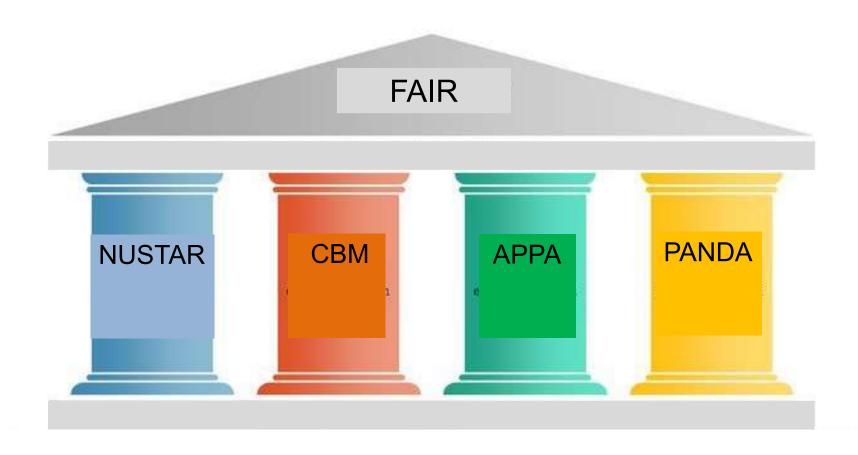


NUSTAR status Zsolt Podolyák

Super-FRS EC meeting, 17 September 2025

India


Romania

Sweden

FAIR and its pillars

NUSTAR at FAIR

(FAIR Council 9-10 July 2024)

NUSTAR week at GSI 7-9 Oct. 2024

ECE/ECSG 14 October 2024

Joint Scientific Council 22-23 October 2024

NUSTAR "first experiments" presented

(FAIR Council 3-4 December 2024)

G-PAC 18-20 February 2025

experiments for 2026-27 approved

NUSTAR Annual Meeting 24-28 Feb 2025

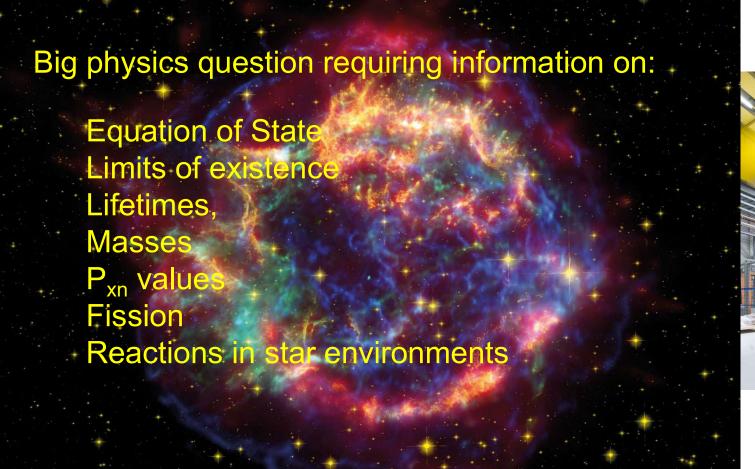
NUSTAR Council

(Project Oriented Funding, POF Evaluation April 2025)

ECE/ECSG 8-9 May 2025

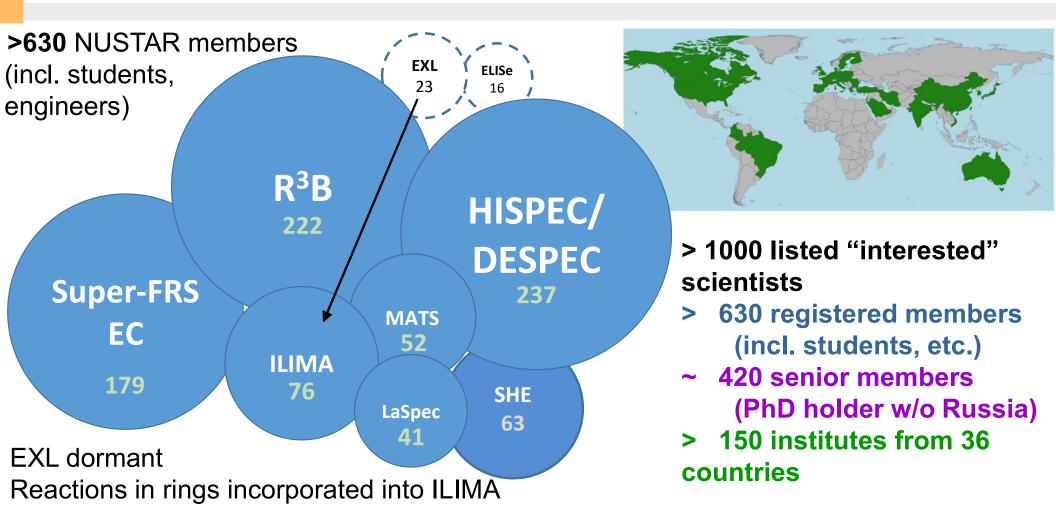
Joint Scientific Council 12-13 May 2025

RRB 15-16 July 2025


(FAIR Council 8-9 July 2025)

NUSTAR week in Prague (Czech Republic) 29 Sept.- 2 Oct. 2025

Overarching physics case: the creation of the (heavy) chemical elements



NUSTAR One science, different observables, instrumentations

Timeline 2021 –

2021-2022	FAIR-0 experiments	(27 NUSTAR exps.+tests)
	<u> </u>	•

No experiments (but there were tests)

FAIR-0 experiments (27 NUSTAR exps.+tests)

2026-2027 FAIR-0 experiments (G-PAC in 2025)

End 2027 -> Early Science (with SuperFRS)

End 2028 -> First Science (with SuperFRS and SIS100)

G-PAC outcome: experiments in 2026-2027

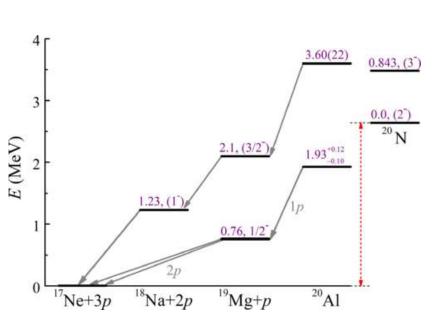
	outcome	A shifts	A- shifts
ILIMA	1 A; 3 A-; 3 B	15	27
HISPEC/DES			
PEC	3A (1 resubmitted); 1 A-; 2 B	36	14
SuperFRS-	4 A; 0 A-; 3B; 4C; assumes A for the		
EC	applications proposal	48	0
R3B	2A (1 resubmitted); 1 A- ;3 B	48	9
SHE	4 A ;2 A-	216	81
NUSTAR:	TOTAL:	363	131
	granted experiments has also been made public:		
Droft ochodulo	https://gate.gsi.de/cgi-bin/prop-overview?ranking	<u>=a</u>	

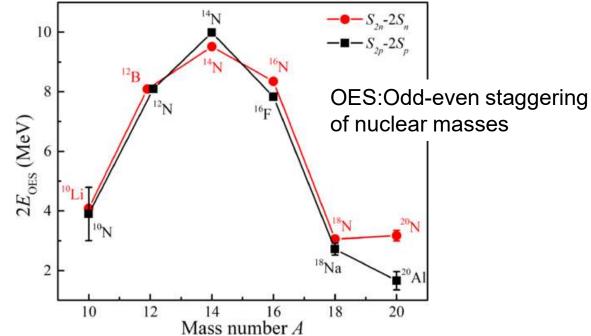
Draft schedule soon

Publications 2021-2024

NUSTAR database (based on GSI repository: https://repository.gsi.de/)

		Nature		DDC/			DhD 🏞	
		family; PRL	PLB	PRC/ PRA	NIM	Other	PhD diss.	Total
R3B	2021-24	5	3	10	4	20	9	51
HISPEC/D ESPEC	2021-24	3	8	6	6	18	4	45
SuperFRS -EC	2021-24	2	3	3	17	16	2	43
ILIMA	2021-24	3	0	2	1	6	0	12
SHE	2021-24	8	4	15	9	52	4	92
LASPEC/ MATS	2021-24	3	0	0	0	1	0	4
NUSTAR	2024	7	5	3	5	30	13	63
	2023	6	5	5	14		4	69
	2022	6	4	16	10		0	67
	2021	5	4	12	8	17	2	48
NUSTAR	2021-24	24	18	36	37	113	19	247

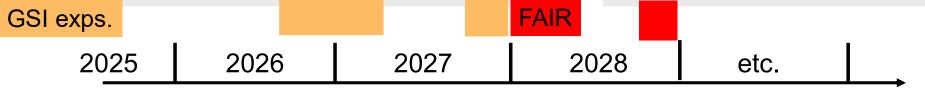




Isospin Symmetry Breaking Disclosed in the Decay of Three-Proton Emitter 20A1

X.-D. Xu[©], ^{1,2,3,*} I. Mukha[©], ^{3,†} J. G. Li[©], ^{1,2,4} S. M. Wang[©], ^{5,6} L. Acosta[©], ^{7,8} M. Bajzek, ^{3,9,10} E. Casarejos[©], ¹¹ D. Cortina-Gil[©], ¹² J. M. Espino[©], ¹³ A. Fomichev[©], ¹⁴ H. Geissel, ^{3,9,‡} J. Gómez-Camacho[©], ¹³ L. V. Grigorenko[©], ^{14,15,16} O. Kiselev[©], ³ A. A. Korsheninnikov[©], ¹⁶ D. Kostyleva, ³ N. Kurz[©], ³ Yu. A. Litvinov[©], ³ I. Martel[©], ¹⁷ C. Nociforo, ³ M. Pfützner[©], ^{18,3} C. Rodríguez-Tajes, ¹⁹ C. Scheidenberger, ^{3,9,20} M. Stanoiu[©], ²¹ K. Sümmerer[©], ³ H. Weick[©], ³ P. J. Woods, ²² and M. V. Zhukov[©], ²³

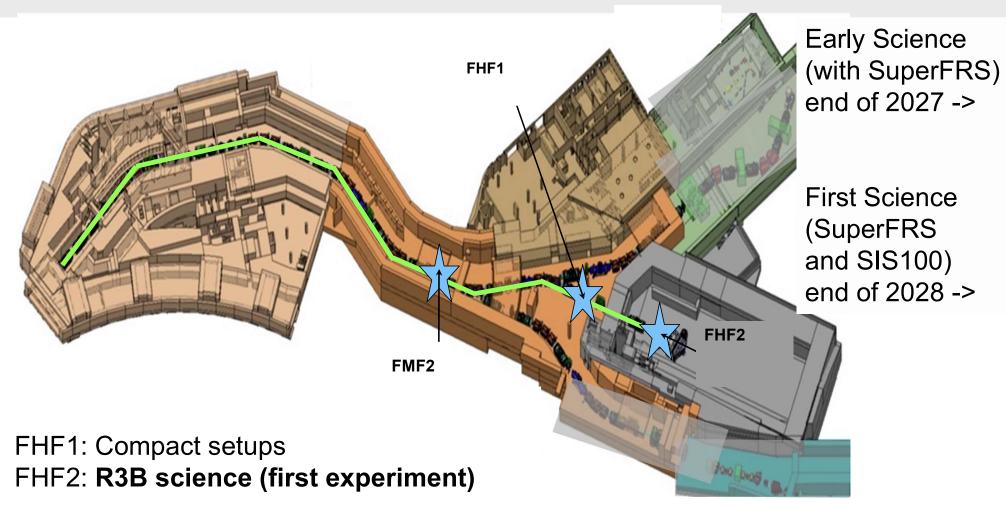
¹Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China



From GSI to FAIR (simplified)

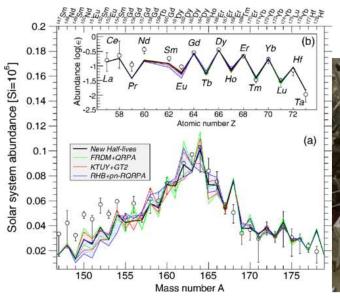
Early Science: SIS18-SuperFRS increased secondary beam intensity

First Science:


SIS18-SIS100-SuperFRS increased primary beam intensity

End of 2026: NUSTAR equipment moving to High-Energy Cave at FAIR To be ready to take beam from end of 2027

Experiments location at Super-FRS: ES and FS


Physics in the SuperFRS tunnel

Production of exotic neutron-rich isotopes

- Measurement of their beta-decay lifetimes
- Measurement of their masses

Astro impact, based on theory

Start of FAIR: First NUSTAR results

Main aim to show that FAIR is running

- ⇒Need to be **published fast**
- ⇒Low risk (follows directly from SuperFRS commissioning)
- ⇒Use some new capability:

secondary beam intensity

from primary beam

from transmission

higher beam energy (> 1GeV/u) higher SuperFRS transmission

equipment

Lessons from FRIB (and RIKEN):

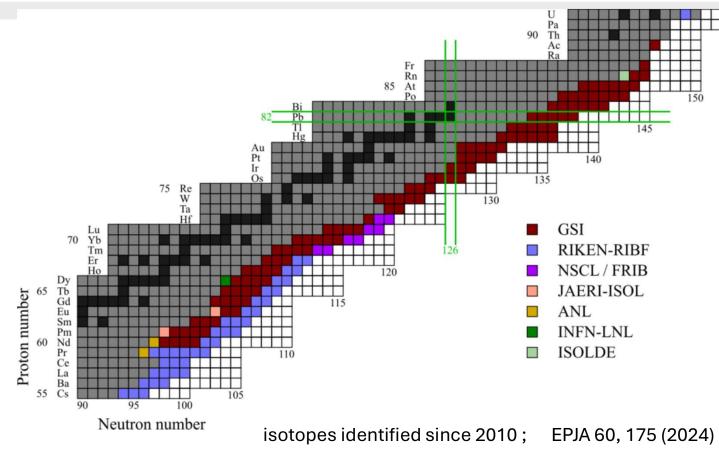
Exps.: May 2022 first exp

First publications:

PRL on new lifetimes N>28 (published Nov. 2022)

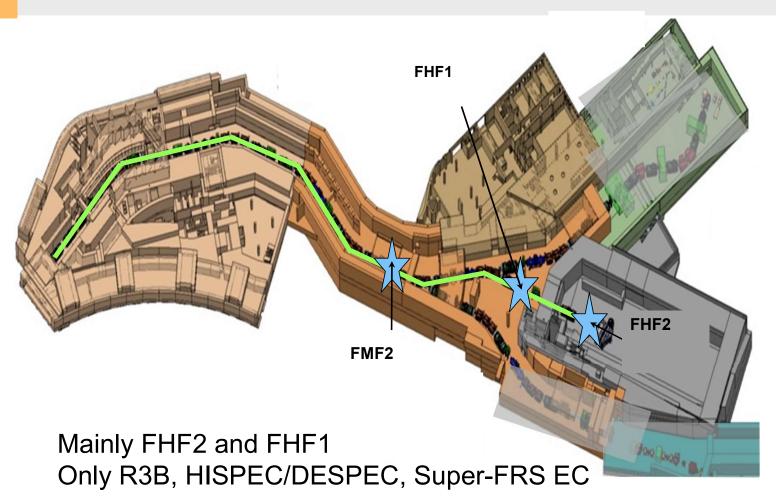
PRL on unexpected isomer 32Na (June 2023)

PRL on new isotopes 198Pt beam (Feb. 2024;


exp Feb. 2023)

Rank	Laboratory	Isotopes
1	Berkeley	640
2		445
3	Dubna	223
4	Cambridge	218
5	RIKEN	196
6	Argonne	114
7	CERN	111
8	GANIL	84
9	Oak Ridge	79
10	Michigan State	77
11	Orsay	71
12	Chicago	53
	Los Alamos	53
14	Brookhaven	46
15	Jyväskylä	44
16	Grenoble	39
17	Berlin	38
18	Studsvik	34
	Lanzhou	34
20	Ohio State	33
	McGill	33
22	Amsterdam	29
23	Mainz	23
	Harwell	23

New isotopes



https://frib.msu.edu/public/nuclides

Low-energy branch?

Low-energy branch

- -needs infrastructure
- -serves:

Super-FRS EC, HISPEC/DESPEC, MATS, LASPEC

-physics workshop:1 October 2025

Summary and conclusions

FAIR Phase-0 is productive and assures readiness for Early and First Science

NUSTAR ES&FS experiments will mark the start of FAIR

Overarching physics case: creation of the chemical elements

Optimisation of the FAIR injector chain already for Early Science in parallel to FAIR construction (beam intensities!)

Vision for the completion of Super FRS low-energy branch (FS++)

NUSTAR week in Prague 29 Sept.- 2 Oct. 2025 https://indico.gsi.de/event/21640/ Low-energy branch workshop, Wednesday 1 October 14:00-18:00