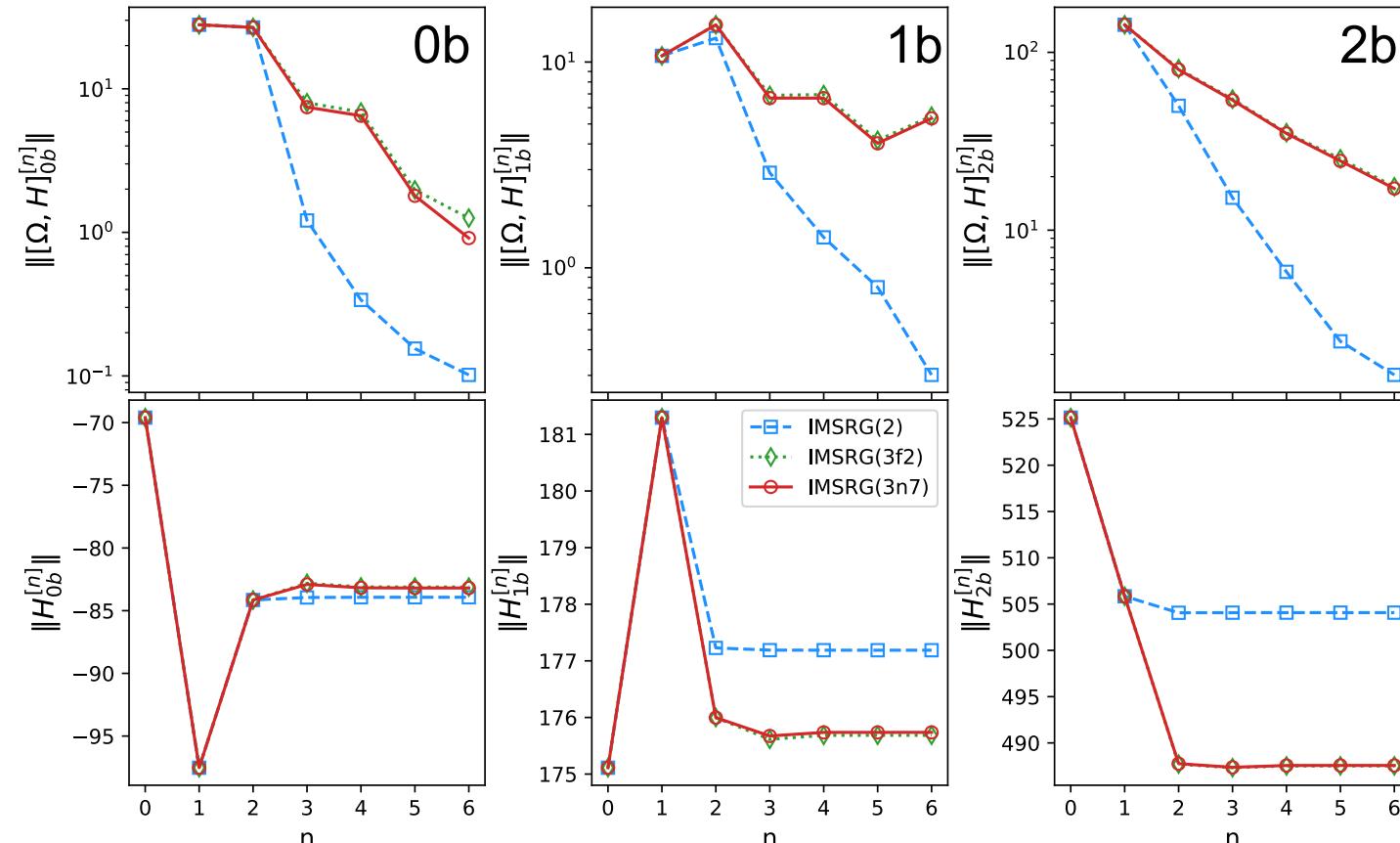
coherent $\sim \sqrt{n_{\text{sp}}^3} = n_{\text{sp}}^{3/2}$



$$\chi_{ii} \sim \sum_{abc} \Omega_{iabc} H_{bcia}$$

incoherent

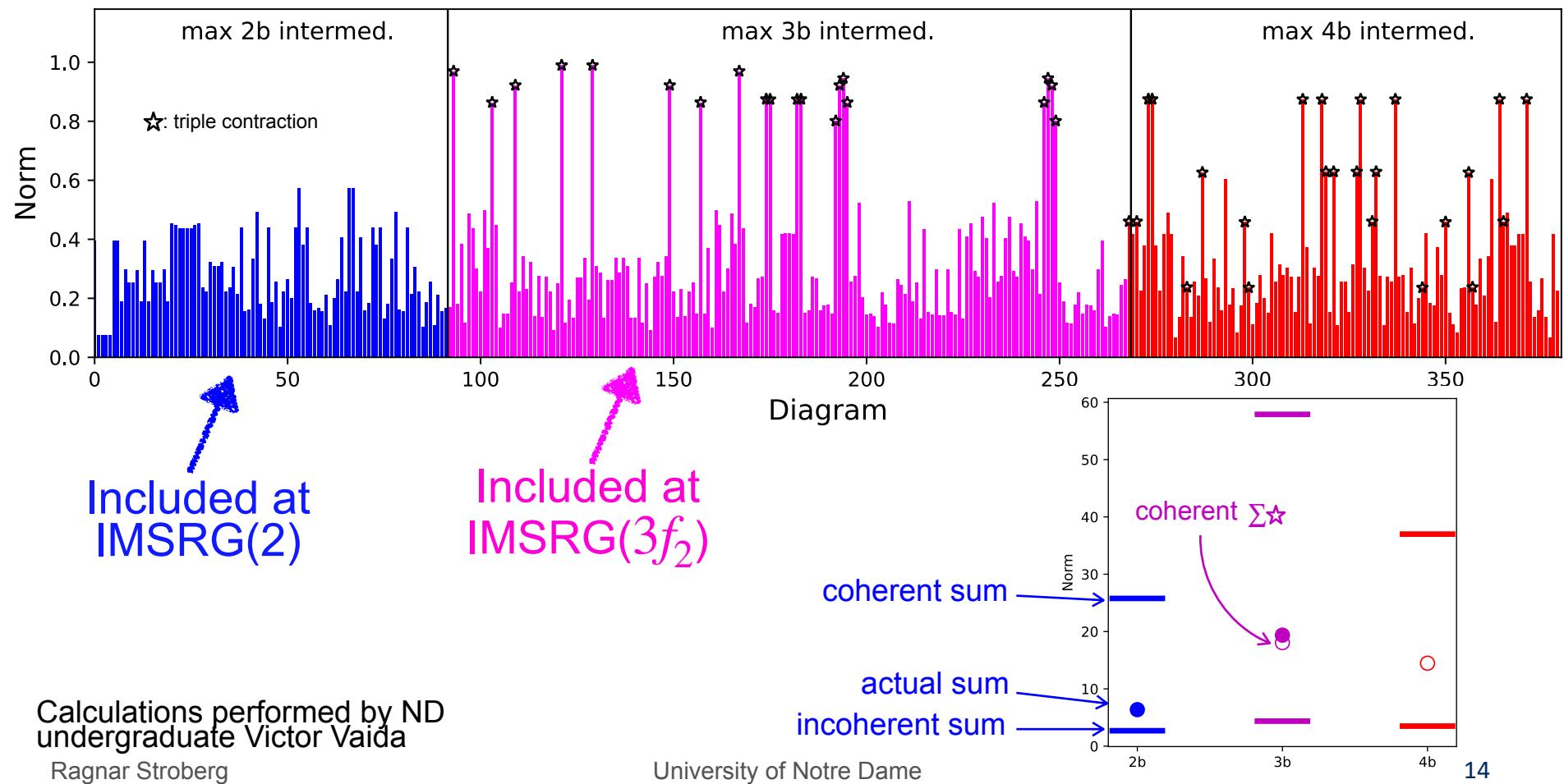
Nested commutators dominated by many-body intermediates



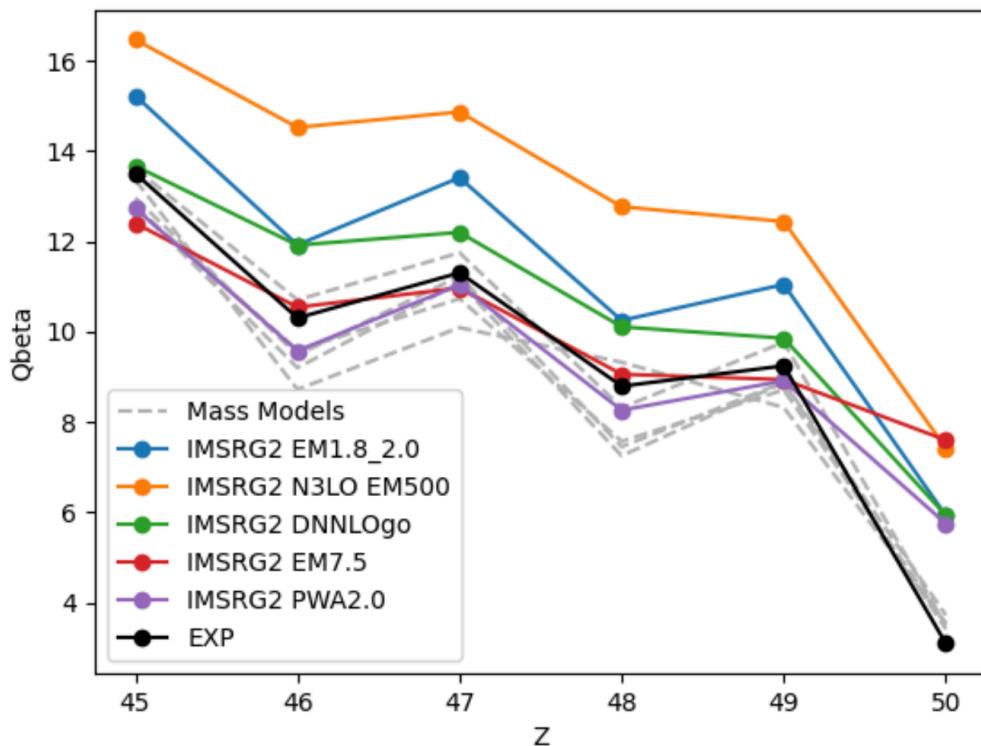
$$[\Omega, H]^{[n]} = \underbrace{[\Omega, \dots [\Omega, H]]}_{n\text{-fold nested}}$$

$$H^{[n]} = \sum_{m=0}^n \frac{1}{m!} [\Omega, H]^{[m]}$$

Contributions to $[\Omega, [\Omega, [\Omega, H]]]_{2b}$

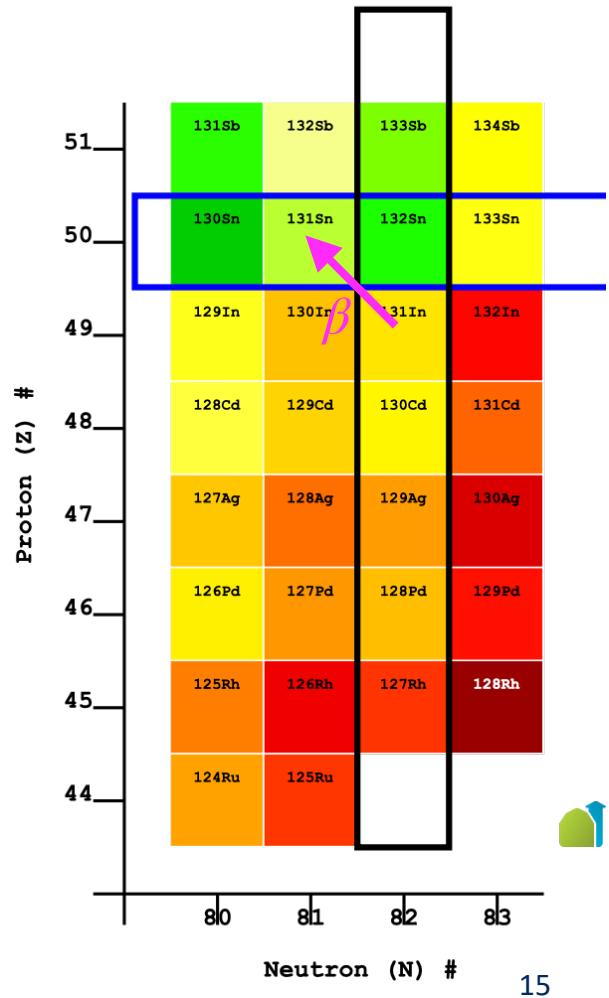


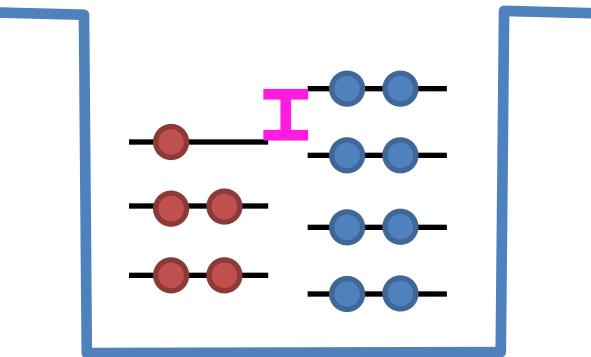
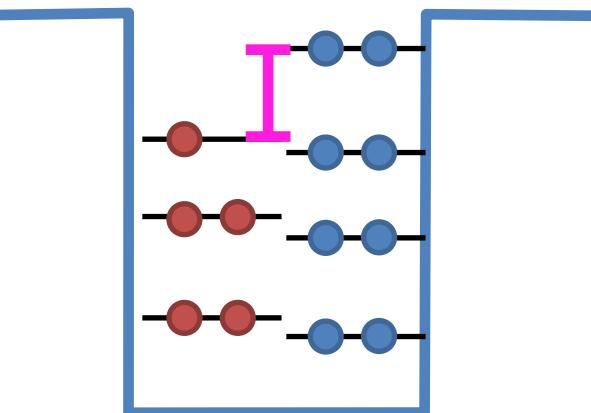
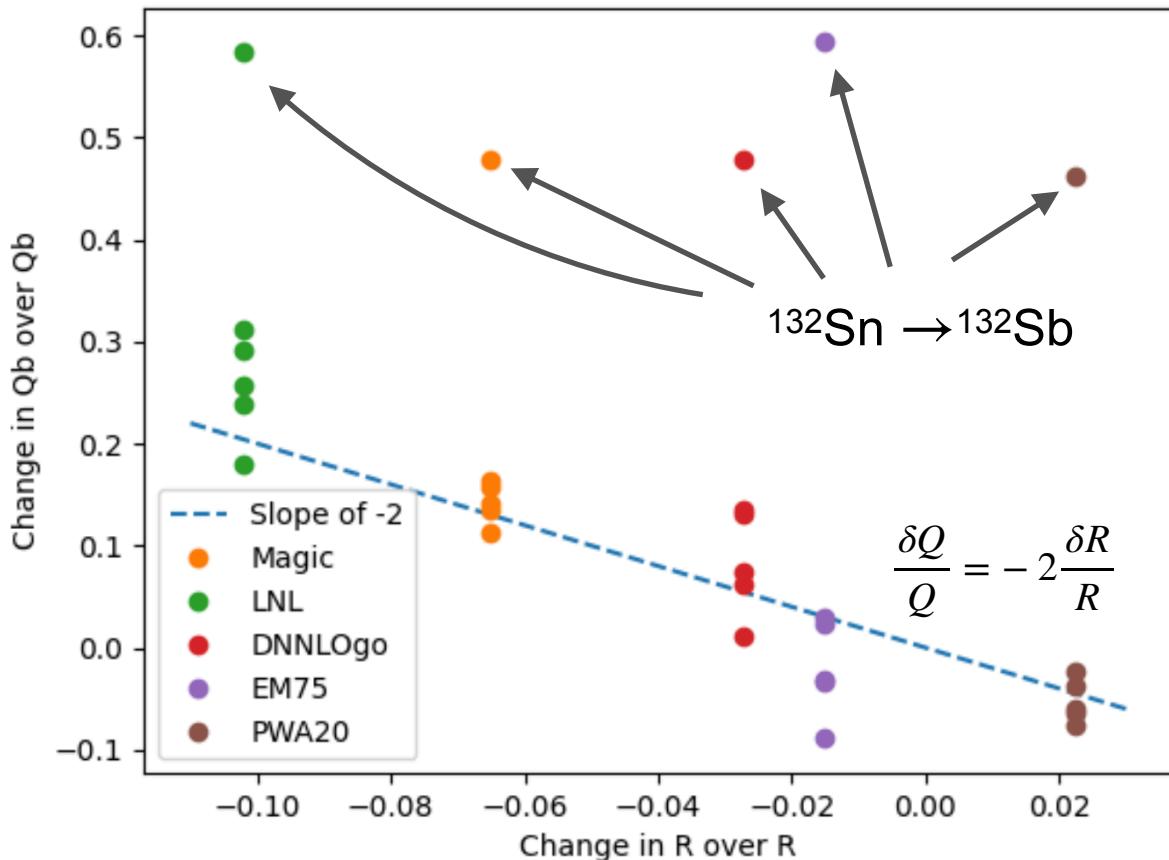
Q_β values for nucleosynthesis

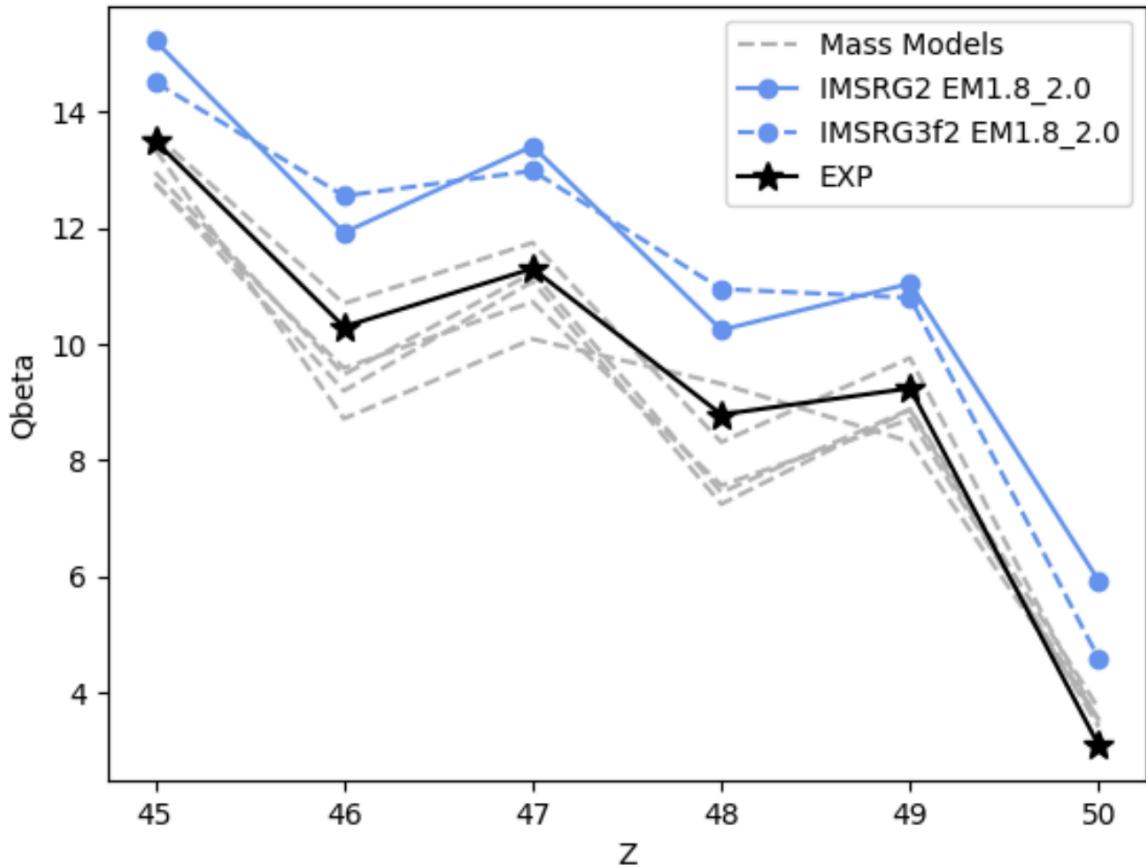


Andre Johnson

University of Notre Dame







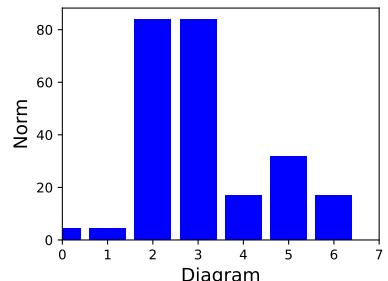
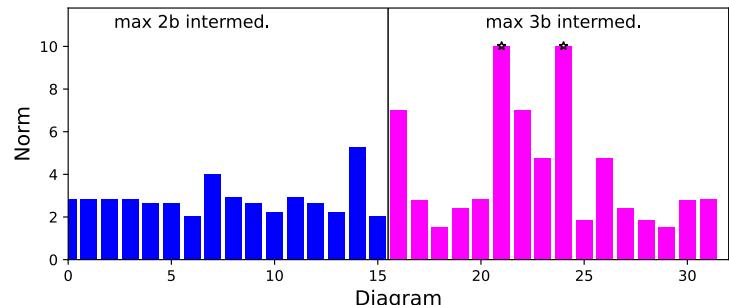
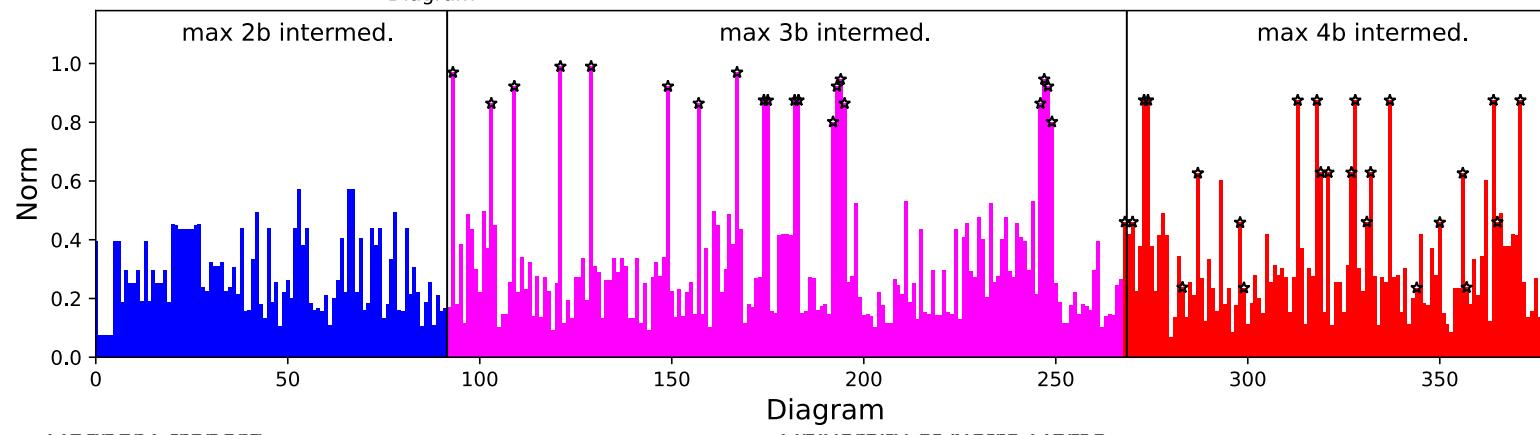
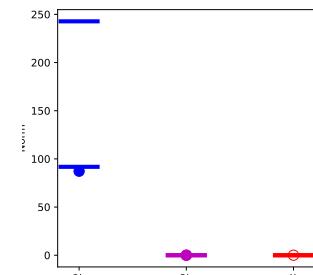
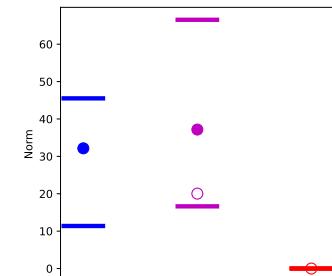
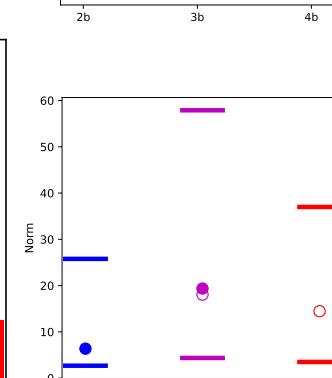
IMSRG(3f2)
correction
kills pairing?

Summary

- Truncating nested commutators does not seem to be an especially efficient approximation
- Triply-connected operators, including terms nominally part of IMSRG(4), appear to also be important at 3 nested commutators.
- Ω_{3b} can usually be treated perturbatively, once we have it. But obtaining it may require nonperturbative evaluation.
- Systematic behavior of Q_β values exhibit a strong dependence on the nuclear radius, which can be understood from a simple square well.

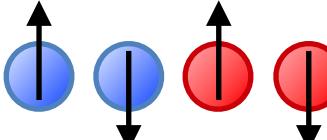
Office of
Science

Additional slides



Analogy with large N_c ?

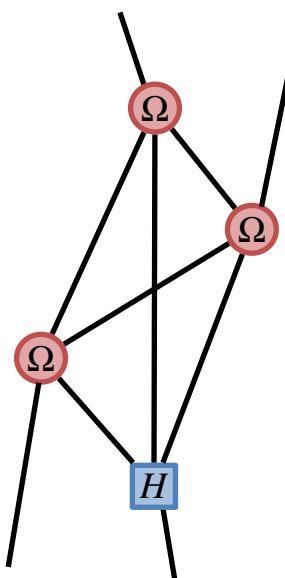
Wigner SU(4):



Four particles are shown, two blue and two red, each with a vertical spin arrow. The top blue particle has an up arrow, the bottom blue particle has a down arrow, the top red particle has an up arrow, and the bottom red particle has a down arrow.

$N_c = 4$

non-planar diagram



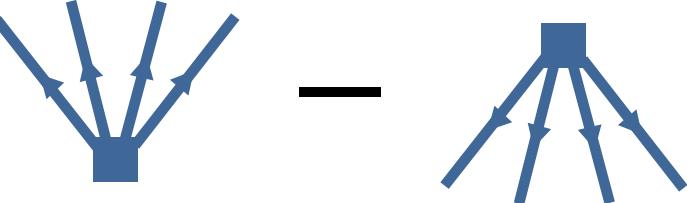
$\sim N_c$

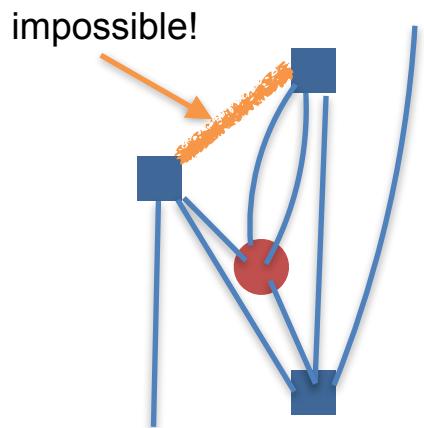
University of Notre Dame

planar diagram

$\sim N_c^2$

Compatibility with form of Ω

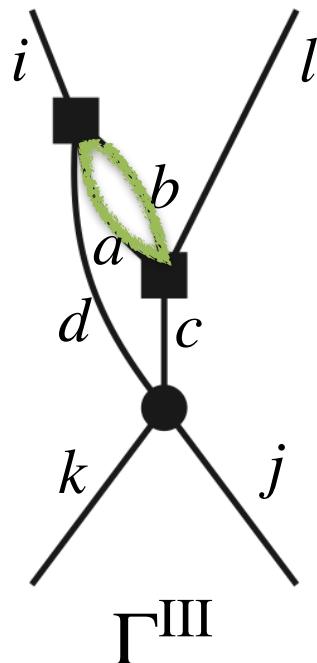
$$\Omega \sim \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad \begin{array}{c} \text{---} \\ \text{---} \end{array} \quad \text{(single reference)}$$




Beyond 2 nested commutators, need some of the Ω s to have 0 connections. For k nested commutators, need $\sim k/2$ disconnected pairs $\Rightarrow 0$ s in the adjacency matrix.

Dynamical coherence (approximate separability)

$$\Gamma_{ijkl}^{\text{III}} \sim \sum_{abcd} \Omega_{idab} \Omega_{abcl} \Gamma_{ckjd}$$

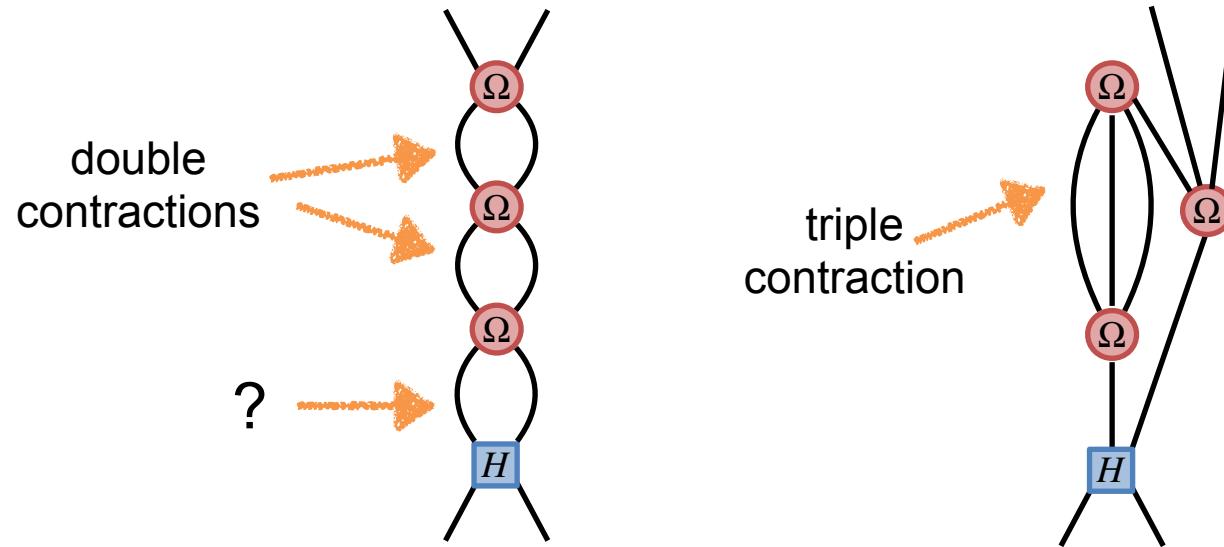


if Ω is separable, i.e. $\Omega_{abcd} = v_{ab}v_{cd}$ (or $v_{ac}v_{bd}$)

$$\Gamma_{ijkl}^{\text{III}} \sim \sum_{abcd} v_{id} v_{ab} v_{ab} v_{cl} \Gamma_{ckjd}$$

Expect an enhancement
 $\sqrt{N} \sim \sqrt{n_{\text{sp}}^2} = n_{\text{sp}}$
per double connection

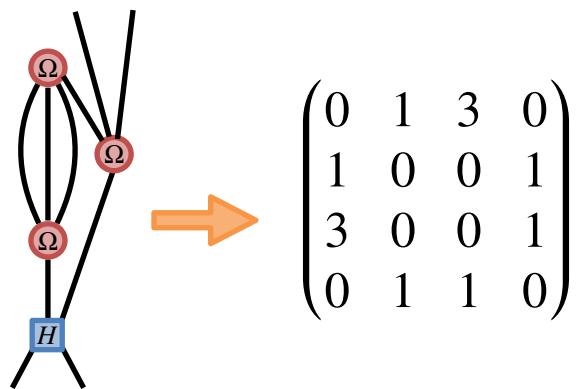
$$[\Omega, [\Omega, [\Omega, H]]]$$



(Assuming Ω is perfectly separable)

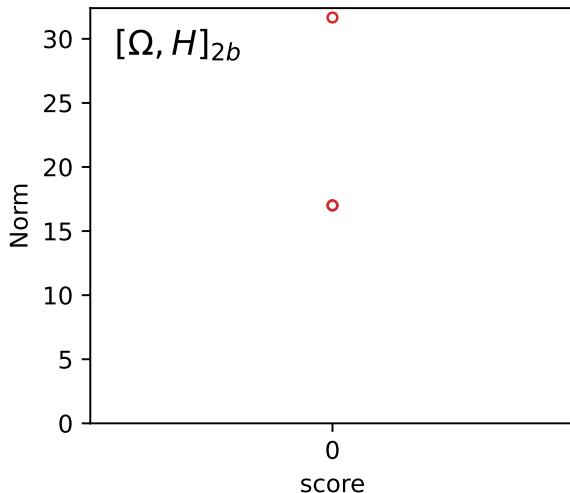
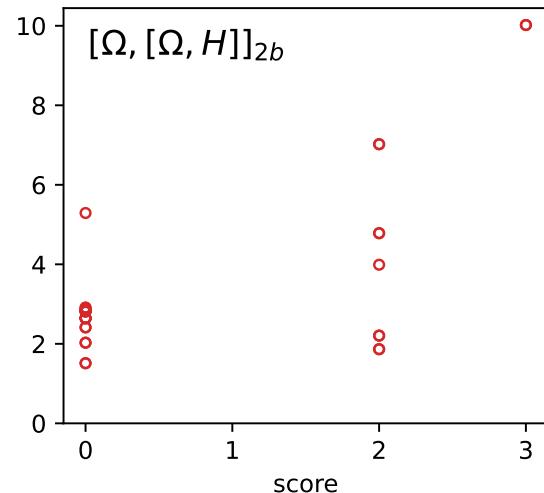
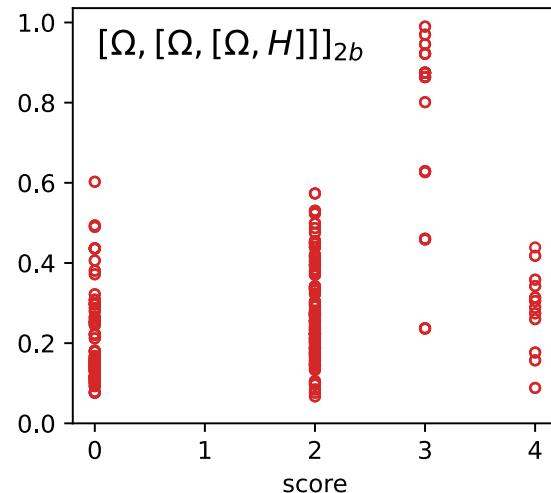
$\sim n_{\text{sp}}^2 ?$

$\sim n_{\text{sp}}^{3/2}$



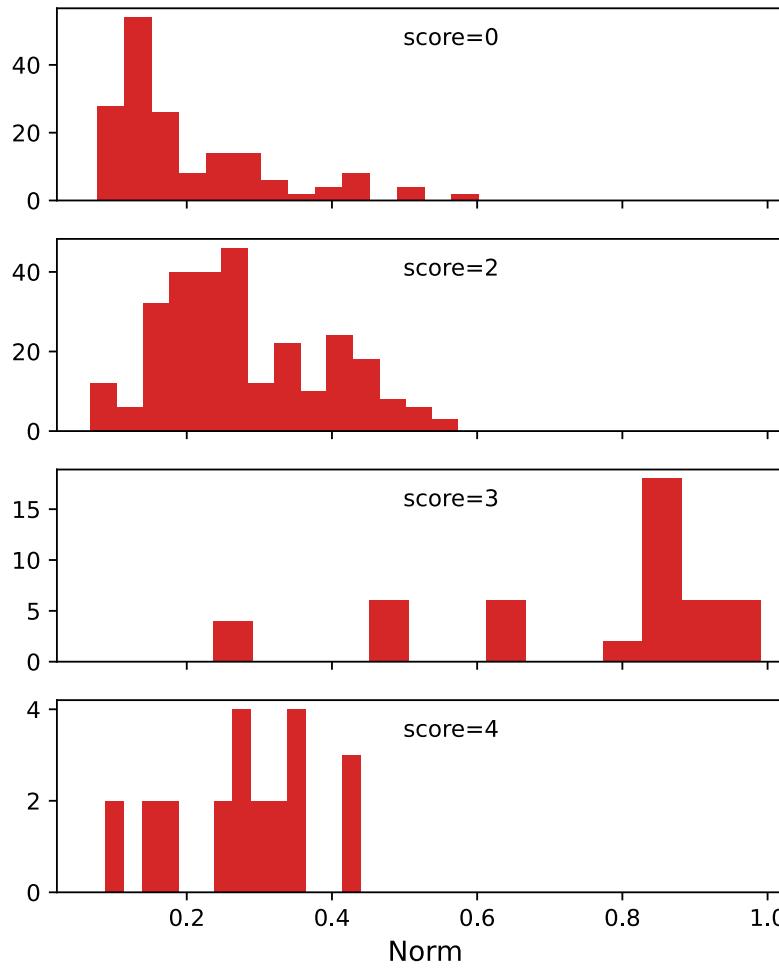
$$\text{score} = \frac{1}{2} \sum (\text{all entries} > 1)$$

Each dot represents a directed graph



$e_{max} = 3$

p-shell
decoupling



$[\Omega, [\Omega, [\Omega, H]]]_{2b}$