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Neutron skins and densities
Neutron skins 

• Connection to nuclear matter properties


• Many proposed experimental probes 

• Parity-violating electron scattering


• High-precision electron scattering


• Proton/pion scattering, etc.

Neutron densities 

• Critical component in some new physics searches


• Difficult to measure, theory predictions required
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Nuclear responses
• Nuclear response to external probe  

with momentum transfer 


• Expansion in general operator basis


• Spin-independent (coherent) responses 

• Semi-coherent responses 

• Spin-dependent (incoherent) responses


• Powerful formalism to describe


• Electroweak interactions 

• BSM physics in connection with SMEFT
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See, e.g., Fitzpatrick et al., JCAP (2013)
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A few things to keep in mind
Nuclear Hamiltonians 

• Are uncertain


• Variation in regulator, LECs, chiral order 
probes this uncertainty


Scalable many-body methods 

• Approximate, systematically improvable


• Model-space and many-body 
uncertainties MH et al., PRC (2021, 2025)


Absolute uncertainties may be large,  
but correlated  

 constrain correlations with exp. data→
4

Hagen et al., Nat. Phys. (2016)



 conversionμ → e
• Proposed BSM lepton flavor violating  

process, also in muonic atoms


• Nuclear structure contribution  
in overlap integrals 

       


• Sensitivity to neutron density


• Correlation with charge radius, prediction  
for neutron overlap integrals


• Systematic study of all uncertainties 

• Center-of-mass factorization demonstrated 
Hagen, Papenbrock, Dean, PRL (2009)

S(n) ∼ ∫ dr r2 ρn(r) s(r)
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MH et al., PLB (2025)



 to probe nuclear structureR4
ch

•  can be measured directly in high-precision electron scattering


• Proposed to be sensitive to neutron radius, skin Kurasawa et al., PTEP (2021)

R4
ch
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Miyagi, MH, Schwenk, PLB (2026)



Weak connection with Rskin

Weak correlation prevents model-independent inference of  from Rskin R4
ch 7

Miyagi, MH, Schwenk, PLB (2026)



Ab initio parity-violating electron scattering

• Computations based on DFT, RMF are routine


•  inference from  from mean-field theory is model-dependent 

• But now we can compute this using ab initio methods! 

• Ingredients:


• Charge and weak densities


•  with Coulomb corrections https://pypi.org/project/phasr/ (Frederic Noël)


• Full prediction: 

Rskin R4
ch

dσ/dΩ

APV ∼
dσ
dΩ (Vch + VW) −

dσ
dΩ (Vch − VW)
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Noël, MH, et al., in prep.

https://pypi.org/project/phasr/


Weak tension with CREX & PREX
• Sample by sample calculation of  

• Weak tension found with both expts.


• Open questions:


• Dispersive corrections?


• Impact of 2BCs?


• Expt. charge radius of ? 
Sun, Beyer, Mandrykina, Valuev, Keitel, Oreshkina, PRL (2025)


• Model dependences in analyses of 
PREX and CREX?

APV

208Pb
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Parity Violating Electron Scattering

Coulomb Corrections in APV

→ Direct comparison to experiments
relies on Coulomb corrections

→ Coulomb corrections via phasr:

APV ↑ dσ

dΩ
(Vch + Vw)↓

dσ

dΩ
(Vch ↓ Vw)

↔ requires full ρch and ρw

First correlation for PVES
based on ab-initio calculations

APV(
48Ca) = 2432(50)(62) · 10↓9 CREX: 2668(106)(40) · 10↓9

APV(
208Pb) = 579.2(1.5)(5.3) · 10↓9 PREX: 550(16)(8) · 10↓9

Remaining slight tension of ↑ 1.6σ in both cases

F. Noël (Uni Bern, ITP) µ ↔ e conversion & charge distributions 16.10.24 23 / 24

Preliminary

Preliminary

CREX

Noël, MH, et al., in prep.



Now for something  
completely different



Nuclei on a lattice
• Nuclear forces are finite-ranged


• We do not see this in a harmonic 
oscillator basis, but ...


• On a coordinate-space lattice, 
Hamiltonians are very sparse


• Interactions only in finite range 


• Volume of interactions small 
compared to total volume


• This can drastically simplify 
computations!

rint
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Lattice effective field theory
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D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)

3
Lähde, Meißner, Nuclear Lattice Effective Field Theory (2019), Springer

Lee, PPNP (2009)



Original motivation: Quantum computing

• Sparse Hamiltonian reduces 
number of 2-qubit gates


• Pionless EFT Hamiltonian 
(NN+3N)


• Simulations of 2- and 3-body 
systems


• Exact benchmarks met


• Scalability explored


• Next: Computations on quantum 
computers
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Gu, MH, Kiss, Papenbrock, arXiv:2507.14690



NuLattice
• Computations of nuclei on 

coordinate-space lattice


• https://github.com/NuLattice 


• FCI, HF, IMSRG, CC implemented


• Educational tool


• Benchmark for methods


• New insights:


• NO2B approximation for 3N forces


• Hartree-Fock is pretty good for 
short-ranged forces
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Rothman et al., PRC (2025) 
Rothman et al., EPJA (2026)

https://github.com/NuLattice


Many opportunities for progress
• Improved Hamiltonians on the way 

(thank you, Dean, Serdar!)


• Computations of exotic states


• Dynamics of nuclei


• Other opportunities? Please 
contribute!
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Conclusion

• Systematic improvement in 
understanding of nuclear densities


• Implications for BSM physics


• Ab initio analysis of neutron skin


• New lattice computations of nuclei


• Amenable to quantum computing


• New nuclear structure and dynamics 
insights
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Parity Violating Electron Scattering
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