Status of LMD software

Anastasia Karavdina

KPH, Uni Mainz

25 June 2013

Still missing cooling and support structure

Simulation conditions

- GEANT4
- BOX generator

- Solenoid & Dipole
- beam pipe ver.201303
- the Luminosity Detector

Temporary geometry files

For tests with sensors only

avoid noise tracks from secondaries

e.g used for tuning track reconstruction

 $macro/lmd/geo/HV_MAPS - Design - SensorsOnly.root$

For test with full LMD geometry

effects due to material

e.g for track reconstruction performance, background, alignment, etc

 $macro/lmd/geo/HV_MAPS - Design - 29052013.root$

Disclaimer

Nobody is responsible for these files Geometry up to date still can be assured only with $\rm macro/lmd/create_Lmd_HV_MAPS.C$

Check neighboring cells by breaking angle New rule: $(1 - \cos \alpha) < \delta \psi$ Seems distance aren't sensitive enough to multiple scattering effect

CA: $\delta \Psi$ determination & estimation

$$(1 - \cos \alpha) < \delta \psi \Rightarrow \delta \psi_{max} = (1 - \cos(\sqrt{3}\alpha_0)) \sim \frac{3 \cdot \alpha_0^2}{2}$$

P _{beam} ,	θ_{MS}	$3 \cdot \alpha_0^2 / 2$	
15	$3.1 \cdot 10^{-5}$	8·10 ⁻⁷	x/2
11.91	$3.9 \cdot 10^{-5}$	8·10 ⁻⁷	splane yplane
8.9	$5.2 \cdot 10^{-5}$	9·10 ^{−7}	
4.06	$1.2 \cdot 10^{-4}$	1.10^{-6}	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.5	$3.7 \cdot 10^{-4}$	$2 \cdot 10^{-6}$	

$\delta \Psi$ determination (10⁶ events)

15 GeV/c

1.5 GeV/c

Pull of variable $(X_{REC} - X_{MC})/\sigma_X$ example: pull X_{trk} before back propagation, 1.5 GeV/c

For track description we have 6 variables (PCA and direction at this point)

Pulls of variables after track fit

error of P_z overestimated for Kalman Filter But in general Kalman Filter gives better results

• Compare two tracks between each other \rightarrow if they contain 2 common hits \rightarrow save with higher number of hits or smaller χ^2 • Cut tracks by $\hat{\theta}$, $\hat{\phi}$

$$d_x \equiv x_1 - x_0$$

$$d_y = y_1 - y_0$$

$$d_z = z_1 - z_0$$

$$tg\hat{\phi} = \frac{d_y}{d_x}$$
$$tg\hat{\theta} = \frac{\sqrt{d_x^2 + d_y^2}}{d_z} - 0.040$$

$$d_x = x_1 - x_0$$

$$d_y = y_1 - y_0$$

$$d_z = z_1 - z_0$$

$$tg\hat{\phi} = \frac{d_y}{d_x}$$
$$tg\hat{\theta} = \frac{\sqrt{d_x^2 + d_y^2}}{d_z} - 0.040$$

Full LMD, beam pipe, θ_{MC} =2-11 mrad, 1e5 events cut $|\hat{\theta}| \le 11 \text{ mrad}$, $|\hat{\phi}| \le 250 \text{ mrad}$

	Before	After		
P _{beam}	N _{rec} / N _{prim}	N ^{left} / N _{prim}	$N_{second}^{left}/N_{prim}$	
15	103.04 \pm 0.07	100.20 \pm 0.07	$0.62~\pm~0.03$	
11.91	102.16 \pm 0.06	$99.97~\pm~0.06$	$0.43~\pm~0.03$	
8.9	101.46 \pm 0.05	$99.77~\pm~0.05$	$0.25~\pm~0.02$	
4.06	100.68 ± 0.03	$99.37~\pm~0.04$	$0.09~\pm~0.02$	
1.5	100.77 \pm 0.03	$99.04~\pm~0.05$	$0.08~\pm~0.02$	

- N_{rec} number of pure reconstructed tracks (hits mixture tracks rejected for simplicity)
- N_{prim} number of reconstructed primaries \bar{p}
- N_{second} number of reconstructed secondaries
- N_i^{left} number of tracks which is left after cut

heta of cut tracks after back propagation

Primaries & Secondaries

Summary for secondaries study (10^5 events)

Example: 15GeV/c

θ : 2-11 mrad

P _{beam} ,	z=0-12m	z=10-12m
15	5.01 ± 0.07	4.37 ± 0.06
11.91	$4.31~\pm~0.06$	$3.90~\pm~0.06$
8.9	$3.88~\pm~0.06$	$3.62~\pm~0.06$
4.06	$3.43~\pm~0.06$	$3.37~\pm~0.06$
1.5	$3.57~\pm~0.06$	$3.54~\pm~0.06$

GEANE

- Was the only one option before Apr.2013
- Problems with error propagation
- Strange behavior for parameters propagation (Different for different beam momentum ⇒ wasn't clear is it GEANE problem or mag.field effect)

Runge-Kutta

- New option since Apr.2013
- Reason for systematic effects was found quite fast
- Result of error propagation looks strange

Tomorrow more detailed talk on computing session

Trick for back propagation with Runge-Kutta in LMD usage

Step size with knowledge of magnetic field changes

Back propagation results

ullet Back propagation in one global step ightarrow shifted PCA Geane: due to large bending angle (20°) Runge-Kutta: due to large step size (\sim 100 cm) • Change number of global steps ightarrow shifts aren't so significant in both cases σ_{pull} ($P_{beam} = 1.5 \text{ GeV/c}$) σ_{pull} ($P_{beam} \ge 4.06$ GeV/c) • Geane: $\sigma_{pull}^{x} \sim 0.8 \sigma_{pull}^{y,z} \sim 0.6$ • Geane: $\sigma_{\text{pull}}^{PCA} \sim 0.8 \sigma_{\text{pull}}^{Px,Py} \sim 0.9$ $\sigma_{pull}^{Px} \sim 1.3 \sigma_{pull}^{Py} \sim 1$ $\sigma_{pull}^{Pz} \sim 0.1$ $\sigma_{null}^{Pz} \sim 0.1$ (errors overestimation) (errors overestimation for PCA) • R.K : BK. $\sigma_{\text{pull}}^{PCA} \sim 1.5 \sigma_{\text{pull}}^{Px,Py} \sim 0.9$ $\sigma_{pull}^{x} \sim 1.5 \sigma_{pull}^{y,z} \sim 1.2$ $\sigma_{pull}^{Pz} \sim 1$ $\sigma_{pull}^{Px} \sim 1.4 \sigma_{pull}^{Py} \sim 1.1$ (errors underestimation for PCA) $\sigma_{pull}^{Pz} \sim 1.2$ (errors underestimation for PCA)

PndLmdTrkQTask

Assignment of reconstructed tracks to simulated (good/ghost/missed)

PndLmdTrackQ

contains true & reconstructed information (with trk quality flag \rightarrow reason for ghost/missed)

Missed & Ghost tracks $(2 \cdot 10^5 \text{ events})$

Definitions

- good contains 65% hits from one MC track
- missed wasn't found
- ghost was found twice or contains mixture of hits

Number of ghost tracks is exactly 0

Conclusion

- Cellular Automaton was tuned and tested
- Cuts on tracks before back propagation is moved to track filter task
- Runge-Kutta algorithm from GenFit
 - tested for Kalman Filter and back propagation (additional option to GEANE)
- Back propagation now is done in 7 global steps
 - ullet Parameters propagation is OK for both igodot
 - Error propagation isn't 🙂

Plans

- Finalize track reconstruction performance study
- Modules alignment (technique approval, limits test)
- Background studies (cuts efficiency, influence of beam smearing)

Thank you for attention!

Ghost tracks

Possible reasons to add a track

- double track reconstruction (Ex.1,2)
- wrong hit combination reconstruction (Ex.3)

• Prevented by Track Filter task (2 \geq common hits \rightarrow trk with max \sharp *hits* or min χ^2)

Ghost tracks

Possible reasons to add a track

- double track reconstruction (Ex.1,2)
- wrong hit combination reconstruction (Ex.3)

• Can't be resolved by Track Filter task, because there is no 2 > common hits

Ghost tracks

Possible reasons to add a track

- double track reconstruction (Ex.1,2)
- wrong hit combination reconstruction (Ex.3)

• Blue and orange tracks will be marker as *qhost* (from MC: green and yellow are *missed*)

Possible reasons to loss a track

- \bullet Small amount of hits \rightarrow min 3 hits for trk-search
- losses during tracks search
- Cut on trk-candidate
- losses during back-propagation

So far there is no cuts on back propagated tracks

1.5 GeV/c, $\delta\psi{=}5{\cdot}10^{-6}{\cdot}$ Missed trks $_{\rm 10\ trks/ev,\ 10^6\ events}$

• trk search losses

1.5 GeV/c, $\delta\psi\text{=}5{\cdot}10^{-6}\text{:}$ Missed trks $_{\rm 10\ trks/ev,\ 10^6\ events}$

• at least one MC hit

1.5 GeV/c, $\delta\psi\text{=}5{\cdot}10^{-6}\text{:}$ Missed trks $_{\rm 10\ trks/ev,\ 10^6\ events}$

1.5 GeV/c, $\delta\psi\text{=}5{\cdot}10^{-6}\text{:}$ Ghost trks 10 trks/ev, 10 6 events

1.5 GeV/c, $\delta\psi\text{=}5{\cdot}10^{-6}\text{:}$ Ghost trks $_{\rm 10\ trks/ev,\ 10^6\ events}$

Pulls of variables after track fit

$\delta \Psi$ determination (10⁶ events)

15 GeV/c

11.91 GeV/c

38 / 27

$\delta \Psi$ determination (10⁶ events)

8.9 GeV/c

4.06 GeV/c

