β -delayed neutron emission probability (P_{xn}) measurement test during experiment G-22-00027

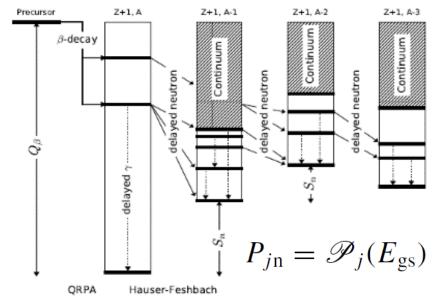
Israel Mardor^{1,2}, Timo Dickel^{3,4}

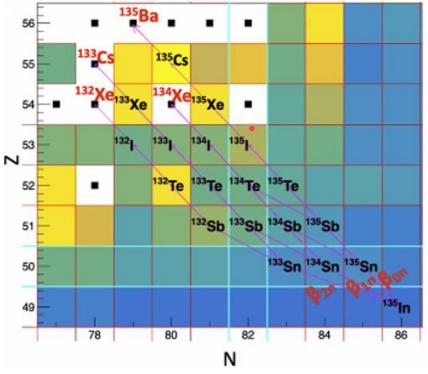
¹Soreq NRC, Yavne, Israel, ²Hebrew University of Jerusalem, Jerusalem, Israel, ³GSI, Darmstadt, Germany, ⁴Justus Liebig Universitaet, Giessen, Germany

Super-FRS Experiment Collaboration Meeting
18 September 2025

Motivation for P_{xn} measurements

• r-process nucleosynthesis¹


- Detours in β -decay chains
- More neutrons during freeze-out

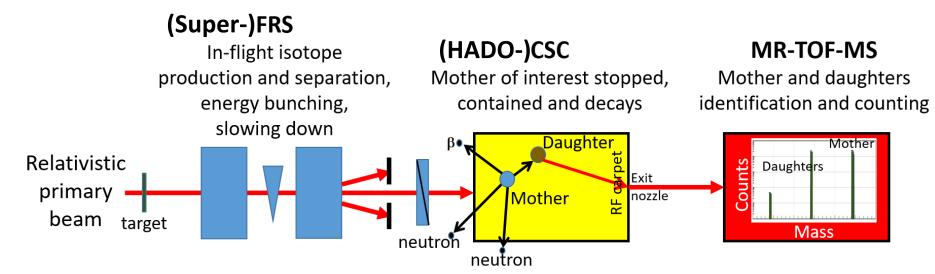

Nuclear physics models²

- Calculations of n- γ competition
- Optical models for neutron transmission in the nucleus
- Nuclear energy level schemes

• Nuclear reactor operation³

- Next generation reactors
- New fuel types
- Accelerator Driven Systems

• Worldwide βxn programs³


- Mostly using n, β , γ detectors
- Usually, no direct recoil identification

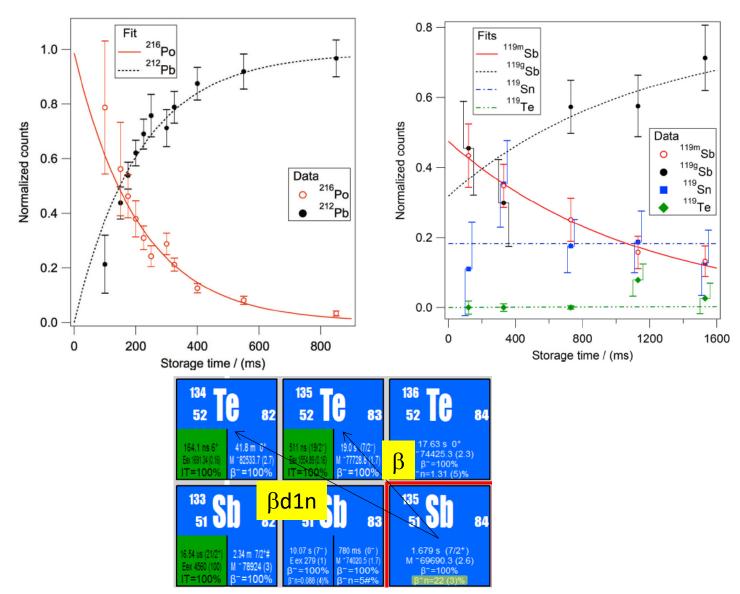
¹ R. Surman et al., JPS Conf. Proc., 010010 (2015)

² M. R. Mumpower et al., Physical Review C 94, 064317 (2016)

P_{xn} measurement at the (Super-)FRS Ion Catcher

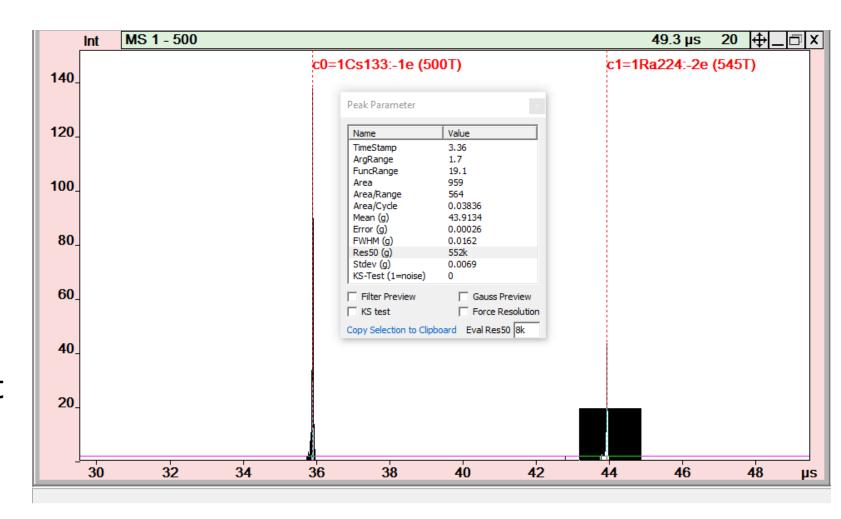
• A novel method for measuring β -delayed single- and multi-neutron emission probabilities (P_{xn}) , simultaneously with mass, $Q_{\beta xn}$, S_{xn} and $T_{1/2}$

• P_{xn} is determined by the ratios between the daughters:


$$P_{xn} = \frac{D_i(t_s)}{\sum D_i(t_s)}$$

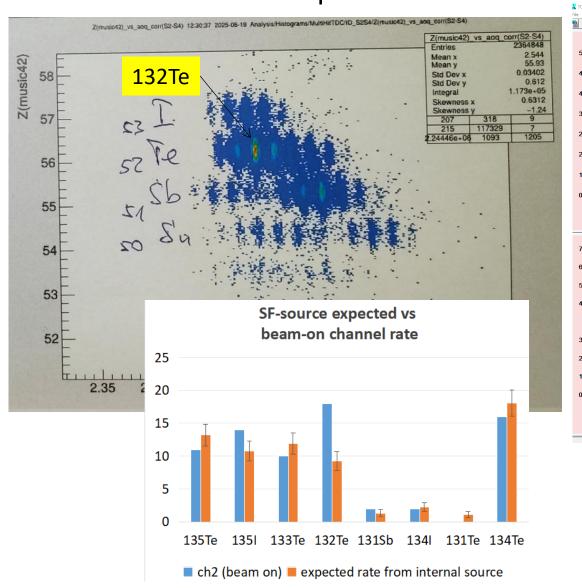
- Method is complementary to worldwide programs
- Especially suited for multi-neutron emission probabilities

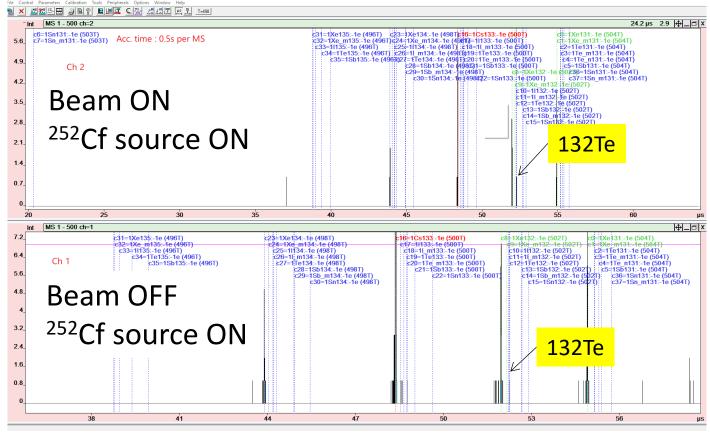
'Straight forward' analysis Isotopes of same element Hardly any corrections needed


First test of a P_{xn} measurement at the FRS-IC

- Method was demonstrated for α-decay and isomer transition*
- Towards the P_{xn} program at ES/FS, our present aim was to measure P_{1n} of ¹³⁵Sb
- Performed as part of
 experiment 0027 (n-skin of
 ¹³²Sn and ¹⁴⁴Xe) during June
 2025, for which the
 FRS-IC was used for mass
 tagging

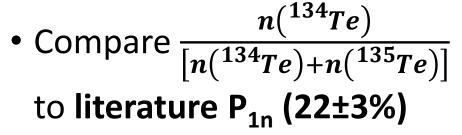
MR-TOF-MS performance towards 0027, after repair

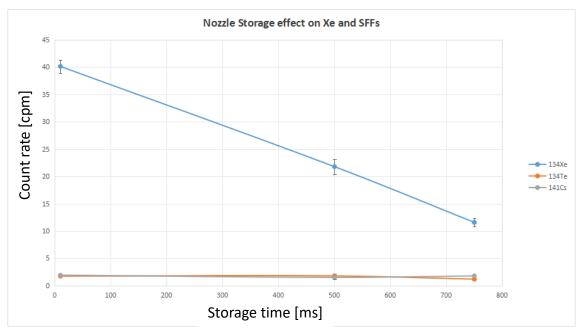

- Overnight measurements
 - ²²⁴Ra⁺⁺ from the a-recoil source in the CSC
 - ¹³³Cs⁺ from the MR-TOF-MS internal source
- Obtained expected rates with a mass resolving power (MRP) of 550,000 at 545 turns.

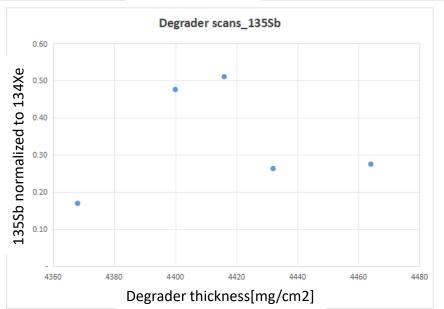


Mass tagging of ¹³²Te in FRS-IC for n-skin experiment

FRS ID plot

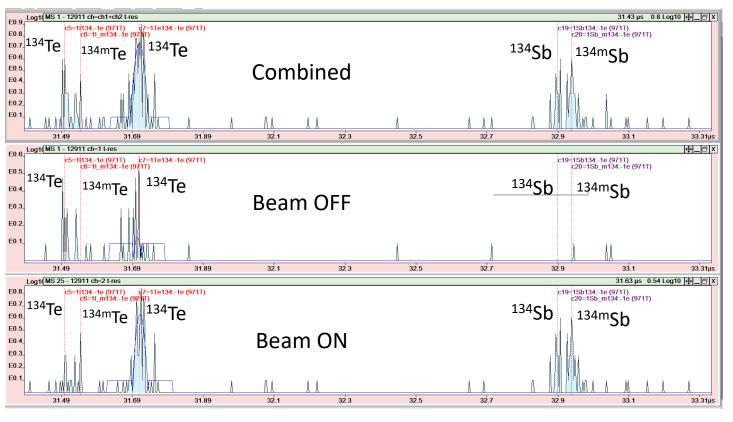


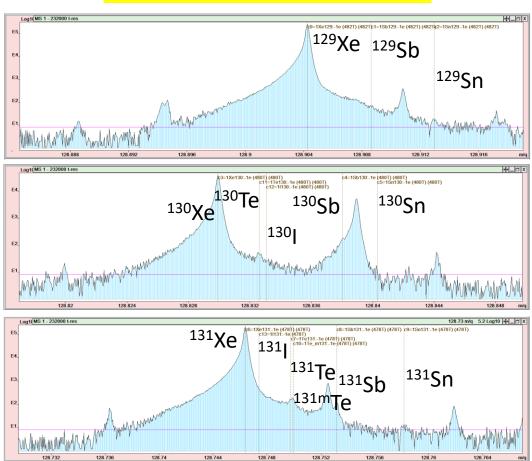



- Number of ¹³²Te counts during 'beam ON' is significantly higher than its 'beam OFF' counts.
- 132Te It has the highest sigma deviation in the whole dataset
- Indicates that FRS-IC is set for ¹³²Te detection

P_{xn} test measurement of ¹³⁵Sb

- Storage at the CSC nozzle was set up and tested successfully
- Measurements were taken with no storage and 2-seconds storage
- Aim to observe between no-storage and 2-sec storage measurements:
 - **Decrease** of precursor ¹³⁵Sb
 - Increase of β -decay recoil ¹³⁵Te
 - Increase of β -delayed neutron recoil ¹³⁴Te





Mass measurements and isomer yield ratios from beam and ²⁵²Cf SF source

¹³⁴Sb from beam (²³⁸U inflight Coulomb fission)

129-131u from ²⁵²Cf SF source

Summary

- Repaired the MR-TOF-MS and RFQ beamline, returning it to excellent performance (MRP \approx 550,000, beam line transmission \approx 10-11%)
- Performed mass tagging for experiment 0027 (¹³²Te)
- Performed a P_{1n} test experiment for 135 Sb, towards a P_{xn} campaign in ES and FS
- Measured several masses and isomer yield ratio from beam (²³⁸U inflight Coulomb fission) and spontaneous fission (²⁵²Cf SF source)
- Data analysis of all 0027 FRS-IC measurements are ongoing

Acknowledgements

Super-FRS Experiment Collaboration

FRS Ion Catcher

D. Amanbayev, O. Aviv, S. Ayet San Andrés, J. Äystö, S. Bagchi, D.L. Balabanski, S. Beck, O. Beliuskina, J. Bergmann, A. Blazhev, K. Botsiou, Z. Brencic, S. Cannarozzo, V. Charviakova, P. Constantin, D. Curien, I. Dedes, T. Dickel, F. Didierjean, G. Duchene, J. Dudek, T. Eronen, T. Fowler-Davis, M. Friedman, Z. Ge, H. Geissel, S. Glöckner, M. Górska, T. Grahn, F. Greiner, L. Gröf, M. Gupta, E. Haettner, M. Harakeh, J. Harkin, C. Hornung, W. Huang, Y. Ito, A. Jaries, A. Jokinen, N. Kalantar-Nayestanaki, A. Kankainen, D. Kar, A. Karpov, N. Keeppalli, Y. Kehat, K. Khokhar, D. Kostyleva, G. Kripkó-Koncz, D. Kumar, B. Lehnert, K. Mahajan, I. Mardor, A.A. Mehmandoost-Khajeh-Dad, N. Minkov, A. Mollaebrahimi, D. Morrissey, I. Mukha, M. Narang, Z. Patyk, H. Penttilä, A. Perry, S. Pietri, A. Pikhtelev, W.R. Plaß, I. Pohjalainen, S. Pomp, R.K.Prajapat, S. Purushothaman, M.P. Reiter, M. Reponen, H. Rösch, A. Rotaru, J. Ruotsalainen, C. Scheidenberger, P. Schury, A. Shrayer, M. Simonov, S.K. Singh, A. Solders, A. Spataru, A. State, N. Steinbrenner, Y. Tanaka, P. Thirolf, Y. Tian, N. Tortorelli, F. Uhlemann, L. Varga, M. Vencelj, V. Virtanen, M. Wada, H. Weick, L. Welde, M. Will, H. Wilsenach, M.I. Yavor, J. Yu, A. Zadvornaya, J. Zhao, K. Zuber

The results presented here are based on experiment G-22-00027, which was performed at the FRS at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the context of FAIR Phase-0

Funding: German Federal Ministry of Research, Technology and Space (05P21RGFN1, 05P24RG4), JLU Giessen and GSI (JLU-GSI strategic Helmholtz partnership agreement), Helmholtz Research Academy Hesse for FAIR (HFHF), HGS-HIRe, German Research Foundation (422761894, AY 155/2-1), DAAD (57610603), Israel Ministry of Energy (220-11-052), Israel Science Foundation (2575/21), Romanian Ministry of Research, Innovation and Digitalization (PN 23 21 01 06), Polish Minister of Science and Higher Education (5237/GSI-FAIR/ 2022/0), French-Polish collaboration COPIN (04-113 and 435 23-157), Research Council of Finland (354589), IAEA (CRP F42007, 24000), European Union's Horizon Europe Research and Innovation program (101057511 EURO-LABS, 771036 ERC CoG MAIDEN)